Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рутений анализ

    Число форм 2г N5 в органической фазе на питающей ступени и в промытом органическом продукте определили в нескольких опытах, о которых сообщалось в соответствующем разделе по рутению. Анализы не были специфичными для и НЬ - , а определялась их общая концентрация. Результаты показаны на рис. 6. Анализ кривых дает состав, приведенный в табл. 4. При использованных отношениях 1 орг Уп выявить группы I и II не удалось. [c.24]


    Разделение ионов в виде сульфидов. Сульфиды очень многих металлов труднорастворимы в воде. Эти свойства были использованы для разработки схемы систематического хода анализа катионов, которая была предложена более 100 лет назад известным русским химиком К. К- Клаусом, открывшим рутений. Эту схему называют сероводородный метод разделения и анализа ионов , она сохранилась с некоторыми изменениями и до настоящего времени. В табл. 26.8 представлены продукты взаимодействия катионов с сероводородом в кислой среде и с сульфидом аммония в аммиачной среде. Из этой таблицы видно, что в среде хлороводородной кислоты сероводород осаждает черные сульфиды серебра, ртути, свинца, меди, висмута, желтые сульфиды кадмия, мышьяка(И1) и (V), олова(1У), оранжево-красные сульфиды сурьмы(III) и (V) и коричневый сульфид олова (II). [c.557]

    Переведение платиновых металлов в раствор при анализе и переработке сложных по составу материалов и концентратов остается одним из трудоемких и экологически опасных этапов. Эта операция, как правило, включает окислительное спекание или сплавление и последующую обработку спеков царской водкой, концентрированными серной и азотной кислотами при нагревании, хлорированием в соляной кислоте и др. Наибольшие трудности возникают при переведении в раствор материалов, содержащих родий, иридий, рутений и осмий. [c.88]

    Определение рутения ( 1,3%) в искусственных сплавах плутония с кобальтом (или железом), содержащих стабильные изотопы элементов — продуктов деления, основано на измерении светопоглощения хлоридного комплекса Ru (IV) при 485 ммк (6485 5300) [718]. Подготовка пробы к анализу меняется в зависимости от состава растворенного образца. [c.408]

    Родий. Метод спектрального анализа Рутений. Метод спектрального анализа [c.822]

    Рутений. Метод спектрального анализа [c.584]

    Сплавы платино-палладиевые. Метод спектрального анализа 12554. ] -83 Сплавы платино-рутениевые. Метод определения рутения [c.585]

    В предыдущих разделах более или менее подробно представлены имеющиеся экспериментальные данные, касающиеся механизма гидрогенизации олефинов на поверхности переходных металлов. Как видно из этих данных, металлы УП1 группы делятся на две основные группы. Металлы первой группы (железо, никель, палладий) активны в реакциях изомеризации и обмена в олефинах, в то время как металлы второй группы (платина и иридий) почти не активны в этих реакциях. Рутений, родий и осмий занимают промежуточное положение. Характерные особенности каждого металла видны из разнообразия проводимых ими реакций, которое не зависит от ряда случайных факторов. Общая согласованность результатов вполне удовлетворительна. Однако их недостатком является то, что они дают мало точных сведений относительно механизма реакции. Одна из причин этого — возможность протекания реакции через большое число элементарных стадий. Другая причина заключается в трудности проведения математического анализа, если молекула реагента содержит три или более углеродных атомов. [c.407]


    В настоящее время сведения, касающиеся адсорбированных на поверхности радикалов, являются вторичными в том смысле, что их приходится накапливать, исходя из распределения продуктов реакции и ее кинетики. При таком подходе математический анализ результатов дейтерирования этилена показал, что вероятность десорбции этилена (по сравнению с вероятностью присоединения водорода) с поверхности платины и иридия значительно меньше, чем с поверхности рутения и осмия эти вероятности для родия, палладия и никеля занимают промежуточное положение. [c.458]

    Имеются разработанные методики кулонометрического анализа для ряда неорганических веществ сурьмы, щелочных металлов, мышьяка, висмута, кадмия, хрома, кобальта, меди, галогенидов, индия, иридия, родия, железа, свинца, марганца, молибдена, никеля, ниобия, осмия, платины, палладия, плутония, полония, редкоземельных элементов, рения, рутения, серебра, селена, теллура, галлия, золота, олова, вольфрама, ванадия, цинка. [c.159]

