Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы определения физических свойств воды

    Очень важной задачей является определение солесодержания в почвах. Во-первых, степень засоленности почвы очень часто является решающим фактором при освоении новых земель и выборе наиболее оптимальных методов орощения. Во-вторых, неумелое использование поливной воды без учета физикохимических и водно-физических свойств орошаемой почвы может привести к их вторичному засолению. Поэтому на орошаемых полях необ ходим контроль за динамикой солей в почве, чтобы предотвратить вторичное засоление. [c.234]


    Для правильного проведения процесса восстановления необходимо иметь информацию о качестве нефтепродуктов до восстановления, в ходе процесса и после него. Для анализа желательно применять быстрые методы, которые позволят сократить общее время восстановления качества нефтепродуктов. Вероятно, нет необходимости рассматривать стандартные методы анализа. Они изложены в широко распространенных официальных изданиях по методам испытаний. Ниже приведены современные и перспективные быстрые методы определения показателей качества нефтепродуктов, по которым проводят восстановление. Это относится к методам определения содержания воды, твердых загрязнений, химического состава (смолистых веществ, кислотности, углеводородного состава) и некоторых физических свойств. [c.291]

    Содержание окрашенных примесей в природной воде характеризуют общим термином цветность воды . Этот органолептический показатель определяется путем сравнения профильтрованной либо центрифугированной анализируемой воды с эталонными растворами в цилиндрах Несслера или Генера. По ГОСТу 3351—46 Вода хозяйственно-питьевая. Методы определения физических свойств в качестве эталона применяется платинокобальтовый раствор (1,245 г хлорплатината калия, 1,01 г кристаллического хлористого кобальта и 100 мл концентрированной соляной кислоты в 1 л раствора) или его имитация — бихромат-кобальтовый раствор (0,0875 г двухромовокислого калия, 2000 г кристаллического сернокислого кобальта и 1 мл серной кислоты, плотность 1,844 г см в 1 л раствора). Эталонные растворы такой концентрации соответствуют 500 град, цветности менее окрашенные эталоны приготовляются разбавлением исходного раст- [c.40]

    Наличие примесей в прпмепяелгых для исследования веществах влияет на условия равновесия и чрезвычайно усложняет анализ смесей. Поэтому исходные вещества должны подвергаться возможно более тщательной очистке. Способ очистки должен выбираться в зависимости от свойств вещества и содержащихся в нем примесей. Применяются физические методы очистки — перегонка, кристаллизация и др., а также химические методы удаления примесей (например, удаление воды с помощью водоотнимающих средств). Для очистки жидких веществ чаще всего используется ректификация, проводимая на обычных лабораторных колонках. Для работы отбирается средняя фракция, которая при необходимости может быть подвергнута повторной перегонке. Критерием чистоты продукта, отбираемого в процессе перегонки, является постоянство физических свойств дистиллата, прежде всего температуры кипения, которую легко контролировать по ходу разгонки. Помимо температуры кипения контролируются чаще всего показатель преломления и удельный вес. Могут, разумеется, контролироваться и другие свойства (например, электропроводность, вязкость). Для оценки степени чистоты следует выбирать такое свойство, которое в наибольшей степени изменяется с изменением содержания примесей и поддается контролю с наибольшей точностью. Помимо измерения физических свойств, следует во всех случаях, когда это возможно, использовать химические и физико-химические методы анализа. Особенно большое распространение для определения чистоты органических веществ получил в последнее время метод газо-жидкостной хроматографии. [c.8]


    Вода хозяйственно-питьевая. Методы определения физических свойств Вода источников хозяйственно-питьевого водоснабжения. Методы технологического анализа (рекомендуемые) [c.17]

    Методы определения физических свойств воды  [c.207]

    С. М. Драчев, А. С. Разумов, С. Б. Бруевич, Б. А. Скопинцев, М. Т. Голубевг[. Ме тоды химического и бактериологического анализа воды. [Медгиз, 1953, (280 стр В книге описаны наиболее достоверные методы качественного исследования и коли чественного определения физических свойств и химического состава органических и неорганических веществ, растворенных в воде. Значительное место уделено по.1евым методам анализа воды. Помимо анализа воды па обычные компоненты, в книге приведено описание методов определения менее распространенных элементов мышьяка, свинца, меди, цинка, фтора, хрома, селена, [c.491]

