Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отложения на ионитах

    Исследования, проведенные с твердым фосфорнокислым катализатором, показали, что олигомеризация пропилена при концентрации его свыше 3,1 моль на 20 г катализатора проходит как реакция первого порядка [87]. Опыты с фосфорной кислотой на силикагеле [88] показали, что доля димеров и тримеров увеличивается с повышением содержания воды. Результаты эти истолковываются так на первой стадии происходит отложение пропилена на кислом катализаторе и образование сложных эфиров фосфорной кислоты, которые затем реагируют с пропиленом. В результате образуются ионы карбония, которые присоединяются к другим молекулам олефина или путем отдачи одного протона стабилизируются на анионах фосфорной кислоты при этом выделяются олигомеры. [c.249]


    Натрий может быть заменен путем ионного обмена на любой другой металл. Ионный обмен сопровождается отложением соответствующего металла в кристаллической решетке цеолита. В большинстве случаев используются частично декатионированные цеолиты (так называемая кислотная форма). [c.48]

    Стадию гелеобразования (ионное отложение, электроотложение, желатинирование). [c.608]

    Каталитический крекинг олефиновых углеводородов в присутствии, например, алюмосиликатных катализаторов происходите гораздо большей скоростью, чом крекинг соответствующих парафиновых углеводородов кроме того, перенос водорода является основной реакцией, особенно для третичных олефинов [17]. В то же время термический крекинг олефинов происходит, примерно, с такой же скоростью, как и крекинг парафиновых углеводородов перенос водорода в этом случае представляет собой неизбирательную реакцию, имеющую значительно меньшее значение [17]. Такие факты характерны для поведения ионов карбония и свободных радикалов. Более легкий каталитический крекинг олефинов обусловлен более легким образованием ионов карбония путем присоединения протона катализатора к олефину. Перенос водорода, при котором имеет место отщепление гидридного иона от олефиновой или парафиновой молекулы. ионом карбония (правило 5), происходит легче в случае третичных ионов, чем вторичных, и является поэтому более избирательным к третичным олефинам. Соединения, являющиеся в реакции переноса донорами водорода, превращаются в диолефины, ацетиленовые и ароматические углеводороды, а также образуют отложения па катализаторе. [c.238]

    Выступы обусловлены отложением ионов серебра нз раствора на растущей [c.443]

    Рентгеновское излучение проходит коллиматор, щель, монохроматор, разрядную камеру. В кожух камеры вмонтированы прозрачные к рентгеновскому излучению окна. За выходным окном находится сцин-тилляционный детектор. Линейный усилитель и одноканальный анализатор обрабатывают выходной сигнал до его выхода в интенсиметр. При этих измерениях определяется доля проходящего рентгеновского излучения. Для детального анализа продуктов разложения UFe в РЧ-плазме использовались следующие приборы профилометр — для измерения толщины поверхностных отложений, эрозии и коррозии стенок кварцевой разрядной камеры инфракрасный спектрофотометр — для идентификации соединений, возникающих в плазме и обнаруженных в налете на стенках разрядной камеры сканирующий электронный микроскоп для изучения полученных в плазме РЧ-разряда в UFe отложений на стенках дифрактометр рентгеновского излучения — для идентификации химических соединений в отложениях на стенках разрядной камеры электронный микроскоп для определения относительной кристалличности отложений ионный спектрометр в комбинации с масс-спектрометром — для идентификации химических элементов и их соединений в отложениях на стенках камеры. [c.509]


    Появление после травления в разбавленной соляной кислоте кубической структуры вместо ожидаемого кубического октаэдра объясняется тем, что при травлении в разбавленной соляной кислоте вследствие отложения ионов хлора на гранях куба последние служат поверхностями растворения. Таким образом, при таком травлении форма кубического октаэдра уступает место кубической и появляются фигуры травления на углах и ребрах куба. [c.228]