    Основные научные работы посвящены химии комплексных соединений платиновых металлов, разработке методов их анализа и аффинажа. Выполнил (1915) исследование гидроксиламиновых соединений двухвалентной платины. Изучал комплексные нитросоединения двухвалентной платины, на примере которых открыл ( 926) закономерность транс-влияния, носящую его имя. Суть ее заключается в том, что реакционная способность заместителя во внутренней сфере комплексного соединения зависит от природы заместителя, находящегося по отношению к первому заместителю в граяс-положе-НИИ. В дальнейшем эта закономерность оказалась приложимой к ряду соединений четырехвалентной платины, палладия, радия, иридия и кобальта. Открыл явление перемены знака вращения плоскости поляризации оптически активными аминосоединениями платины (IV) при превращении их в амидо(ими-до) производные. Предложил промышленные методы получения платины, осмия и рутения. [c.557]

    Наиболее прочные комплексы с С1 -, Вг -, I - и 5СК"-ионами образует золото (I и И1), ртуть (И) и металлы платиновой группы. Однако эти комплексы бесцветны или слабо окрашены, поэтому они не имеют прямого значения в фотометрическом анализе. Наибольшее значение в фотометрии имеют малопрочные, но интенсивно окрашенные роданидные комплексы железа (П1), кобальта (И), молибдена (V), вольфрама (V), висмута, уранила и ниобия. Для фотометрического анализа применяют также образование иодидных комплексов висмута и теллура, хлоридных комплексов меди (И) и железа (И1), а также роданидных комплексов рения и рутения. [c.240]

    Определение металлов в виде тиомочевинных комплексов. Л. А. Чугаев [97] показал, что осмий с тиомочевиной образует легко растворимое комплексное соединение, окрашенное в красный цвет. Он предложил применять эту реакцию для открытия и. колориметрического определения осмия, чем и было положено начало применения тиомочевины в анализе. Предложен также метод колориметрического определения рутения, тиомочевин-ный комплекс которого окрашен в синий цвет [98]. Разработана методика колориметрического определения висмута [95] и теллура [99] в виде их желтых тиомочевинных комплексов. [c.328]

    Следует добавить, что многие вещества мешают применению этого метода своей собственной окраской. К мешающим веществам относятся соли серебра, меди, висмута, платины, никеля, кобальта, титана, фториды, фосфаты, арсенаты, молибдаты и, в меньШей степени, сульфаты [ а также соли ртути (I), ртути (II) урана, рутения, осмия, мета- и пирофосфаты, оксалаты, большие количества солей кадмия, цинка, сурьмы (III) и марганца ]. Мешающее действие некоторых из них можно устранить, прибавляя к раствору роданид калия или аммония роданид р ути (II) или экстрагируя полученное окрашенное соединение эфиром или амиловым спиртом. При анализе солянокислых растворов хлорида железа (III) получаются лучшие результаты, чем при анализе сернокислых растворов , содержащих сульфат железа (III). [c.452]

    Составление руководства по анализу благородных металлов было задумано ныне покойным членом-корреспондентом АН СССР Н. К. Пшеницыным и осуществлено сотрудниками его лаборатории. Необходимость создания такого руководства от мечалась в решениях IV и V Всесоюзных совещаний по анализу благородных металлов. Разделы, посвященные химии и мето дам анализа платины, написаны Н. В. Федоренко, палладия — О, М. Ивониной, родия— К. А. Гладышевской, иридия — И. В. Прокофьевой, рутения — С. И. Гинзбург, осмия — А. Н. Федоровой, золота, а также все полярографические ме тоды — Н. А. Езерской. [c.4]

    В количественном анализе используют и некоторые производные тиомочевины, например, дифенилтиомочевина применяется для отделения рутения от осмия методом экстракции. [c.65]

