Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды, алкилирование синтез

    Синтез высокооктановых углеводородов на основе реакции алкилирования Синтез изооктана [c.160]

    Показана возможность применения цеолитов в качестве катализаторов превращений углеводородов в реакциях различных классов скелетной изомеризации парафинов и олефинов, селективного гидрирования, в ряде процессов органического и нефтехимического синтеза алкилирование, синтез мономеров, синтез на основе СО. Рассмотрены способы регулирования каталитического действия цеолитов добавлением в реакционную зону различных веществ, например двуокиси углерода. [c.190]


    В соответствии с планом работы нефтехимической секции Башкирского Республиканского Правления ВХО имени Д. И. Менделеева в 1967 году намечено проведение тематических производственных конференций, посвященных совершенствованию химических и нефтехимических производств, коррозии и антикоррозийным покрытиям в нефтехимической промышленности, увеличению ресурсов и подготовке сырья для нефтехимических производств. Третий выпуск Докладов нефтехимической секции является подготовительным этапом к проведению этих конференций. Большая часть сообщений посвящена таким процессам, как полимеризация, дегидрирование углеводородов, алкилирование и органический синтез занимающих основное место в промышленности Башкирии. Наряду с этим должное отдается вспомогательным процессам (извлечение олефинов, подготовка и регенерация сырья, технический анализ и другим). Особо необходимо отметить работы, выполненные в области коррозии и антикоррозийной защиты — проблемы, являющейся общей для большинства предприятий и имеющей колоссальное значение. [c.4]

    Излагаются основные методы химической переработки углеводородов алкилирование ароматических углеводородов, окисление углеводородов (парафиновых, олефинов, изопропилбензола), гидратация олефинов и другие методы получения спиртов, галоидирование и нитрование приводятся новейшие данные по получению и применению различных полупродуктов нефтехимического синтеза. [c.200]

    Исследования по алкилированию проводились не только с простейшими ароматическими углеводородами, но также с фенолами и производными пиридина. Таким образом, эта реакция к концу XIX в. уже была широко исследована и прочно утвердилась в области химического синтеза. Данный обзор не ставит своей целью ни охват всей имеющейся обширной литературы по этой теме, ни оценку огромных возможностей и технического использования применяемых катализаторов. Это уже сделано другими в прекрасных обзорных работах [20]. Здесь же задача ограничивается обсуждением тех отдельных реакций, которые применяются в нефтяной промышленности в значительных размерах. [c.488]

    Рассмотренные выше процессы, вероятно, представляют собой наиболее значительные направления применения реакций алкилирования а-роматических углеводородов в нефтяной промышленности в настоящее время. Это обозрение значительно расширилось бы, если бы включить все возможности, открываемые научными исследованиями, и, в частности, исследования в области нефтехимического синтеза. [c.513]


    Отдельные элементарные процессы практически удалось осуществить [8—11] без катализаторов (термическое алкилирование, термополимеризацию, термическое дегидрирование, термическое деалкилирование, различные формы термического распада) и с ними (алкилирование на холоду парафиновых и ароматических углеводородов олефиновыми, полимеризацию, в том числе димеризацию и сополимеризацию, гидрирование, низкотемпературный крекинг, изомеризацию и т. п.). Но чисто термические процессы требуют высоких температур (термический синтез ароматических углеводородов) либо высоких давлений (термическая полимеризация, алкилирование и гидрирование) и в указанных условиях сопровождаются значительными потерями исходного сырья за счет глубоко идущих реакций распада (вплоть до распада на элементы) и глубокого уплотнения (до образования коксообразных веществ). [c.42]

    Все описанные выше технологические схемы производства присадок основываются, на использовании установок периодического действия, которые, как уже говорилось, не могут быть в достаточной степени автоматизированы и механизированы, В последние годы наряду с синтезом новых, высокоэффективных присадок к маслам ведутся большие работы по усовершенствованию действующих процессов производства присадок. В частности, разрабатываются непрерывные схемы, являющиеся более эффективными и экономически выгодными. Особое внимание уделяется разработке непрерывных схем для тех стадий или узлов производства, которые являются общими для процессов получения многих присадок например, алкилирование ароматических углеводородов и их производных олефинами, конденсация алкилфенолов с формальдегидом и другими соединениями, нейтрализация и сушка различных продуктов и отделение механических примесей, сульфирование масел серным ангидридом, отгонка растворителей и непрореагировавших продуктов, а также утилизация отходов производства присадок. [c.248]

