Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рассеяние света коэффициент

    Вкратце рассмотрим существующие методы исследования индикатрисы рассеяния света, коэффициента экстинкции среды и степени деполяризации в случае критической опалесценции. [c.333]

    На рис. 11.2.2 приведен типичный спектр рассеянного излучения в смеси нитробензол - гептан с концентрацией, близкой к критической. Практическое отсутствие выбросов на огибающей спектра свидетельствует о постоянстве оптимальных условий фотосмешения за время измерения. Одновременно с измерением коэффициента диффузии проводилось изучение суммарной интенсивности рассеянного света 7, которая определяет термодинамическую величину 3 [c.29]


    На коэффициент рассеяния света Ь, значение которого не превышает 5, влияют следующие факторы (Голден, 1958). [c.148]

    Значение коэффициента рассеяния света для сфер, не поглощающих его, вычисляют по уравнению [c.148]

    Из сопоставления уравнений (2.48) и (1.58) становится очевидным, что величина НС/х зависит от значений второго вириального коэффициента В. Если размер молекулярного клубка соизмерим с длиной волны падающего света или больще ее [>(V20)], то возникает асимметрия рассеянного света [см. уравнение (2.49)]. [c.116]

    Вблизи критических точек жидкостей и растворов, а также вблизи точек ФП 2-го рода наблюдаются специфические явления, называемые критическими рост сжимаемости вещества в окрестностях критической точки равновесия жидкость - газ возрастание магнитной восприимчивости и диэлектрической проницаемости в окрестностях точки Кюри ферромагнетиков и сегнетоэлектриков замедление взаимной диффузии веществ вблизи критической точки растворов и уменьшение коэффициента температуропроводности вблизи критической точки чистой жидкости аномально большое поглощения звука критическая опалесценция (резкое усиление рассеяния света) и др. Во всех случаях наблюдается аномалия теплоемкости Эти явления связаны с аномальным ростом флуктуаций и их взаимодействием (корреляцией). Поэтому критическую область определяют как область больших флуктуаций. [c.21]

    Гипотеза масштабной инвариантности была распространена М. А Анисимовым ва зависящие от времени (кинетические) ФП. Предполагается, что вблизи критической точки кроме характерного размера гс существует также характерный временной масштаб гс - время релаксации критических флуктуаций, растущее по мере приближения к критической точке перехода. На масштабах гс имеем,- гс= гс /Д где Д - кинетическая характеристика, имеющая различный смысл для ФП разной природы. Для критической точки жидкость - газ Д -коэффициент температуропроводности, в растворах О - коэффициент молекулярной диффузии и т.д. Для неассоциированных жидкостей и растворов О определяется формулой Стокса -Эйнштейна Т/ 6 п г тс, где г) -коэффициент сдвиговой вязкости. Отсюда видно, что в критической точке имеет место динамический скейлинг. гс — , тс — л и 0- 0. С уменьшением коэффициента Д и ростом гс связаны аномальное сужение линии молекулярного рассеяния света и аномальное поглощение звука вблизи критических точек жидкостей и растворов. [c.24]


    Одним из наиболее точных экспериментальных методов определения размеров коллоидных частиц является фотонная корреляционная спектроскопия [62 - 66]. Сущность метода заключается в определении коэффициента диффузии коллоидных частиц путем измерения спектрального состава рассеянного света. Результаты прямых измерений размеров асфальтеновых ассоциатов в модельных растворах углеводородов описаны в работе [64]. В качестве объектов исследования были выбраны первичные асфальтены, выделенные из гудрона смеси западно-сибирских нефтей и индивидуальные углеводороды толуол, циклогексан, н-пентан. Показано, что размеры асфальтеновых ассоциатов в зависимости от их концентрации в растворе (до 10% мае.) и растворителя варьируются от 2,0 до 13,5 нм. [c.84]

    Блеск электролитических осадков оценивается путем визуального осмотра поверхности, а также на основе измерений интенсивностей зеркально-отраженного и диффузно-рассеянного света с помощью специальных приборов рефлектометров, фотометров. Количественно блеск поверхности может быть охарактеризован отношением интенсивностей зеркально-отраженного и падающего света. Критерием оценки блеска служит также коэффициент или процент зеркального отражения света от отражения серебряного нли алюминиевого зеркала, применяемого в качестве стандарта. [c.448]