    В литературе опубликованы также данные о конверсии н-гептана в толуол [18]. Процесс проводили при 490° и атмосферном давлении с объемной скоростью около 0,3 час. . Катализатор состоял из окиси хрома, нанесенной в количестве 10% на окись алюминия, и содержал промоторы — небольшие примеси двуокиси церия и едкого кали [19]. Конверсия в толуол могла за некоторый промежуток времени достигать 80%. Однако в среднем количество превращенного н-гептана за один проход равнялось 40%. Выход толуола составлял 80—90%, считая на прореагировавший н-гептан. Из продуктов реакции толуол мог быть выделен любым из физических методов, описанных выше в этой главе. В результате образования углеродистых отложений катализатор медленно терял свою активность и требовал периодической регенерации. На большую легкость ароматизации нафтенов по сравнению с парафинами указывают два обстоятельства. Во-первых, следы сульфат-иона отравляют реакцию ароматизации парафинов, но не влияют на ароматизацию нафтенов. Во-вторых, отношение рабочего времени ко времени, затраченному на регенерацию, при ароматизации нафтенов равно 20 1, а в случае парафинов — только 6 1. [c.252]

    Железоокисные катализаторы характеризуются изменением фазового состава в ходе окислительно-восстановительных реакций, что обусловливает некоторые особенности протекания реакций как в основном процессе, так и в ходе регенерации [3.17]. Ранее предполагалось, что на природном железоокисном катализаторе реакции протекают по радикально-цепному механизму [3.4]. Учитывая рассмотренный в первой главе механизм превращений на катализаторах, содержащих оксиды металлов переменной валентности, можно предположить, что наряду с термической частью реакций, протекающих по радикально-цепному механизму, при окислительной каталитической конверсии значительная часть продуктов, в том числе и коксовых отложений, образуется по механизму карбоксилатного комплекса, в отличие от карбоний-ионного механизма реакций в условиях каталитического крекинга на традиционных катализаторах. [c.63]

    Недавно был предложен бокситный способ очистки алкилата [152]. Система очистки устанавливается непосредственно после реактора и состоит из емкости, заполненной стеклянной ватой, для улавливания тонкодисперсных частиц кислоты из углеводородного сырья и двух бокситных колонн. Колонны работают попеременно. Боксит улавливает кислоты и сернистые соединения. Регенерация боксита проводится периодически при помощи водяного пара и воды, и осуществляется, как правило, после пропуска 500—1000 алкилата на 1 т боксита. Последующая осушка боксита производится природным газом. Содержание сульфат-иона при бокситной очистке снижается до 0,001%, предотвращается образование отложений во фракционирующих колоннах и повышается приемистость алкилата к ТЭС. [c.136]

    В связи с интенсивной химизацией добычи нефти возрастает роль процесса отложения солей — шестой фактор. Некоторые типы деэмульгаторов, ингибиторов коррозии, бактерицидов, кислот, щелочей, а также другие химические реагенты, закачиваемые в пласт, могут способствовать отложению солей в пласте и нефтепромысловом оборудовании. Например, ранее широко используемый деэмульгатор НЧК для некоторых объектов был основным источником образования гипса, так как в 100 %-ном реагенте НЧК содержится около 48 % ионов 502— При использовании НЧК гипс выпадает в нефтесборных парках, кустовых насосных станциях, в нагнетательных и добывающих скважинах и в пласте. [c.233]

    Кроме сернистых соединений вредной составной частью мазутов являются металлы, особенно ванадий. Для борьбы с дезактивирующим отложением металлов на катализаторах нужно искать новые, более стабильные катализаторы. Это, скорее всего, должны быть широкопористые контакты, содержащие промоторы, подавляющие блокировку активных центров высокомолекулярными компонентами, особенно азотистыми основаниями. Для предотвращения коксообразования из-за водородного голодания катализаторы не должны иметь высокой кислотности и ярко выраженного ионного характера. Они должны отличаться очень высокой гидрирующей активностью. [c.303]

    Указанные выше результаты подтверждают, что выгорание углеродистых отложений на оксиде хрома(П1) происходит после индукционного периода, во время которого разрушаются связи атомов углерода с оксидом и восстановленные ионы хрома окисляются [109]. Длительность индукционного периода уменьшается с увеличением температуры и повышением парциального давления кислорода в смеси и увеличивается с ростом содержания углерода в образцах. Углерод, связанный со структурой оксида, наиболее реакционноспособен и окисляется в первую очередь. [c.46]