    Высокие темпы производства алкилароматических углеводородов определяются постоянно растущей потребностью получаемых на их основе продуктов — синтетических каучуков, поверхностно-активных веществ, пластических масс, синтетических волокон и др. Именно поэтому среди многочисленных процессов нефтехимического синтеза каталитическое, алкилирование бензола олефинами занимает одно из ведущих мест. [c.5]

    Многочисленные исследования, посвященные изучению реакции алкилирования ароматических углеводородов, указывают на неослабевающий интерес к теоретическим и практическим аспектам этого важнейшего направления промышленного органического синтеза, дающего широкий ассортимент необходимых народному хозяйству продуктов. Между тем производство ароматических углеводородов является лишь одним из многочисленных направлений исиользования этой интересной и весьма перспективной реакции. Следует отметить, что уже в настоящее время при обсуждении энергетической программы необходимо обратить серьезное внимание на возможность широ кого исиользования разнообразных процессов, основанных на реакции алкилирования, которые могут быть использованы как для синтеза топливных компонентов из нефтепродуктов и природного газа, так и для переработки твердых горючих ископаемых. Единичные поисковые исследования, проведенные с целью выяснения этой актуальнейшей проблемы, указывают на перспективность подобного подхода. В соответствии с этим следу- [c.264]

    Для технического синтеза этих углеводородов должны быть разработаны приемлемые для иромышленности методы пх получения и, в первую очередь,— полимеризация (с последующим гидрированием) или алкилирование. [c.52]

    Как было недавно найдено, щелочные металлы или соединения щелочных металлов обнаруживают катализирующее действие в таких реакциях, как изомеризация олефинов, дегидрогенизация некоторых диолефинов в ароматические углеводороды, алкилирование арилалканов и полимеризация монооле-финов. Многие из этих реакций в высокой степени селективны, что открывает новые возможности для синтеза и переработки углеводородов, [c.342]

    Наиболее перспективным процессом очистки является обработка дефенолированного сырья отработанным комплексом хлористого алюминия, образующимся при алкилировании бензола олефиновыми углеводородами при синтезе алкиларилсульфонатов. Когда комплекс становится непригоден для алкилирования вследствие потери своей активности, он оказывается пригоден для полимеризации диеновых и циклоолефиновых углеводородов. Этот способ был проверен на опытно-промышленной установке и дал удовлетворительные результаты. Комплекс содержал [c.229]

    Недостатком приведенных методов является применение дефицитных растворителей. Поэтому была исследована возможность применения в качестве растворителя бензола. В случае применения нормальных углеводородов для синтеза алкиларилсульфонатов последующим процессом является алкилирование бензола нормальными алкенамп. В этом процессе бензол применяется в избытке и наличие его во фракции нормальных углеводородов не ухудшает показателей процесса и не приводит к увеличению расхода растворителей. В качестве активатора был использовап метиловый или этиловый спирт. К 500 г фракции, выкипающей в пределах температур 180—260° С, добавлялось 375 мл бензола и 100 мл спирта. К раствору добавлялось 500 г карбамида и перемешивание продолжалось в течение часа. Осадок на фильтре промывался 1000 мл бензола. Последующие операции проводились так же, как и в первых двух вариантах. Выход нормальных углеводородов был примерно такой же, как и в третьем варианте. [c.243]


    В термических, а также каталитических процессах нефтепе — реработки одновременно и совместно протекают как эндотермические реакции крекинга (распад, дегидрирование, деалкилирова— ние, деполимеризация, дегидроциклизация), так и экзотермические реакции синтеза (гидрирование, алкилирование, полимеризация, конденсация) и частично реакции изомеризации с малым тепловым эффектом. Об этом свидетельствует то обстоятельство, что в про — дуктах термолиза (и катализа) нефтяного сырья всегда содержатся углеводороды от низкомолекулярных до самых высокомолекуляр — ных от водорода и сухих газов до смолы пиролиза, крекинг — остатка и кокса или дисперсного углерода (сажи). В зависимости от температуры, давления процесса, химического состава и молекулярной массы сырья возможен термолиз с преобладанием или реакций крекинга, как, например, при газофазном пиролизе низкомолеку — лярных углеводородов, или реакций синтеза как в жидкофазном процессе коксования тяжелых нефтяных остатков. Часто термические и каталитические процессы в нефте— и газопереработке проводят с подавлением нежелательных реакций, осложняющих нормальное и длительное функционирование технологического процесса. Так, гидрогенизационные процессы проводят в среде избытка водорода с целью подавления реакций коксообразования. [c.9]