    Освоение эффекта Мёссбауэра позволило проводить измерения в пределах 15-го знака. Метод основан на взаимодействии в определенных условиях гамма-квантов с атомными ядрами. Возможность использования этого достижения в химическом анализе уже показана на примере определения олова. Теоретически оправдано применение данного метода для аналитического определения следующих элементов железа, никеля, цинка, германия, мышьяка, рутения, сурьмы, теллура, иода, ксенона, цезия, гафния, тантала, вольфрама, рения, осмия, иридия, платины, золота, таллия, многих лантаноидов и актиноидов. Можно ожидать появления приборов, в датчиках которых используется высокая чувствительность твердых веществ к неуловимым следовым количествам реагирующих о ними веществ. Ведь при хемосорбции всего нескольких сотен атомов последних свойства твердого тела заметно изменяются, Сверхвысокочувствитмьными датчиками могут служить некото [c.11]


    Методами металлографического, рентгенографического и дифференциального термического анализов изучено строение сплавов титана с металлами группы платины. На основании полученных экспериментальных данных построены диаграммы состояния системы титан — рутений, титан — осмий, титан — родий, титан — иридий и титан — палладий. Обсуждены особенности строения диаграмм состояния двойных систем титана с металлами VIII группы в зависимости от их положения в периодической системе элементов. Рис. 6, библиогр. 32. [c.231]

    Впервые осуществлена структурно-групповая идептифи-кящш 11 типов сульфидов и 6 типов тпофенов, содержащихся в керосино-газойлевом дистилляте арланской нефти с использованием комплекса методов дифференциации и анализа молекулярной спектроскопией и масс—спектрометрией. Разработаны методы селективной экстракции сульфидов, впервые предложены нефтяные сульфиды в качестве экстрагентов золота, платины, палладия и суммы родия, рутения и иридия. [c.197]

    После растворения сплава (см. стр. 400) растворы обрабатывают SO2 для восстановления рутения до Ru (111). затем количественно окисляют его до Ru (IV) в 6 М НС1 хлором. Подчинение закону Бера наблюдается до концентрации рутения 15 мкг/мл. Этот прием неприменим для анализа растворов, содержащих большие количества нитрат-иона и железа. В этом случае применяют предварительную отгонку рутения из раствора, не содержащего нитрат-ионов, и поглощение его 3 М раствором NaOH (см. стр. 400). Раствор разбавляют до известного объема, отбирают порцию, содержащую 25—400 мкг рутения. добавляют к ней 10 ма 12 М НС1, доводят до 25 мл и нагревают на кипящей водяной бане в течение 20 мин. Раствор охлаждают и измеряют оптическую плотность при 485 ммк. [c.408]

    Разработана [1360] схема активационного анализа высокочистых материалов (Ве, А1, Ге) на содержание 62 примесей. Золото определяют с чувствительностью 0,003 мкг. Облученный образец растворяют в смеси НС1, НКОд, НВг и Н2304. При этом в осадок выпадают соединения стронция, серебра, бария, тантала, вольфрама в дистиллят переходят соединения мышьяка, селена, брома, рутения, молибдена, олова, сурьмы, теллура, рения, осмия и ртути в растворе находятся остальные элементы. При введении носителя (золота) и действии цинком в среде НС1 или смесью Hg l2 -Ь ЗпС12 в осадок выпадают палладий, иридий, платина и золото. [c.187]

    При обычном анализе трудно смешать линии индия с линиями других элементов [215]. Однако при определении индия по линии 1п 4511, 3 А можно обкидать помех за счет близлежащей линии алюминия (особенно при возбуждении в искре), хрома, платины и рутения, а также от более слабых линий ванадия и очень слабых линий марганца и магния (особенно при возбуждении в искре). При небольшой дисперсии спектрографа следует принять во внимание также линии меди и свинца (главным образом при возбуждении в дуге), молибдена, титана, вольфрама, а также более слабые линии кальция и осмия. Алюминий и бериллий вызывают на месте этой линии сильный фон. Яркие мешающие линии Ве 4513,3 А и Т1 4512,7 А. [c.203]

    СИДОМ алюминия [215], образование дибромметилового эфира из брома, фосфора и параформа [216], протекание реакции Принса под влиянием смеси хлоридов палладия и меди [217], либо солей рутения [218] и т. д. Обобщенный анализ таких реакций — дело будущего. [c.84]