    ГОСТ 3351—46 (Вода хозяйственно-питьевая. Методы определения физических свойств). [c.19]

    Для определения содержания воды в некоторых органических жидкостях можно воспользоваться также и другими методами, основанными на измерении таких физических свойств как плотность, показатель преломления, вязкость, температура кипения, температура замерзания, спектр поглощения в инфракрасной области и масс-спектр. Для достижения высокой точности необходимо, чтобы различие в физических свойствах, обусловленное наличием воды, было достаточно большим. [c.266]

    Настоящий стандарт устанавливает методы определения общих физических свойств хозяйственно-питьевой воды запаха, вкуса и привкуса, температуры, прозрачности, мутности, взвешенных веществ и цветности. [c.272]

    При контроле качества технической воды пользуются методами определения физических свойств, а также методами химического и санитарно-биологического анализа. [c.254]

    Экспериментальная проверка изложенной методики определения параметров О VLt модели (7.2) строилась на сравнении опытных кривых распределения времени пребывания, получаемых индикаторными методами и методами гидродинамических возмущений [3, И—14]. На рис. 7.2 и 7.3 изображены в одних и тех же координатах типичные кривые отклика системы, полученные индикаторным и прямым методами. Опыты проводились на насадочной колонне диаметром 150 мм. Насадкой служили кольца Рашига размерами 10x10 и 15x15. Высота слоя насадки составляла 2 м. В качестве двухфазной системы использовалась система воздух—вода. В качестве жидкой фазы применялись также растворы СаС12 в воде различной концентрации и растворы глицерина в воде. Физические свойства жидкой фазы изменялись в следующих пределах плотность — от 1 до 1,4 [г/см ], вязкость — от 1 до 41 СП. Пределы изменения нагрузок по фазам были плотность орошения =227 15 000 кг/м час, нагрузка по газу 6=1050—5200 кг/м час, отношение нагрузок Ы = =0,05- 15. [c.358]

    ГОСТ 3351—46 (Вода хозяйственно-питьевая. Методы определения физических свойств). Не более трех кишечных палочек в 1 л воды. [c.18]

    Для контроля за составом топлив недавно утверждены стандарты на определение содержания выносителя в бензинах (ГОСТ 6073—75), интенсивности окраски этилированных бензинов (ГОСТ 20924—75) и др. Для оценки новых показателей эксплуатационных свойств служат методы ГОСТ 18597—73, предназначенный для оценки коррозионных свойств топлив в условиях конденсации воды (защитных свойств), ГОСТ 20449—75 — для оценки коррозионных свойств при повышенных температурах (см. гл. II) и некоторые другие. Стандартизованы также новые методы определения физической стабильности бензинов (потерь от испарения) — ГОСТ 6369—75, химической стабильности бензинов (в условиях хранения) — ГОСТ 22054—76. [c.225]

    Целый ряд физических свойств лежит в основе методов быстрого определения воды. Эти методы, так же как и электрические, наиболее пригодны для анализа газов и жидкостей. Некоторые из них применимы лишь к системам определенного типа (криоскопия, методы, основанные на измерении плотности и показателя преломления, метод вытеснения). Для определения влажности широко используются также реакционная газометрия, гигрометрия, определение точки росы, давления пара, сорбция с использованием пьезокристаллов. Чащ,е всего перечисленные методы используют при анализе газов. [c.538]

    В первом томе собраны химические, гравиметрические, спектральные и другие физические методы определения воды, а также методы, основанные на различных приемах фракционирования смесей. Вводная первая глава Структура и физические свойства воды содержит данные о различных состояниях воды, природе межмолекулярных взаимодействий, а также о некоторых физических свойствах воды, которые можно использовать для аналитических целей. Более подробно с этими вопросами читатели могут ознакомиться в цитированной литературе. В первом томе имеется много ссылок на работы, в которых применяется титрование реактивом Карла Фишера. Это самый распространенный метод определения воды, и поскольку используемая в нем реакция является стехиометрической, этот метод служит калибровочным для многих других методов. Калибровка имеет очень большое значение при использовании спектральных и некоторых других методов, пра- [c.6]