    Реакции синтеза высокомолекулярных углеводородов С — ал— килированием являются обратными по отношению к крекингу алканов и потому имеют сходные механизмы реагирования и относятся к одному классу катализа — кислотному. Реакции С — алкилирования протекают с выделением 85 — 90 кДж/моль (20 — 22 ккалУмоль) тепла в зависимости от вида олефина и образующегося изопарафина, поэтому термодинамически предпочтительны низкие темшфатуры, причем уже при 100 °С и ниже ее можно считать практически необратимой. Именно в таких условиях осуществляют промышленные процессы каталитического алкилирования. Из парафинов к каталитическому алкилированию способны только изо — [c.137]

    Сырьевые потоки должны обезвоживаться. Этилхлорид должен осушаться перед применением в силикагелевых адсорберах, циклогексан и бензин должны обезвоживаться азеотропной осушкой до содержания влаги менее 10 мг/л. Все эти продукты, а также масло перед подачей в производство должны быть проанализированы на содержание влаги повторно с отбором проб в отделении синтеза ДЭАХ. Чтобы предотвратить побочные неконтролируемые реакции алкилирования содержащихся в растворителе ароматических углеводородов с хлорэтилом в присутствии алюмоорганиче-ских соединений, нужно применять деароматизированные растворители. Для уменьшения опасности самовоспламенения АОС при разгерметизации оборудования процессы синтеза должны проводиться, как уже упоминалось, в среде углеводородного растворителя. [c.163]

    Синтезы высокомолекулярных углеводородов описаны в главе XX, химизм и механизм алкилирования обсуждены в главах XXXI и Ы, алкилирование ароматических углеводородов — в главе ЫХ, синтез углеводородов из окиси углерода и водорода — в главе XXI Методы приготовления чистых 1щклопарафинов и ароматических соединений рассматриваются в главе XVIII. [c.398]

    Алкилирование цикдопентадиена. Имеющиеся в продаже дицикло-пентадиены легко деполимеризуются путем нагревания до мономера, который является удобным исходным материалом для синтезов известных типов пятичленных углеводородов. В большинстве случаев конверсия составляет 70—75%, но деполимеризация весьма сильно зависит от условий длительное нагревание вызывает дальнейшую (необратимую) полимеризацию и приводит к низким выходам мономера. Полную деполимеризацию можно осуществить путем кратковременного быстрого сильного нагрева. [c.456]

    Ацилирование и алкилирование по Фриделю-Крафтсу являются удобными реакциями для синтеза углеводородов, однако требуется тщательное изучение направления этих реакций в том случае, когда имеется нозможность образования изомерных соединений (изомерия положения) или перегруппировок. Если в качестве катализатора применяется хлористый алюминий, то следует использовать химически чистый препара 1, чтобы избежать побочных реакций. Реакция ацилирования заслуживает предпочтения в связи с тем, что алкильные группы довольно легко перегруппировываются в присутствии А1С1з. [c.509]

    Со времени первого сообщения Фриделя и Крафтса в 1877 г. [125] о том, что хлористый алюминий катализирует алкилирование ароматических углеводородов, эта реакция стала предметом большого числа исследований и обзоров [75, 123, 235, 256, 294]. Реакция широко применяется при проведении синтетических работ в лабораториях [256]. Она также имеет весьма большое значение для нефтяной пролтышленности. Так, алкилирование по Фриделю—Крафтсу применяется в настоящее время в больших масштабах для синтеза этилбензола, стирола, кумола, для производства фенола и алкилата , а также детергентов (см. гл. LV11). Согласно оценке алкилирование бензола для производства стирола потребляет около 45% общего количества производимого бензола. [c.428]