    ИОНЫ тяжелых металлов и т. д. Влияние этих примесей на водоемы заключается в увеличении содержания солей, изменении свойств воды — ее прозрачности, цвета, запаха, вкуса, pH, жесткости в отравлении живых организмов, отложении на дне нерастворимых осадков, т. е. в засорении водоемов. [c.244]

    Метод пиролиза был использован при исследовании смолистых отложений на алюмо-кобальто-молибденовом катализаторе [21]. Пиролиз проводился в специальной пиролитической ячейке, присоединенной к ионному источнику масс-спектрометра МХ-1303. Температура пиролиза повышалась с постоянной скоростью 10° С в 1 мин. от 20 до 500° С масс-спектры снимались через каждые 2—3 мин. По полученным масс-спектрам определяли состав продуктов пиролиза в каждый момент времени, а интегрированием интенсивностей пиков во времени — суммарный состав продуктов пиролиза и интегральную кривую газовыделения. Эти дв аппара-турно-методических варианта анализа смолисто-асфальтеновых веществ представляются перспективными [21, 22]. [c.170]

    В условиях химического анализа осадок не вносится в раствор в готовом виде, а образуется в нем по мере прибавления осадителя. При этом возникают сначала мельчайшие зародышевые кристаллы, которые постепенно растут, причем поверхность их иепре-рыг.но обновляется за счет отложения все новых и новых слоев соогветствующего вещества. В то же время эта постоянно обнов-лякрщаяся поверхность кристалла непрерывно адсорбирует различные примеси из раствора. В процессе роста кристалла эти примеси постепенно вытесняются ионами, входящими в состав кристаллической решетки осадка. Однако такое вытеснение обычно происходит недостаточно полно. В зависимости от условий осаждения большая или меньшая часть примесей, первоначально находившихся на поверхности частиц, в результате адсорбции оказывается отделенной от раствора вновь отложившимися слоями осаждаемого вещества. [c.113]

    В пламени образуются ионизированные частицы. Это обстоятельство может быть использовано для контроля за наличием их по электропроводимости пламени и выпрямлению переменного тока ионами пламени. Действие датчиков наличия пламени может быть основано на любом из этих принципов (при обязательном использовании электропроводящей цепи). Однако в любом случае необходимо, чтобы датчики были изготовлены из достаточно износоустойчивого материала (например из платины) и находились в зоне пламени. Данный метод контроля не рекомендуется применять для обнаружения высокотемпературных пламен, так как на датчиках могут образовываться отложения сажи и золы, что приводит к замыканию цепи. [c.126]

    Полифосфаты натрия часто применяют в концентрациях 10—100 мг/л, добавляя иногда для усиления защитного действия соли цинка. Значение pH доводят до 5—6, для того чтобы свести к минимуму возможность появления питтинга и образования наростов, а также уменьшить отложение накипи. Полифосфаты медленно разлагаются до ортофосфатов, которые в присутствии ионов Са и осаждаются в виде нерастворимых ортофос- [c.281]

    Получение пленок в процессе ионного отложения — один из наиболее простых методов получения тонкостенных изделий из латекса. Этот метод широко используется в промышленности резинотехнических изделий. Ионное отложение [76, 77] заключается в последовательном погружении формы в загущенный раствор электролита (соли кальция, маг41ия или цинка) и в латексную смесь. По мере астабилизации латекса вокруг формы образуется каучуковый гель. Для полноты коалесценции глобул, определяющей прочность изделий, их подвергают синерезису, в процессе которого происходит выделение части серума. Процесс синерезиса несколько ускоряется с повышением температуры. Проведение синерезиса в электрическом поле (электроосмос) [78] позволяет получить пленки большей степени чистоты. [c.608]

    Следы кислорода, даже если они не наносят вреда непосредственно материалу котла, вызывают коррозию конденсатного тракта, особенно при наличии в конденсате диоксида углерода и аммиака. В результате в котел попадает небольшое количество солей меди, и вслед за этим металлическая медь осаждается на поверхности котла. Хотя коррозия не наносит серьезных повреждений конденсаторам, возникает вопрос, не появится ли в котлах питтинг из-за присутствия меди в котловой воде. По мнению ряда исследователей, осаждение меди не представляет опасности и является следствием гальванического эффекта, при котором ионы Си восстанавливаются на катодных участках вместо ионов №. В подтверждение этого предположения указывают на отсутствие коррозионных повреждений во многих котлах, на поверхности которых имеются отложения меди. [c.289]