    Суммарный поток энергии, рассеянной частицей во всех направлениях, отнесенный к единице интенсивности падающего потока, называется коэффициентом рассеяния и обозначается символом /Ср. Рассеяние света характеризуется величиной интенсивности светового потока, рассеянного в различных направлениях. Векторная диаграмма, показывающая распределение интенсивности рассеянного света по всем направлениям, называется и н д и к а т р и с с о й рассеяния. [c.30]

Рис. 17. Зависимость коэффициента рассеяния света от величины характеристического параметра. Рис. 17. Зависимость <a href="/info/321584">коэффициента рассеяния света</a> от <a href="/info/117349">величины характеристического</a> параметра.
    Измеряя температурную зависимость диэлектрической проницаемости газа, можно найти электрический дипольный момент его молекулы и поляризуемость а ар. Для этого обрабатывают экспериментальные данные о зависимости от 1/Г по методу наименьших квадратов И находят коэффициенты Ап В линейной зависимости (19.10) и, следовательно, Од и ц. От поляризуемости молекул зависит так называемое дисперсионное взаимодействие атомов и молекул, которое играет важную роль в свойствах жидкостей и растворов, в процессах адсорбции, конденсации и др. Поляризуемость молекул важна при учете взаимодействия их с электромагнитным полем. Ею определяется интенсивность рассеяния света молекулами, в частности комбинационное рассеяние света (КР). Спектроскопия КР — важный метод исследования структуры. молекул. [c.75]

    Дело в том, что трудно определить истинную величину оптической плотности анализируемой пробы. Результаты измерения зависят от характеристик прибора спектральной ширины щели, рассеянного света, скорости развертки спектра, отражения света окнами кюветы и поверхности самого образца и т. д. Поэтому для одних и тех же полос поглощения на разных приборах могут быть получены отличающиеся значения молярных коэффициентов погашения. Положение еще осложняется тем, что часто в литературе не приводятся подробные характеристики прибора и других условий, при которых определено значение е. [c.332]

    Растворы ВМС так же, как и лиофобные коллоиды, характеризуются светорассеянием, хотя величина рассеяния для них не так велика, как для лиофобных систем. Изменение величины рассеяния света используют в методе определения относительной массы полимеров. Метод основан на измерении мутности разбавленных растворов ВМС. При этом экспериментально измеряется коэффициент ослабления света в результате светорассеяния при прохождении его через слой раствора. [c.361]

    След тензора Ае равен нулю. Так как жидкость 1в среднем изотропна, т. е. все направления в ней равноправны, то < > = 0 <(Де,- .) > одинаковы для всех 1фк <(Ае ) >- одинаковы для всех . Величины <(Де ) > можно определить с помощью рассеяния света. Пусть в направлении оси х, выбранной нами системы декартовых координат распространяется плоская неполяризованная монохроматическая световая волна. Длина волны X, интенсивность потока света равна 1 . Поток света рассеивается жидкостью, находящейся в области V. Введем обозначения / ан — коэффициент рассеяния света на анизотропных флуктуациях — коэффициент рассеяния света [c.147]


    Коэффициентом рассеяния называют величину, пропорциональную отношению интенсивности / рассеянного света к /  [c.147]

    К ювелирным относятся природные алмазы совершенной формы, высокой прозрачности, без трещин, включений и других дефектов. Им придается путем огранки (обработки алмазным порошком) такая форма, чтобы наиболее полно проявлялись оптические свойства алмаза высокий коэффициент преломления и сильное рассеяние света. Ограненные алмазы называются бриллиантами. К техническим относятся все прочие добываемые алмазы вне зависимости от их качества и размеров. [c.344]

    Светильники рассеянного света с коэффициентом пропускания рассеивателей  [c.378]

    Для малых по сравнению с длиной волны падающего света частип мутность связана с коэффициентом рассеяния света уравнением.  [c.474]

    Методика проведения измерений света, рассеянного дисперсными системами, и обработки экспериментальных индикатрис заключается в следующем. После юстировки оптики кювету устанавливают на предметном столике между коллиматорной линзой Лг и приемной линзой Л . При этом положение приемной диафрагмы регулируют так, чтобы скомпенсировать призматическую ошибку, вносимую кюветой. Светорассеяние на углах от О до 3° измеряют применяя набор нейтральных светофильтров. Показания на ленте осциллографа, соответствующие этим участкам, считывают с учетом коэффициента ослабления светофильтров. Пример, записи индикатрисы рассеянного света под малыми углами приведен на рис. 107. Порядок обработки индикатрис  [c.316]

