Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фтор определение натрия

    В ряду фторидов шелочных металлов радиус иона фтора (определенный методом измерения распределения электронной плотности в кристалле) оказывается наименьшим у фторида лития вероятно, этот эффект обусловлен нарастанием ковалентности связи при переходе к катионам малых радиусов. Степень ковалентности даже в таких солях, как хлорид натрия, весьма заметна — у хлорида натрия она составляет приблизительно 15% (т. е. эффективный заряд иона натрия равен не -Ы, а 0,85). [c.294]


    При определении фтора в н е й т р а л ь н о, м фториде натрия растворяют 1—2 г соли в 30-—50 мл воды и титруют, как указано при определении фтора в кислом фтор.иде натрия. [c.97]

    Для определения калия в силикатах был предложен следующий метод Пробу разлагают фтористоводородной и хлорной кислотами, раствор выпаривают до появления паров хлорной кислоты, проводят отгонку, как описано на стр. 824, для полного удаления фтора, выпаривают до удаления воды и большей части хлорной кислоты, после чего в безводном растворе этилацетата осаждают калий в виде его перхлората. То незначительное количество фтора, которое может остаться после двух выпариваний с хлорной кислотой, не мешает определению натрия методом осаждения в виде тройного ацетата. В этом случае отгонку можно опустить и проводить осаждение прямо в водном растворе того остатка, который остается после вторичного обезвоживания с хлорной кислотой. (Последнее надо остановить, когда остаток еще влажный.) [c.1014]

    В литературе описаны различные методы определения 0,05—0,005% примеси кремния в плавиковой кислоте. В зависимости от содержания кремния определение проводят непосредственно в присутствии борной кислоты [1], хлористого алюминия [2] или в остатке после выпаривания кислоты в присутствии хлористого натрия [3] или калия [4] (связывающих кремний в труднорастворимую нелетучую соль—фторо-силикат натрия или калия [5]) по желтой окраске кремнемолибденовой кислоты [1, 2, 3, 6]. [c.284]

    Определение натрия в присутствии фтора, а также в растворах, содержащих большие количества трехвалентного хрома, и в системе сульфатов натрия, хрома и аммония [c.240]

    Для определения натрия в присутствии фтора проводились опыты с различными количествами фторида и хлорида натрия. Выделенное излучение натрия сравнивалось с эталонами из хлорида этого металла, при этом получились удовлетворительные результаты, что видно из табл. 7. Максимальная ошибка определения 4% при 12 мг натрия в пробе. [c.240]

    Определение натрия в присутствии фтора (растворы чистых солей) [c.242]

    Точность определения натрия в присутствии фтора составляет 2—4 отн. о при 12—20 мг натрия в пробе. [c.247]

    Этот метод непосредственно применим для определения низких концентраций (мг/л) хлорорганических соединений в жидких нефтепродуктах с температурами кипения не выше 400 °С. Нефтепродукты, в которых концентрация хлора более, чем 100 мг/л, могут быть разбавлены подходящим растворителем, не содержащим хлора. Неорганические хлориды, которые нацело разлагаются при температурах, меньших, чем температура в печи, также определяются этим методом (например, хлориды аммония, трехвалентного железа, палладия). Более устойчивые хлориды не могут быть определены этим методом (например, хлориды натрия, калия). Сера и фтор не мешают определению, бромиды и иодиды определяются количественно. [c.42]


    Если теперь рассмотреть элементы от натрия до аргона, то нетрудно заметить, что они в значительной степени повторяют свойства элементов от лития до неона. Причем повторение проявляется в определенной последовательности натрий повторяет свойства лития, магний — бериллия, алюминий—бора, кремний — углерода, фосфор — азота, сера — кислорода, хлор —фтора, аргон —неона, т. е. каждый восьмой элемент повторяет свойства первого. Следующий за аргоном калий повторяет свойства натрия и лития, кальций—магния и бериллия и т. д., иначе говоря, свойства элементов периодической системы повторяются. [c.56]

    К числу мембранных электродов относят прежде всего давно известный стеклянный электрод, широко применяющийся для определения активности ионов водорода — измерения pH. В последние годы предложено много других мембранных электродов, посредством которых измеряют активность (концентрацию) различных ионов и проводят потенциометрическое титрование. Известны, например, электроды для определения ионов натрия, калия, кальция, магния, цинка, свинца, лантана, хлора, брома, иода, фтора, нитрата, перхлората. [c.468]