    Синтез некоторых важных для нефтехимии углеводородов (этилена из этана, пропана н жидких фракций изобутилена из изобу-тана бутена и бутадиена из бутана пентенов из пентана бензола и толуола ароматизацией парафиновых и циклопарафиновых углеводородов стирола из этилбензола) относится к процессам термического и термокаталитического разложения и подробно рассматривается в курсе технологии нефти. Там же изложены процессы синтеза компонентов моторных топлив, например, изомеризация бутана в изобутан, метилциклопентана в циклогексан, превращение изомерных ксилолов, алкилирование для получения изооктана, этил-и изопропилбензола полимеризация в низшие жидкие полимеры (полимербензнн, изооктен и компоненты смазочных масел). [c.56]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]

    Процессы, приводящие к углеводородам, выкипаю1цим в пределах кипения бензина, за счет реакций синтеза полимеризация низкомолекулярных олефинов, в том числе димеризация бутиленов и амиленов сополимери-зация низкомолекулярных олефинов различной молекулярной массы (например, бутилена и амилена внонен или пропилен и гептена в децен и т. д.) алкилирование низкомолекулярных парафинов олефинами в изопарафины алкилирование ароматических углеводородов олефинами в алкилароматические. [c.42]

    Опыт исследовательских работ последних лет показывает, что, несмотря на упомянутые многочисленные затруднения, при дифференцированном подходе к отдельным стадиям синтеза присадок можно создать узлы непрерывного действия. Непрерывное ведение процесса особенно рационально в тех случаях, когда реакции протекают с большой скоростью. В настоящее время в опытном и опытно-промышленном масштабах уже созданы реакторы, обеспечивающие непрерывное ведение некоторых стадий синтеза присадок алкилирования фенола олефинами на твердых катализаторах, сульфирования ароматических углеводородов, конденсации алкилфенола с формальдегидом, нейтрализации и сушки промежуточных продуктов синтеза, фосфоросернения и др. [c.222]

    Назначение. Сырье и продукция. Процесс изомеризации парафиновых углеводородов предназначен для повышения октанового числа пентан-гексановых фракций бензинов, выкипающих до 70 С, и получения индивидуальных изопарафиновых углеводородов — изобутана и изопентана — из н-бутана и н-пентана с целью увеличения ресурсов сырья при синтезе изопренового каучука. Кроме того, изобутан используется как исходное сырье для процесса алкилирования и для получения изобутилена при синтезе МТБЭ, изопентаны и изогексаны — как компоненты автомобильного бензина. [c.178]

    I л а с т и ф и к а т о р ы, смазочные масла и присадки, получаемые алкилированием ароматических углеводородов. Смазоч-лые масла синтезируют алкилированием (в присутствии AI I3) тафталипа или смесей ароматических углеводородов, экстраги- )уемых из нефтяных фракций. Алкилирующими агентами служат олефины (от этилена до высших олефинов, получаемых крекингом парафина) или хлорированные фракции керосина. В случае низших олефинов для синтеза смазочного масла в молекулу нафталина необходимо вводить 6—7 алкильных групп, а при исиоль-зовапии высших олефинов — от 2 до 4 алкильных грунн. [c.250]

    Гетерополикислоты следует отметить в числе новых перспективных, но еще мало изученных каталитических систем. Они могут быть применены для синтеза алкилароматических углеводородов. Очень активным катализатором алкилирования является 407о Н451 1204о/8102 18]. При температуре 150 °С, давлении 1,5 МПа и соотношении СеНе СзНе, равном 4, протекает реакция алкилирования бензола пропиленом с селективностью по изопропилбензолу 72,5% при степени конверсии пропилена 97,5%. Продолжительность работы катализатора 500 ч. Диизо-пропилбензол возвращается на переалкилирование. [c.27]

    Способы переработки любого вида сырья определяются характером продуктов, которые предполагается получить, а также составом и свойствами исходных углеводородов. Для производства продуктов органического синтеза используются типичные реакции ор-1 анической химии галогеннровзние, сульфирование, окисление и восстановление, гидрирование и дегидрирование, гидратация и дегидратация, нитрование, алкилирование, циклизация, изомеризация, конденсация, полимеризация, этерификация и т. п. [c.162]