    Метод Хэдсона — Джексона. Этот просто п изящный метод определения конфигурации гликозидного центра в гликозиде, а следовательно и в соответствующем ему аномере моносахарида, основан на выделении продукта окисления гликозида йодной кислотой и определении величины вращения. При окислении йодной кислотой метилглико-зида и последующего окисления получающегося диальдегида бромной водой образуется двухосновная кислота, которая идентифицируется в виде бариевой или стронциевой соли. При окислении любого моносахарида (за исключением дезоксисахаров) может образоваться одна из четырех стереоизомерных кислот, конфигурация которых зависг1Т только от конфигурации у С(1) и С(5) (или С(4) у пентоз) и не зависит от конфигурации других С-атомов (С(2>, С(з> и С(4)) . а-О-гликозид и а-ь-гликозид дают одну пару антиподов, Р-О-и р-ь-гликозиды — другую пару антиподов, диастереомерную первой. Эти пары диастереомеров отличаются одна от другой физическими свойствами, в частности для а-О- и а-Ь-пары характерны бариевые соли, [5-0- и р-ь-пара дает характерные стронциевые соли. На основании этого исходный гликозид можно отнести либо к тому, либо к другому типу (см. схему на стр, 45). [c.44]

    В отличие от суспензионного метода при эмульсионной полимеризации продукт реакции представляет собой мелкую стабильную водную дисперсию полимера, которая легко транспортируется. Это позволяет осуществлять непрерывный процесс производства эмульсионного поливинилхлорида. Образование стабильной дисперсии полимера обусловливает также возможность применения метода выделения сухого полимера путем сушки на распылительных сушилках, что позволяет формировать определенные физические свойства порошка ПВХ и, кроме того, упрощает решение вопроса по очистке сточных вод. [c.98]

    Все приведенные рассуждения о характере взаимодействия вода — диоксан вполне пригодны для объяснения изменений определенных физических свойств смесей растворителей в зависимости от их состава. Очевидно, что совместные данные по результатам различных методов исследования способствуют более глубокому пониманию структуры смесей растворителей. [c.213]

    Количественные методы определения воды только путем экстракции пока не разработаны. Однако экстракция смешивающимися с водой жидкостями широко используется для удаления влаги из некоторых твердых веществ и неполярных жидкостей. Количество воды, извлеченной при экстракции, может быть найдено химическим путем или измерением каких-либо физических свойств, например плотности. В последнем случае во избежание искажения результатов измерений из пробы не должны экстрагироваться заметные количества каких-либо других компонентов. При определении влаги в экстракте химическим методом можно допустить наличие в пробе растворимых в экстрагенте веществ, не вступающих в химическое взаимодействие с применяемым реактивом. Обычно для экстракции воды из удобрений, почв, углей и гравия применяют метиловый или этиловый спирт, а также диоксан, диэтиловый эфир, ацетон и пиридин. [c.295]

    Для количественного анализа вещества можно использовать также химические реакции, протекание которых сопровождается изменением физических свойств анализируемого раствора, например изменением его цвета, интенсивности окраски, величины электропроводности и т. п. Измеряя электропроводность какого-либо электролита, изменяющуюся в результате взаимодействия его с другим веществом, можно определить количество этого вещества в растворе. Например, электропроводность баритовой воды изменяется в процессе поглощения ею двуокиси углерода. На этом свойстве основан метод определения СОа. Если через баритовую воду пропускать газ, содержащий СО , и одновременно измерять ее электропроводность, то можно найти количество СО , поглощенное баритовой водой, и рассчитать процентное содержание двуокиси углерода в исследуемом газе. [c.20]

    Некоторые особенности структуры воды, ее химическое поведение и различные физические свойства положены в основу аналитических методов ее определения. Надежные методы качественного и количественного определения воды необходимы практически для всех отраслей промышленности, имеющих дело с синтетическими и природными продуктами, для биохимических и биологических исследований, а также для метеорологии. Прямо или косвенно вода является участником большинства химических реакций. Наличие следов воды в некоторых средах является важнейшим фактором, определяющим направление реакции и степень выхода ее продуктов. [c.29]