    При гравиметрическом определении суммы ш елочных металлов в минералах и рудах микрохимическим методом навеску разлагают фтористоводородной кислотой для удаления кремневой кислоты [19]. Остаток фторидов нагревают с щавелевой кислотой, которая при высокой температуре вытесняет фтор. Образовавшиеся оксалаты металлов прокаливают при 800° С. При этом большинство металлов образует оксиды, а щелочноземельные элементы, магний и щелочные металлы — карбонаты. При обработке прокаленного остатка горячей водой в раствор переходят карбонаты щелочных металлов, гидроксид магния и небольшое количество карбонатов щелочноземельных элементов. Если образец содержит большие количества алюминия, железа и хрома, последние при прокаливании могут образовать алюминаты, ферраты и хромиты. Для их разложения раствор с осадком нагревают на водяной бане и после охлаждения обрабатывают насыщенным раствором карбоната аммония. Небольшое количество катионов, главным образом магния, оставшихся в растворе, осаждают 8-оксихинолином. Осадок отфильтровывают, раствор упаривают досуха и остаток прокаливают. Полученные карбонаты щелочных металлов переводят в сульфаты, которые взвешивают. Умножая на фактор пересчета, находят сумму оксидов лития, натрия, калия, рубидия и цезия. [c.57]

    Определение фтора. Метод основан на титровании фторид-иона раствором нитрата тория в присутствии индикатора ализаринсульфоната натрия. [c.61]

    Анализу методом изотопного разбавления с использованием масс-спектрометра [307] подвергаются любые элементы, обладающие двумя стабильными или долгоживущими изотопами [1009], т. е. большинство элементов, рассматриваемых в органической химии, за исключением фтора, фосфора, натрия и мышьяка иод, который обладает одним стабильным изотопом, может быть проанализирован при помощи изотопного индикатора Такой индикатор известен под названием совершенного , так как использование его позволяет работать с изолированными пиками. Метод широко применялся для определения европия, самария, гадолиния [840], никеля, цинка, селена, криптона [1687] и ксенона [841], кальция и аргона [1004, 2133], рубидия [1870] истрон-ция [434, 1039, 2037], осмия [906], серебра[883], висмута [205], свинца [332, 1572, 1734], урана [2027] и тория [2028.  [c.111]

    Для выяснения направления процесса взаимодействия были поставлены опыты по исследованию продуктов реакции. 51р1 определяется только качественно. Попытки определения натрия, связанного с кремневой кислотой, встретили большие трудности, так как это определение необходимо было производить в присутствии большого количества фтористого натрия. (Общее же количество натрия до и после реакции остается постоянным за исключением уменьшения части фтористого натрия за счет испарения.) Единственная возможность, которая нам представлялась, — это титрование образующегося силиката натрия соляной кислотой. Однако оказалось невозможным получить четкий переход окраски индикатора в эквивалентной точке, а следовательно, и удовлетворительные результаты. Это можно объяснить тем, что в присутствии фтор-иона реакция идет по двум направлениям  [c.48]

    Раствор сохраняют для определения фтор нстого натрия. [c.227]

    Позднее для потенциометрического титрования в институте стали применять селективные электроды. К тому времени отечественная промышленность выпустила стеклянные электроды, чувствительные к иону натрия. Был разработан простой способ определения ионов натрия в воде по измерению потенциала раствора [54, 55]. Чувствительность метода до 0,С001 М, точность 6 отн. /о. Показано, что ионы К, Ь1, NH4, М , Hg, 504, ОН не мешают определению натрия, в отличие от ионов водорода. Этот метод применен дня анализа сточных вод кремнийорганических производств. Он может быть автоматизирован. В институте сконструированы и изготовлены также электроды из трехфтористого лантана, чувствительные к иону фтора [56]. Авторы изучили зависимость сопротивления электродов от степени активирования монокристаллов фтористого лантана двухвалентным европием, а также влияние различных ионов на фторидную функцию электрода. Показано, что потенциал изготовленного электрода во всех случаях остается устойчивым, измерения воспроизводимы в интервале 3 мв. [c.208]


    Проведенные опыты показывают, что пламенно-фотометриче-ский способ вполне можно использовать при определении натрия в присутствии фтора, применяя эталоны или из одного хлорида, или одного фторида натрия. [c.242]

    Образование труднорастворимых комплексных соединений фтора. Из этой группы реакций наибольшее значение имеет образование соединений типа криолита Na.,[AlFJ аналогичные труднорастворимые комплексы образуют ионы трехвалентного железа и трехвалентного хрома. Эти соединения используются для отделения названных элементов, а также для весового и объемноаналитического их определения. В последнем случае необходимо иметь в виду, что состав осадка в обычных условиях не точно отвечает приведенной формуле, а именно содержание фтора в нем меньше (2А1Рз 5КаР) криолит Na,[AlP,. 1 устойчив только в присутствии определенного избытка фтористого натрия в растворе. [c.427]