    Если один из размеров молекулы сравним с длиной волны света, то молекула больше не участвует в рассеянии света как единичная точка, и между световыми волнами, рассеянными различными частями молекулы, происходит интерференция. Обнаружено, что большие молекулы рассеивают больше света в направлении пучка, чем малые молекулы. Таким образом, для больших молекул или частиц угловая зависимость рассеянного света дает информацию о форме молекул. Развитие лазерной техники (разд. 18.11) сделало возможным изучение уширения линий света, рассеянного растворами макромолекул. Измерение спектра рассеянного света позволяет определить коэффициент диффузии [18]. [c.621]

    Свойства обычно подразделяют на две группы. В одну группу относят такие свойства, изучение которых не связано с нарушением термодинамического равновесия плотность, теплоемкость, сжимаемость, диэлектрическая проницаемость, показатель преломления, интенсивность и степень деполяризации молекулярного рассеяния света, коэффициент объемного расширения, давление пара, растворимость, поверхностное натяжение, осмотическое давление и т. д. На эти свойства и будет обращено здесь главное внимание. В другую группу входят свойства, изучение которых связано с нарушением термодинамического равновесия вязкость, тенлонро-водность, электропроводность, диффузия, температурный коаф-фиц 1ент электропроводности время релаксации, скорость кристаллизации, скорость химических реакций и т. д. Хотя вторая группа не менее важна, чем первая, мы почти полностью исключаем со из рассмотрения, так как круг вопросов, излагаемых в этой книге, ограничивается методами и проблемами, связанными с состоянием термодинамического равновесия. [c.192]

    А б С О л ю т н ы 11 и относительны 1 1 коэффициент рассеяния света. Абсолютный коэффициент рассеяния света (коэффициент Релея, отношение Релея) определяется с помощ1>ю выражения [c.4]

    Согласно данным К- А. Тимирязева, позднее подтвержденным К. А. Пуриевичем, коэффициент использования растениями солнечной энергии колеблется от 1 до 3%, причем на рассеянном свету коэффициент значительно выше, чем на прямом солнечном освещении. [c.183]

    Поэтому в отличие от искусственного естественное освещение нельзя задавать количественно. В качестве нормируемой вели-чин1) для естественного осве[цения принята относительная величина — коэффициент естественной освещенностн (КЕО), который представляет собой выраженное в процентах отношение освещенности в данной точке внутри помещения к одновременной наружной горизонтальной освещенности 1,, создаваемой рассеянным светом под открытым нeбorv1 [c.111]

    Показател , преломления. . Коэффициент рассеяния света, слг. ...... [c.341]

    Если с принять за массовую концентрацию, то в знаменателе будет плотность в квадрате. Результаты анализа в данном методе могут иметь погрешности, обусловленные взаимодействием между макромолекулами в растворах. Для исключения этих погрешностей в определенпи молекулярной массы полимеров, мнцеллярной массы ПЛВ или просто массы частиц осмотически активных золей вместо метода сравнения применяют абсолютный метод Дебая. Для выражения интенсивности рассеянного света по этому методу используют уравнение Эйнштейна, получаемое на основе учета флуктуаций оптической плотности, возникающих в результате изменения осмотического давления и концентраций. Так как основной причиной рассасывания флуктуаций концентраций является изменение осмотического давления, то это дает возможность связать соотношения для рассеяния света и осмотического давления. Используя уравнение осмотического давления до второго внри-ального коэффициента Л2, учитывающего мел<частичное взаимодействие, Дебай получил следующее соотношение между мутностью раствора полимера, его концентрацией и молекулярной массой полимера  [c.264]

    Коэффициент к учитывает также рассеяние света (мутность системы). Для исследования цветных золей можно использовать расесяние света в чистом виде, т. е. использовать турбидиметрию. Для этого применяют светофильтры, поглощающие свет в той же обласри спектра, что и исследуемый золь. Золи подчиняются закону Бугера — Ламберта — Бера при условии, что дисперсность частиц постоянна, а их концентрация достаточно мала (для исключения взаимного влияния частиц). [c.266]

    При этом коэффициент деполяризации Аг1 — 1 у11 г=1. Компоненты Ру и Рг необходимы при рассмотрении рассеяния естественного света, поскольку при использовании естественного света можно считать, что Ра—Ро=1о12. Каждая из компонент падающего света Ро и /- 0 будет давать вклад в суммарную интенсивность рассеянного света с поляризацией или вдоль г, или вдоль у, т. е. для рассеяния с поляризацией вдоль г получаем Ь из уравнений (XII.5) и (XII.7)  [c.232]