    В морской воде. В щелях и под поверхностными отложениями возникает питтинг, особенно в присутствии следов ионов тяжелых металлов. [c.351]

    Приведенные на фиг. 2, 3 и 4 фотографии и графики расчетов рентгенограмм порошков шламов и накипей отчетливо свидетельствуют о наличии в них фазы с решеткой фосфорита, хотя во многих случаях отношение aO/PaOg меньше 1,18, отвечающего фосфориту. Можно допустить, что в указанных образцах недостаток Са " " изоморфно восполняется всегда содержащимися в таких отложениях ионами Mg " " или Fe " . [c.270]

    Первичные частицы весьма несовершенны и имеют большую активную поверхность. Под активной поверхностью мы подразумеваем все ограничивающие поверхности, отличающиеся от нормальной поверхности (т. е. углы, края, углубления, выступы и т. п.). в соответствии с электростатическими условиями ионы решетки -удерживаются менее прочно на активной поверхности, чем на нормальной поверхности. В результате такого менее прочного связывания ионы, находящиеся иа активной поверхности, могут переходить в раствор значительно легче, чВлМ те, которые находятся на нормальной поверхности. Ионы решетки на активной поверхности быстро переходят в раствор, главным образом в слой жидкости вокруг частицы. Такой раствор является пересыщенным по отношению к нормальной поверхности, и ионы решетки будут откладываться на последней. Процесс протекает так быстро, что ионы решетки едва лп имеют возможность переходить с активной поверхности в раствор и вызывать обычный, классический тип оствальдов-ского созревания . Перекристаллизация происходит главным образом в слое жидкости вокруг частицы активная поверхность исчезает, и кристаллы совершенствуются, благодаря отложению ионов решетки на нормальной поверхности (рис. 4, I). Окклюдированные загрязнения, которые не входят в решетку, могут быть источником большой активной внешней и внутренней поверхности. [c.105]

    По расчету Косселя—Странского для модели кристалла Na l энергии ф при отложении иона в положениях 1, 2, 3 на рис. 318,а составляют соответственно [c.359]

    Миасава и др. [72] выяснили, что в ssSb появляется электролитическая проводимость (при повышенных температурах), свойственная ионным кристаллам, с отложением ионов s+ на аноде. В то же время электронная подвижность, вызванная частной решеткой (i ], по меньшей мере равна 500 см /в сек при комнатной температуре. [c.80]

    В качестве второго примера рассмотрим электролиз водного раствора u U- Анодный процесс в этом случае остается тем же, что и в нервом примере. На катоде же будет происходить превращение ионов Си + в нейтральные атомы Си и отложение металлической меди. В результате на аноде выделяется хлор, а на катоде отлагается медь. [c.444]

    Накапливающиеся в оборотной воде соли образуют на теплообменной поверхности так называемые карбонатные отложения, более чем на 50% состоящие из карбоната кальция. Основные методы борьбы с ними — обработка охлаждающей воды кислотой (обычно серной) для снижения общей щелочности воды фосфатированис путем введения в воду раствора гексаметафосфата натрия, тормозящего процессы кристаллизации и осаждения карбоната натрия на стенках аппаратуры обработка воды магнитным полем, воздействие которого вызывает быстрый рост кристаллов карбонатных и других отложений, которые сорбируют на своей поверхности ионы карбонатов кальция и магния, растут и выпадают в виде шлама, легко уносимого потоком. [c.85]

    Образовавшаяся окись рения КеаОу распространена на поверхности АЬОз, а Р1 агломерирована внутри кристаллов. Следовательно, ионы Ке более доступны для катализа, чем ионы Р1. Так как скорость адсорбции водорода прямо зависит от содержаиия Ке, то, вероятно, весь содержащийся в катализаторе Ке участвует в про- цессе активации водорода, так как окислы Ке активны в реакциях гидрогенизации. Предполагают, что неизменность каталитической активиости катализатора риформинга в процессе работы св1Я-зана со способностью окислов Ке катализировать гидрогенизацию соединений, образующих кокс, т. е. активно препятствовать отложению кокса на катализаторе. [c.153]