    Аналогичная реакция применяется при определении фтора. Ряд методов определения фтора основан на образовании малодиссоциированных фторидов тория или циркония (ТЬР или ZrFJ. В качестве индикатора берут ализарин (натриевая соль ализаринсульфокислоты), который является очень чувствительным реактивом по отношению к торию и цирконию, образуя с ними соединения, окрашенные в красно-фиолетовый цвет. Испытуемый раствор фтористого натрия титруют в слабокислой среде рабочим раствором азотнокислого торня или циркония. Метод применяют, главным образом, для определения малых количеств фтора в природной воде и в различных материалах. [c.427]

    При растворении метастабильиого полугидрата с достижением определенного пересыщения Ас в растворе предположительно образуются метастабильные ассоциаты (Са304-0,5Н20)2. Насыщение фосфорнокислотного раствора полугидратом, не содержащим примесей, в индукционном периоде достигается за Тз = 30 — 60 с (см. рис. 6.2). Длительность растворения полугидрата, полученного в промышленных экстракторах и содержащего такие примеси, как триполифосфат натрия, соединения церия, алюминия и фтора, в 10—20 раз больше, чем чистого образца. Дальнейший переход полугидрата в раствор регламентируется его дисперсностью, растворимостью, а также скоростью кристаллизации дигидрата. При наличии примесей скорость растворения определяется их видом и количеством в растворе гидратации и в исходном осадке. Длительность гидратации чистого полугидрата и кристаллизации дигидрата составляет 18—40 минут. Оводнение промышленного полугидрата не удается проводить полностью. При продолжительности 3—6 ч степень гидратации не превышает 85—90%. [c.207]

    Насыщенный раствор. Применяют при определении фтора в виде фторохлорида свинца для промывания его осадка. Готовят два раствора 1) растворяют 100 г нитрата свинца Pb(N0a)2 в 200 мл воды) 2) растворяют 1,0 г фторида натрия NaF в 100 мл воды и добавляют 2 мл концентрированной НС1. Оба раствора смешивают, дают осадку PbF I полностью отстояться, декантируют маточный раствор и осадок промывают декантацией 4—5 раз порциями по 200 мл холодной воды. К промытому осадку приливают 1 л холодной воды и дают стоять 2—3 ч, помешивая время от времени стеклянной палочкой. Затем раствор фильтруют через фильтр синяя лента с фильтробумажной массой. Прибавляют к осадку PbF I воду, размешивают и получают следующую порцию раствора для промывания. [c.87]

    П. Н. Палей и А. В. Давыдов, изучая возможность применения методики определения урана с морином Алмаши и Нади [328], показали, что уран можно определять в присутствии трехкратных количеств никеля и кобальта, тысячекратных количеств нитрат- и сульфат-ионов, десятикратных количеств фтора и фосфатов. Изучалось также влияние ванадия. В присутствии пятивалентного ванадия получаются очень заниженные данные, так как ванадий окисляет морин. Добавлением 1 мл сернистокислого натрия восстанавливают ванадий, который в восстановленном состоянии связывается комплексоном HI, чем исключается окисление реагента и, таким образом, присутствие десятикратных количеств ванадия не мешает определению урана. [c.129]

    В тех случаях, когда после вышеуказанной обработки все же остается еще неразложившийся остаток, исследуйте его на присутствие сульфатов, фторидов, силикатов и окислов. Пользуясь небольшими порциями остатка, произведите определение сульфат-ионов, как указано в 48, ионов фтора — по 47 и сплнкат-ионов — по 44, в. При обнаружении какого-либо из этих ионов возьмите 10—20 Л1г хорошо промытого и высушенного остатка и сплавьте его с карбонатом натрия, как указано на стр. 125. Более подробные сведения относительно анализа сульфатов, фторидов и силикатов см. Анализ сульфатов (стр. 132), Анализ фторидов (стр. 133), Анализ силикатов (стр. 140). Если же вышеуказанные реакции дали отрицательный результат, то нерастворимый остаток представляет собой окисел или смесь окислов. Сплавьте его с пиросульфатом калия- и исследуйте, как описано в главе Анализ окислов . [c.118]

    В присутствии титана раствор окрашивается. Окраска, в зависимости от количества титаиа. Может быть от желтой до оранжево-красиой. Если исследуемый минерал содержит мешающие определению титана элементы ванадий, молибден нли фтор, то отделите их предварительно посредством сплавления исследуемой пробы с карбонатом натрия в ушке платиновой проволоки. Плав обработайте 1 мл воды в центрифужной пробирке при нагревании на водяной бане. Затем центрифугируйте и отделите капиллярной пипеткой раствор от нерастворимого остатка, содержащего титан. Прюмойте остаток 2%-ным раствором Карбоната натрия (мешающие определению титана элементы перейдут в раствор). Остаток в пробирке растворите при нагревании в 3—4 каплях сериой [c.158]