    Интенсивность / света, прошедп1его через какую-то однородную среду — жидкость или раствор, всегда меньше интенсивности падающего света /(,. Это объясняется явлением поглощения (абсорбции) света средой (см. гл. 15). Каждая среда в зависимости от своих физических и химических свойств избирательно поглощает определенную часть спектра падающего света. Установлено, что высокодисперсные золи также поглощают часть проходящего света и для них, как и для молекулярных растворов, справедлив закон Ламберта — Бера. Однако в дисперсных системах возможны отклонения от этого закона, так как интенсивность проходящего света уменьшается не только в результате его поглощения, но и за счет рассеяния света частицами дисперсной фазы. Вследствие этого для окрашенных коллоидов в уравнение Ламберта — Бера кроме коэффициента светопоглощения вводят коэффициент светорассеяния  [c.390]

    Релеевский триплет. Итак, спектр тонкой структуры релеевского рассеяния света (релеевский триплет) в чистых жидкостях обусловлен адиабатическими и изобарическими флуктуациями плотности. В растворах центральная компонента релеевского триплета, будем называть ее компонентой Гросса (по имени открывшего ее в 1930 г. Е. Ф. Гросса), зависит не только от изобарических флуктуаций плотности, но и от флуктуаций концентрации. Изучая спектр центральной компоненты релеевского триплета, изображенного на рис. 32, можно определить коэффициент те.мпературопроводности х и, если известно Ср, —коэффициент теплопроводности %. Изучая спектр компонент Мандельштама—Бриллюэна, получают сведения о скорости распространения и коэффициенте поглощения звуковых волн [36]. Точность этих измерений резко возросла с появлением газовых лазеров. Измерения проводятся при углах рассеяния 0, обычно превышающих 20—30°. В этих условиях спектр компонент Мандельштама — Бриллюэна позволяет изучать лишь гиперзвуковые волны, имеющие частоту порядка 10 Гц. При очень малых углах рассеяния в принципе можно было бы исследовать скорость и поглощение звука в более широком диапазоне частот и оптическим методом получать сведения о дисперсии скорости звука, т. е. о зависимости скорости звука от частоты колебаний звуковых волн [37]. [c.144]

    В окрестности критической точки расслаивания раствора работа, требующаяся для образования флуктуаций концентрации, очень мала. Статистическое среднее квадрата флуктуаций концентрации возрастает. Даже малые локальные изменения состояния раствора оказывают заметное влияиие на состав сравнительно больших его участков. Иначе говоря, возрастает радиус корреляции флуктуаций концентрации. В окрестности критической точки при (Т—Т ) 1—2° флуктуации концентрации встречаются так часто, что лучи света, попадающие в раствор, нередко испытывают многократное рассеяние, прежде чем выйти наружу. Поэтому раствор становится мутным. Наблюдается критическая опалесценция. Постепенно радиус корреляции флуктуаций концентрации Ь достигает величин порядка 10 м, сравнимых с длиной волны света. Тогда при рассеянии света возникают отклонения от закона Релея. При устранении помех, связанных с многократным рассеянием, и тщательном термостатировангш отклонения от закона Релея нередко наблюдаются лишь в узком интервале температур, при Т—Гк1С0,1 [42]. Растворы с развитыми флуктуациями концентрации похожи на дисперсные системы с очень малыми неоднородностями. Отличие от обычных дисперсных систем состоит в том, что флуктуации концентрации неустойчивы Они случайно возникают и быстро исчезают. Среднее время их существования т обратно пропорционалыю коэффициенту диффузии. Исследования, выполненные автором и его сотр. [43], показали, что в растворах с положительными отклонениями от идеальности, состояние которых далеко от критической точки расслаивания, -с может лежать в интервале 10 — 10 с. Время 10" с само по себе очень малое, в молекулярных [c.154]

    В основе макроскопической теории молекулярного взаимодействия конденсированных фаз лежит представление о существующих в них флуктуациях электромагнитного поля, которые выходят за пределы фаз и, взаимодействуя в зазоре между кнми, создают силы межмолекулярного притяжения. Квантовый характер подобных флуктуаций приводит к тому, что основной вклад во взаимодействия создают так называемые нулевые колебания, не зависящие от температуры лишь при очень высоких температурах следует учитывать температурную природу флуктуаций. Частотная характеристика флуктуаций электромагнитного поля может быть найдена из оптических свойств конденсированной фазы — из зависимости от частоты ы коэффициентов истинного (не связанного с рассеянием света см. 1 гл. VI) поглощения света в контактирующих фазах. [c.249]