    Силикагель, используемый как матрица для последующей прививки неподвижной фазы, играет важнейшую роль в определении конечных свойств получаемого сорбента. Он имеет пространственно-пористую структуру, образованную диоксидом кремния в процессе образования золя, геля и последующей его сушки с удалением физически сорбированной воды. В зависимости от условий формования силикагеля могут быть получены образцы со средними размерами пор от 3 до 10 нм. За счет последующей гидротермальной обработки силикагеля может быть достигнуто значительное увеличение размера пор (до 20—50 нм и более) при сохранении в основном объема пор. Методами формования микросферических сорбентов для ВЭЖХ из тетраэтоксисилана за счет варьирования условий формования и отверждения, выбора растворителей и т.п. удается добиться получения силикагеля с достаточно высокой пористостью (свободный объем пор 0,7—1,2 мл/л) и порами от 5 до 400 нм и более. [c.94]

    Физические свойства слоя эмульгатора, адсорбированного на поверхности раздела масло — вода, влияют на реологические свойства эмульсии, ее стабильность. Эти проблемы обсуждаются в других разделах книги. Сведения об адсорбции или ориентации молекул эмульгатора получают при изучении модели плоской поверхности раздела масло — вода, которую можно рассматривать как поверхность шарика с бесконечно большим диаметром. Основной принцип таких методов — определение площади, занимаемой каждой адсорбированной молекулой, при изменении давления на поверхности пленки. [c.182]

    Для исследования этих простых, но принципиально важных ионных реакций необходимы источники как электронов, так и водородных атомов в полярных средах, особенно в воде, и способы определения и измерения концентраций сольватированных электронов и атомов водорода физическими или химическими методами. В последующих главах мы опишем способы получения сольватированных электронов и атомов водорода, методы идентификации и физические свойства электрона в различных агрегатных состояниях, реагенты на электрон и атом водорода, относительные скорости реакций этих двух частиц и, наконец, различные другие связанные с этим вопросы. [c.459]

    Определение относительной распространенности изотопов в образцах водородсодержащих соединений часто проводится иными, не масс-спектрометрическими методами. Разница в химических и физических свойствах, вызываемая замещением атомов водорода дейтерием, настолько велика (в сравнении с другими изотопными замещениями), что могут быть применены методы, чувствительность которых обычно недостаточна для измерения распространенностей других изотопов. Для проведения анализа часто применяется собственно водород, а также соединения, в которых большая часть молекулы представлена атомами водорода, как, например, ВНд, NH3, НаО, СН4. При определении дейтерия, основанном на измерении теплопроводности, используются как Н2, так и ВН3. Этим методом [1857] для концентраций дейтерия в пределах до 2,5% достигается точность определения порядка ЫО %. К недостаткам метода следует отнести зависимость измерения от молекулярного веса всех типов молекул газа, присутствующих в смеси анализируемый газ должен быть свободен от примесей. Для определения содержания дейтерия очень часто применяется метод измерения плотности воды [272, 1824, 1825]. Смеси дейтерированной и обычной воды образуют идеальные растворы с точки зрения их плотности [1974], однако измерения осложняются вариациями в распространенностях и 0. Этот факт требует приготовления эталонного образца воды, свободной от дейтерия. При использовании образцов с весом менее 0,1 г была достигнута точность 0,01%. Описаны также и другие методы [642, 1678], в которых проводилось определение дейтерия. [c.83]

    Ассоциация молекул воды за счет водородных связей. Уже давно предполагалось, что аномалии в физических свойствах воды вызваны тем, что молекулы этой жидкости ассоциируются, т. е. соединяются между собой слабыми силами притяжения. Однако эти силы притяжения все же заметно больше, чем вандерваальсовы силы, действующие в молекулах обычных жидкостей (стр. 145). На это же указывает и отклонение от правила Трутона (стр. 142). Эта константа воды необычно велика (25,9) по сравнению с константами жидкостей с неассоциироваиными молекулами (21,5). Молекулярный вес воды, растворенной в органических веществах, определенный криоскопическим методом, имеет более высокое значение, чем то, которое соответствует формуле НгО М = 18), что также указывает на ассоциацию, т. е. на существование молекул (НгО)г, (НгО)з и т. д., находящихся в равновесии друг с другом и с молекулами НгО. В газообразном состоянии молекулы воды не ассоциированы, так как на основании плотности паров воды при 100° известным методом (стр. 39) для воды находят обычный молекулярный вес. [c.330]