    В неорганическом анализе дистилляционными методами отделяют мышьяк, сурьму и олово в виде галогенидов, хром — в виде Сг02СЬ, осмий и рутений — в виде тетраоксидов. При определении кремния в силикатах его отделяют в виде 51р4. Серу в форме сульфитных и сульфидных ионов обычно выделяют в виде ЗО2 и Н2З после подкисления анализируемого раствора. Галогены можно отогнать из водного раствора в виде свободных элементов (часто после селективного окисления) и галогеноводородов. Из трудно-плавящихся веществ примеси металлов можно выделить в элементарном виде нагреванием при высокой температуре. Наоборот, в легколетучих веществах, (например, кислотах) содержание металлов определяют после полного или частичного отделения основного вещества дистилляцией. Примером использования рассматриваемых методов для очистки веществ служит дистилляция воды — стандартная операция в практике аналитических лабораторий. Методом сублимации можно хорошо очистить иод или некоторые органические соединения (например, 8-гидроксихинолин). [c.80]

    Рентгеновский эмиссионный анализ. Как указывалось в самом Н1ча-ле этой главы, рентгеновы лучи можно получать, бомбардируя г нод рентгеновской трубки пучком электронов или пучком излучения, обладающего высокой энергией. Первый метод, соответствует условиям, существующим в обычной рентгеновской трубке он неудобен для непосредственного химического анализа. (Однако следует заметить, что кривая, приведенная на рис. 6.1, показывает наличие небольшой примеси рутения в родиевом аноде, который практически считается чистым.) [c.122]

    Авторы [124, 125] исследовали пленки Р1—Ки, полученные последовательным напылением компонентов и отол<женные при 770 К в СВВ. Результаты рентгенографического анализа говорят о взаимной растворимости компонентов исключение составляет только область состава, отвечающего 30—50 ат.% Р1. При содержании платины менее 30 ат. % решетка сохраняет гексагональную структуру (ср. с решеткой рутения), но, если содержание платины выше 50 ат.%, сплав имеет г.ц.к. структуру (ср. с решеткой платины). В однофазной области состав поверхности, по-видимому, меняется постепенно с изменением [c.159]

    Статический метод в сочетании с радиометрическим анализом был применен для определения давления пара над твердой и жидкой че-тырехокисью рутения и над ее вод ным раствором [374]. [c.200]

    С ПОМОЩЬЮ описанного выше способа анализа зависимости адсорбции водорода и кислорода от pH была проведена ориентировочная оценка ( Ан/фц+) Рг на рутениевом электхюде. На рисунке 2 представлены Аи, Тг -кривые рутениевого электрода в растворах 0,01 н. НС1-1-1 н. КС1 и 0,01 н. КОН-1-1 н. КС1, которые были рассчитаны по данным [24] с учетом изоэлектрических сдвигов потенциала при замене подкисленного раствора КС1 на подщелоченный. На рутении при <0Д2 в (5Ан/Фн+) Рг<0. т. е. адсорбция водорода растете ростом pH. Следовательно, на рутении при указанных ф Х>0 и диполь адсорбированного водорода обращен отрицательным концом к раствору. При >0,12 в (5Ан/Фн+) Р - вызвано посадкой диполей кислорода, обращенных отрицательным концом к раствору. Таким образом, на рутении появление адсорбированного кислорода следует ожидать уже при -0,1 в. [c.32]

    Мо, Р, С1, Вг, J, Ке. Кроме того, железо в присутствии алюминия, рутения и висмута полярографируется только первым методом, а в присутствии кобальта, никеля и циркония — только вторым. Применяемое мокрое разложение навески смесью серной кислоты и перекиси водорода допускает анализ взрывоопасных веществ, в состав которых входят серебро и перхлорат-ион. [c.159]

    В Институте химии и химической технологии АН ЛитССР (Вильнюс) проведены исследования новых титриметрических, в основном потенциометрических, методов анализа. Для ускорения медленно протекающих редокс-реакций успешно использованы катализаторы— соединения осмия и рутения. Предложены методы определения ряда окислителей и восстановителей, а также ускоренные и усоверщенствованные методы определения некоторых восстановителей и других компонентов в растворах, применяемых для получения металлических покрытий химическим путем. Разработаны редокс-методы определения благородных металлов. [c.211]