    Получены также теоретические выражения для анализа термодинамических функций (коэффициенты активности компонентов, избьпочная энергия Гиббса, энтальпия смешения), статической диэлектрической проницаемости, дипольного фактора корреляции, коэффициентов Рэлеевского рассеяния света в рамках квазихимического подхода для структурно-стехиометрической модели растворов, предусматривающей образование ассоциатов диэтилового эфира и комплексообразование молекул и ассо-циатов эфира с молекулами хлороформа. Предложена схема описания термодинамических, диэлектрических и оптических свойств растворов диэтиловый эфир - хлороформ в широких интервалах температур и концентраций [c.24]

    Получены термодинамические и структурные параметры процессов ассоциации и комплексообразования. Определены функции распределения ассоциатов и комплексов по paзмq)aм и структуре в зависимости от концентрации раствора и температуры. Показана возможность единого описания функций смешения, дюлектрической проницаемости, коэффициентов Рэлеевского рассеяния света и количественного анализа ассоциативных равновесий и межмолекулярных взаимодействий в растворах. [c.24]

    Выражение (4 1) было получено Релеем суммированием компо нент ti и 12, но в его первоначальном виде численный коэффициент был вдвое больше Впервые эту ошибку заметил Стайлсно ее истинный смысл был указан значительно позжеУгловое распределение интенсивности рассеянного света симметрично относи тельно плоскости перпендикулярной к падающему свету, т е оди наковое количество света рассеивается вперед и назад Однако если частица ненамного меньше длины волны падающего света то рассеяние вперед значительно больше, чем назад Для частиц, имеющих радиус равный длине воаны или больший, отношение может превысить 1000 [c.115]

    Затем анализируются свойства воды, определяемые взаимными поступательными движениями молекул Н2О в жидкости, явления переноса. Поступательные движения молекул в жидкости представляют собой наиболее характерное свойство жидкого состояния, определяющее высокий уровень внутренней энергии жидкости по сравнению с кристаллом, и обусловлены взаимодействием больших ансамблей молекул. Анализ данных по различным явлениям переноса в жидкой воде показывает, что средние значения амплитуды атомных колебаний в жидкой воде имеют значение, близкое к 0,6 А. Большое значение коэффицента трения в воде по сравнению с коэффициентом трения в других жидкостях при температуре плавления показывает, что в воде сильно межмолекулярное взаимодействие, определяемое ближайшими соседями. В этой главе обсуждаются результаты изучения свойств воды методом ЯМР (ядерного магнитного резонанса) и молекулярного рассеяния света. Рассматриваются свойства воды, обусловленные диссоциацией молекул Н2О на ионы. Показывается, что зависимость ogKa и Т1 (времени спин — решеточной релаксации в воде) от температуры очень похожи и определяются большими амплитудами колебаний протона молекулы Н2О. [c.7]

    Первый член этого соотношения определяет коэффициент рассеяния света на адиабатических флуктуациях плотности, а второй —на изобарических флуктуациях плотности. Поляризованный свет, рассеянный на этих флуктуациях, остается полностью поляризованным. Гинзбург (1945) разделил Де на две составляюшие Де(р, 5) и Де  [c.150]

    При использовании в качестве источников света лазеров был обнаружен целый ряд новых явлений, в основе которых лежит релеевское рассеяние света. Эти явления получили название вынужденного комбинационного рассеяния и основали новую область науки — нелинейную оптику. Нелинейная оптика затрагивает эффекты, определяемые изменениями во Бремени нелинейной части коэффициента поглощения света. Напряженность поля в световой волне при изучении эффектов вынужденного рассеяния света составляет 10 -г-10 в см. Такая световая волна изменяет состояние среды. Эксперименты показали, что и вынужденное молекулярное рассеяние света в воде также очень мало по сравнению с рассеянием света другими жидкостями (Фабелинский, 1969). [c.152]


Смотреть страницы где упоминается термин Рассеяние света коэффициент: [c.147]    [c.391]    [c.256]    [c.44]    [c.347]    [c.173]    [c.198]    [c.98]    [c.140]    [c.51]   
Лакокрасочные покрытия (1968) -- [ c.381 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент света

Рассеяние света



© 2024 chem21.info Реклама на сайте