    Реакторы для проведения процессов в системе жидкость — жидкость. Примерами нефтехимических процессов, протекающих в системе жидкость — жидкость, могут служить некоторые процессы алкилирования ароматических и парафиновых углеводородов, синтез диметнлдиоксана из формальдегида и изобутилена (первая стадия получения изопрена). [c.139]

    В топливно-нефтехимических схемах помимо процессов каталитического риформинга, гидрокрекинга, каталитического крекинга и алкилирования изобутана должна еще предусматриваться гидроизомеризация легких бензинов. Продукты гидроизомеризацни необходимы для частичной з амены алкилатов. В этом случае непредельные углеводороды и изобутан могут быть использованы в процессах синтеза каучука и других высокомолекулярных соединениях. В схемах перспективных НПЗ, по-видимому, будет неуклонно повышаться попутная выработка олефинового и изопарафинового сырья, необходимого для синтезов различных продуктов широкого народного потребления. Вместе с тем в дальнейшем, очевидно, будет возрастать относительный выпуск реак тивных топлив и арктических изомеризованных моторных топлив, в производстве которых роль процессов гидрокрекинга и гидроизомеризации неуклонно увеличивается, Повышение удельного значения установок гидрокрекинга позволит одновременно вырабатывать изомеризованные низкозастывающие топлива и базовые масла. [c.348]

    Поэтому одним из возможных путей синтеза углеводородов ряда гопана в нефтях является алкилирование (и деградация) соединений ЬХХХП и ЬХХХГУ с последующим ионным гидрированием. Однако существует еще один и весьма важный источник образования серии гопанов, а именно бактериогопан — тетраоксигопан состава Сз5 (ЬХХХУ) [54, 58, 59]. [c.138]

    Столь быстрый рост производств индивидуальных углеводородов оказался возможным потому, что современные методы производства различных видов качественного моторного топлива и смазочных масел мало отличаются от имеющих уже известную промышленную историю методов получения синтетического каучука, спиртов и других растворителей. Кроме того, для получения и тех и других видов продукции (т. е. продукции как топливного, так и нетопливного назначения) используется однотипная аппаратура (зачастую это аппаратура высоких давлений), потребляется одно и то же исходное сырье (нефть или уголь) и часто применяются одни и те же или родственные методы синтеза — полимеризация, алкилирование, гидрирование, а в производстве полупродуктов нередко также окисление или галондирование. Таким образом, основной органический синтез, включающий изготовление 1) авиабензина, 2) полупродуктов производства взрывчатых веществ, 3) каучука и пластических масс,— по существу является единым комплектом смежных производств. Начальным периодом развития )той отрасли химической промышленности следует считать годы нс рвой мировой войны — 1914—1918 гг. [c.455]

    Промышленные ироцессы химической переработки нефтяного сырья позволяют получать дополнительное количество свотлых нефтепродуктов (коксование, каталитический крекинг, гидрокрекинг), значительно улучшать их качество (главным образом бензинов), используя как компоненты товарных топлив фракции каталитического риформинга, каталитического крекинга, изомеризации, алкилирования, а также исходные мономеры для нефтехимического синтеза ароматические и непредельные углеводороды (бензол, толуол, ксилолы, этилен, пропилен и др.). Эти процессы химической нереработки нефти и ее фракций делятся на термические и термокаталитические. По способу промышленного оформления их можно разделить на периодические, полинепрерывные и непрерывные. [c.78]

    Переработке ка компоненты моторных топлив и на продукты нефтехимического синтеза подвергаются большей частью относительно у жие фракции газа. Так, на установки каталитического алкилирования поступают фракции — изобутана, бутиленов и -бутана для получе1щя кумола бензол ал-килируют фракцией -j крекипг-га-(ов и т. д. В зависимости от процесса последующей переработки углеводородов газа, к четкости их вы-делеиия из исходной смеси предъявляются различные требования. [c.305]


Смотреть страницы где упоминается термин Углеводороды, алкилирование синтез: [c.302]    [c.5]    [c.4]    [c.43]    [c.356]    [c.6]    [c.19]    [c.122]    [c.277]    [c.497]   
Химические основы работы двигателя Сборник 1 (1948) -- [ c.92 ]




ПОИСК







© 2025 chem21.info Реклама на сайте