    Расчет двумерного вытеснения нефти водой по поршневой схеме или схеме Баклея — Леверетта требует применения численных методов. Точные аналитические решения удается получить лишь в предположении идентичности физических свойств воды и нефти. Некоторые из таких решений известны (пара скважин, площадные системы). Дадим новые точные решения для определения динамики процесса обводнения и границы раздела жидкостей. Их можно использовать для контроля приближенных численных или конечно-разностных методов, [c.61]

    В физических методах измеряют непосредственно определяем< физическое свойство без проведения химических реакций. Наприме для определения содержания различных веществ (кислот, щелочс и др.) иногда достаточно измерить их плотность. На осно1 измерения электрической проводимости можно определить содерж ние воды в концентрированной серной или уксусной кислота Измеряемые свойства зависят от концентрации раствора, но I зависят от массы или объема анализируемого вещества. Пoэтo при анализе физическими методами нет необходимости брат строго определенное количество данного вещества, т. е. не нужр брать навеску или отмерять строго определенный объем раствор  [c.204]

    Определенный интерес вызывают методы прямой конверсии угля в ацетилен. В ФРГ разрабатывают способ получения С2Н2 путем вдувания в электродугу угольной пыли в потоке Н2 с последующим быстрым охлаждением водой выходящих газов. Другой метод основан на получении С2Н2 из каменных углей в водородной плазме, причем выход зависит от состава, физических свойств и структуры угля, степени его измельчения, количества образующихся летучих, содержания в угле кислорода [17]. [c.247]

    Отбор проб воды для определения ее химического состава и физических свойств производится в соответствии с ГОСТ 17.1.5—8 Из поверхностного горизонта пробы отбираются бутылью или эмат ро-ванным ведром, из глубинных слоев — батометром. Объем пробы с каждого створа составляет 7 — 8 л. Отобранная вода разливается в различны емкости для раздельного анализа на отдельные ингредиенты и загрязняющие вещества. При необходимости производится соответствующая подготовка и консервация проб. Дпя анализа природных вод используют фотометрические, газохроматографические, атомноабсорбционные методы. [c.46]

    В наших исследованиях мы встргчались с тем фактом, что при попытках определения молекулярных вe oв полиамидных смол рноско-пическим и эбулиоскопическим методами всегда получались сильно заниженные результаты (10 ), тогда как по вязкости растворов, измерению светорассеяния и осмотического давления и по физическим свойствам эти полиамиды должны иметь средний молекулярный вес порядка 20 000. Причиной этого явления оказалось то, что даже при самом тщательном высушивании в образце полиамида остается не менее 0,1% воды, а воздушно-сухой образец полиамида при 50%-ной относительной влажности может содержать до 2,5% воды (в зависимости от строения) [19]. [c.13]

    Твердые вещества в компактной форме. Материалы этого типа часто состоят из отдельных объектов, таких, как болванки, слитки, листы, тюки, пробы от которых можно отобрать по методу случайной выборки. Способ отбора проб от отдельных предметов зависит, конечно, от физических свойств и формы материала. Удобный и не связанный с разрушением металла способ отбора пробы листов заключается в фрезеровании с торца аккуратно сложенных вместе нескольких листов. Пробы от чушек и болванок цветных металлов получают при распиливании образца на несколько кусков в строго определенных точках по его длине. Из собранных опилок получают пробу. Другой метод состоит в сверлении или пробивании отверстий через правильные промежутки по диагонали блока, лучше насквозь или на полтолщины попеременно с одной и другой стороны. Полученные кусочки металла и стружка или сплавляются в чистом графитовом тигле, после чего гранулируются выливанием в дистиллированную воду, или отливаются в тонкие слитки, которые можно распилить в нескольких местах. [c.637]


Смотреть страницы где упоминается термин Методы определения физических свойств воды: [c.19]    [c.19]    [c.478]    [c.137]    [c.467]   
Смотреть главы в:

Технический анализ и контроль производства лаков и красок -> Методы определения физических свойств воды




ПОИСК





Смотрите так же термины и статьи:

Вода, свойства

Метод свойствам

Методы определения свойств

Методы физические

Физические методы определения

Физические методы определения воды



© 2025 chem21.info Реклама на сайте