    Анализ. Для определения фтора препарат разлагают металлическим натрием в сварной железной трубке при 900 °С, затем обрабатывают спиртом для растворения натрия и после отделения углерода фильтрованием осаждают фтор в виде PbF l. [c.677]

    Сплавление с фторидами щелочных металлов и выщелачивание плава водой позволяет извлекать бериллий в водную фазу в виде растворимого фторобериллата и отделять его от комплексных фторидов алюминия и железа, нерастворимых в воде. Такой вариант может быть использован, например, в ускоренном колориметрическом определении бериллия [159, 180]. Сен-Гупта [713] применил аналитический способ (после сплавления берилла с фторборатом натрия NaBp4) при определении бериллия в виде фторобериллата бария преимущество метода в данном случае— отсутствие необходимости удаления фтора перед осаждением бериллия. [c.165]

    Схема анализа. Приступая к анализу неизвестного вещества или к определению составных частей сложной смеси нескольких веществ, химик-аналитик должен обстоятельно продумать ход анализа. Метод, дающий вполне удовлетворительные результаты при определении того или иного вещества в одном случае, может оказаться совершенно неудовлетворительным в другом. Особенно сильно искажаются результаты определений при анализе сложных смесей. Примеры несостоятельности хорошо известных методов весьма многочисленны. Например, метод определения кремневой кислоты путем выпаривания досуха солянокислого раствора анализируемого вещества и последующего обезвоживания сухого остатка дает хорошие результаты, если кремневой кислоте не сопутствуют примеси, выпадающие вместе с нею в осадок. Но этот метод нельзя применять в присутствии таких элементов, как бор, фтор, сурьма, титан, висмут и др. Осаждением смесью едкого натра и карбоната натрия можно хорошо отделить ионы алюминия от houob железа и кальция, выпадающих в осадок е виде Ре(ОН)з и СаСОд. Но тот же метод непригоден для отделения ионов алюминия от ионов железа и цинка. Оксалатный метод, который обычно применяют для определения кальция в присутствии магния, неприменим, если ионы кальция содержатся в незначительном количестве, а ионы магния—в большом количестве. Определение свинца в виде сульфата дает вполне хорошие результаты, если это определение проводят в отсутствие ионов бария, кальция, серебра и сурьмы. [c.287]

    Для каждой серии определений строят кривую ло стандартном) раствору фторида натрия для количеств фтора от О до 60 мкг150 мл. [c.38]

    Ишибаши и Камата [522] описали определение фтора в тефлоне, фторида.х натрия и кальция и МагЗШе после активации быстрыми нейтронами с энергией 14 Мэв. [c.50]

    Весовые методы использовались для определения фтора во фторидах кальция, натрия и алюминия, а также в криолите. Особенно популярно было осаждение фтора в виде Pb lF, которое в настоящее время в известной мере потеряло свое значение, так как метод довольно продолжителен и точность ограничена кроме того, мешают часто встречающиеся анноны (фосфаты, сульфаты, бораты и др,). [c.75]

    Наиболее ранний метод определения фтора в плавиковом шпате и криолите описан Берцелиусом [325], Фторид переводят в растворимое состояние сплавлением с содой, при этом присутствующая кремиекислота образует соответствующие силикаты. После выщелачивания расплава часть кремнекислоты вместе с карбонатом кальция составляет нерастворимый остаток, в то время как NaF полностью переходит в раствор. Главная масса кремнекислоты отделяется с карбонатом аммония, однако небольшое количество ее остается в растворе в коллоидной форме вместе с фторидом натрия. [c.75]

    Другой прием определения фтора в дистилляте основан на прямом титровании 0,25 N раствором NaOH. При этом учитывается неизбежное образование SO2 при отгонке дистиллята. Для его окисления в дистиллят вводят 1 N раствор иода до слабожелтой окраски окраска погашается тиосульфатом натрия. [c.80]

    Приготовление шкалы стандартных растворов. В колориметрические лрО бирки аводят из микробюретки 0,05—0,5 мл стандартного раствора фторида натрия с интервалами 0,05 мл. Растворы корректируют добавлением солей и. кислот, лрименяющ.ихся для подготовки лробы дистиллята к определению фтора. [c.82]


Смотреть страницы где упоминается термин Фтор определение натрия: [c.96]    [c.831]    [c.35]    [c.40]    [c.576]    [c.30]    [c.254]    [c.56]    [c.56]    [c.110]    [c.576]    [c.52]   
Справочник по основной химической промышленности Издание 2 Часть1 (0) -- [ c.475 ]




ПОИСК





Смотрите так же термины и статьи:

Натрия фторид определение фтора

Определение фтора в техническом фториде натрия

Фтор, определение



© 2025 chem21.info Реклама на сайте