    Необходимо отметить, что в случае применения хлорной кислоты некоторые количества ее мох ут остаться неразложенными, если раствор нагревают при-температуре значительно ниже 300° С в продолжение не более 24 ч. Наличие хлорной кислоты в растворе может оказаться нежелательным в дальнейшем ходе анализа. Так, например, в процессе упаривания раствора в ее присутствии могут иметь меето потери осмия и рутения вследствие летучести их четырехокисей. При анализе иридиево-платиновых сплавов, растворение которых достигается при 100—150° С, применение хлорной кислоты не рекомендуется. В этом случае для окисления на каждый грамм металла вводят 27 мл обычной азотной кислоты или 0,37 г хлората натрия.  [c.404]

    В приводимых ниже методах анализа и разделения предполагается, если нет других указаний, что платиновые металлы и золото находятся в виде хлоридов или, точнее, в виде хлорокислот.. Платина, например, в растворах образует хлоре платиновую кислоту HaPt lg и в реакциях ведет себя как часть комплексного аниона. При анализе металлов платиновой группы и золота исходные растворы чаще всего содержат именно эти соединения. Поэтому в основе методов разделения обычно лежат реакции, свойственные этим комплексным анионам или ионам, образующимся в результате разложения таких комплексов. В отдельных случаях при анализе используются также и другие соединения этих металлов. Так, например, при отделении рутения дистилляцией или при отделении родия от иридия восстановлением солями титана (III) целесообразнее оперировать с растворами, в которых эти металлы находятся в виде сульфатов, а для успешного отделения многих неблагородных металлов от платиновой группы гидролитическим осаждением прибегают к предварительному переведению платиновых металлов в комплексные нитриты. [c.406]

    Этот способ разделения обычно применяют для анализа смесей, которые могут быть богаты иридием, но содержат лишь ничтожные количества осмия и рутения. В некоторых случаях предотвращают выделение иридия вместе с платиной, восстановив его предварительно до трехвалентного состояния, а иногда обе соли осаждают совместно, с целью отделения их от палладия и родия. Родий, который в солянокислом растворе всегда находится в трехвалентном состоянии, и палладий (II) не образуют нерастворимых двойных солей с хлоридом аммония, но они увлекаются солью платины, причем родий с исключительным постоянством. С другой стороны, достигнуть этой реакцией количественного осаждения платины фактически невозможно. Лишь продолжительная обработка большим избытком хлорида аммония приводит к почти количественному выделению хлороплатината аммония, но это способствует также соосаждению других металлов. Таким образом, количественно отделить платину в виде хлороплатината аммония от других металлов платиновой группы практически не представляется возможным, хотя результаты определения платины иногда бывают близки истинным за счет взаимной комненЬации ошибок.  [c.411]

    С успехом применять спланление анализируемого материала с десятикратным количеством свинца при 900—1000° С. Избыток свинца и сплавы свинца с платиной, родием и палладием растворяют последовательной обработкой азотной кислотой, а затем разбавленной царской водкой. Иридий не образует сплава со свинцом и не растворяется в царской водке, но он загрязняется рутением, железом и, возможно, осмием, если эти элементы присутствуют в сплаве. Подробный ход выполнения этого исключительно точного разделения приведен в разделе Методы определения (стр. 416). Способ этот применим также к анализу губок, состоящих из платины и иридия. Наличие цинка, который мо г быть введен, например, для выделения платиновых металлов из раствора, приводит к растворению некоторого количества иридия. [c.412]


Смотреть страницы где упоминается термин Рутений анализ: [c.571]    [c.8]    [c.580]    [c.118]    [c.24]    [c.64]    [c.207]    [c.417]    [c.64]    [c.347]    [c.348]    [c.353]    [c.354]    [c.27]    [c.45]   
Аналитическая химия благородных металлов Часть 2 (1969) -- [ c.2 , c.326 ]




ПОИСК





Смотрите так же термины и статьи:

Рутений

Рутений рутений



© 2024 chem21.info Реклама на сайте