    Процесс термосенсибилизации можно проводить также в ла-тексах, стабилизованных НПАВ [83, 84], иногда применяя в качестве добавочных термосенсибилизирующих агентов высшие спирты, полипропиленгликоли. Преимуществом метода термосенсибилизации является возможность получения пленок значительно большей толщины, чем при обычном ионном отложении, а также отсутствие в геле электролита. [c.608]

    Ионное отложение можно рассматривать как промежуточный случай между желатинированием и коагуляцией [76 85, с. 14 86]. Соответственно количество эмульгатора, прореагировавшего с астабилизующим ионом при быстрой коагуляции, составляет 26%, при ионном отложении 38%, а при желатинировании 84-95% [86]. [c.609]

    Процесс желатинирования, по крайней мере в начальной ста-дии, некоторые авторы рассматривают как ионное отложение геля на поверхности микрочастиц астабилизующего агента, распределенных в объеме латекса [85, с. 17]. [c.609]

    Если в жесткой воде присутствуют кислые карбонаг-ионы (бикарбонат-ионы НСОч"), то ее кипячение приводит к образованию твердого карбоната кальция (С аС Оз). В результате вода становится мягче. Твердый карбонат кальция, однако, образует накипь внутри домашних чайников и водонагревателей. Такая, похожая на камень накипь (по составу близкая к мрамору или известняку) действует как теплоизолятор. В результате поток тепла к воде уменьшается и для нагрева воды до требуемой температуры понадобится больше тепла. Отложения такого же состава образуются и в водопроводных трубах. Именно поэтому в старых домах может быть значительно затруднен ток воды. [c.86]

    Химический состав воды зависит от первичной солености бассейна осадконакоплеиия и от состава пород, ио которым они циркулируют, а также от тех процессов, которые протекают в водоносных горизонтах на разных этапах геологической истории. Так, процессы выщелачивания при движении воды в известняках приводят к появлению катионов Са2+, в доломитах — к появлению Са + и N. g +. Пласты каменной солн обогащают воды ионами N3+ и С1 . Натрий и хлор содержатся в различных породах, поэтому даже если пластов каменной соли нет, в водах присутствуют эти элементы. Если пласты породы состоят полностью пли частично из гипса, то вода, попадая в такие породы по трещинам или циркулируя на границе с этими отложениями, обогащается ионами 504 и Са +. Нередко в песчаниках в цементе содержится гипс, что также приводит к обогащению вод теми же [c.20]

    Замечено, что в нефтеносных отложениях нередко наблюдаются высокие концентрации аммония (ХН О Аммоний в природных водах накапливается в результате иреобразоваиня белковых соединений, содержащих азот, поэтому он отчасти связан с нефтями, В подземных водах, имеющих в своем составе ионы хлора, [c.53]

    При компьютерной обработке хроматограмм очень полезно проводить их реконструкции по наиболее характерному для гопанов фрагментному иону с т/е 191. На рис. 52 приведена такая реконструкция, выполненная для образца нафтеновой нефти третичных отложений Калифорнии [30]. Ион с т/е 191 настолько характерен для гопанов, что подобные реконструкции проф. Уриссон остроумно назвал гопанограммами [52]. [c.132]

    При поступлении в скважины пласто вой воды, содержащей гидрокарбонатные ионы НСОГ,возможно отложение на поверхности металла пленки углекислых солей по реакции Са(НС0з)2ч= СаС0з+Н20 + С02. Однако в присутствии значительного количества СОг в воде приведенная реакция идет в обратном направлении вследствие нарушения углекислотного равновесия, осадок е выпадает и даже ранее образовавшаяся защитная пленка углекислой соли может раствориться. Основными причинами отложения солей являются смешение жестких и щелочных пластовых вод, а также снижение парциального давления СОг. [c.34]

    Хлористый барий иногда применяется для связывания сульфат-ионов в труднорастворимое соединение сульфат бария. В частности, он был применен для восстановления термостойкости малосиликатной промывочной жидкости при бурении скважины СГ-1 Аралсор при вскрытии сульфаткальциевы.к отложений. Были попытки применения хлористого бария в качестве ингибитора к промывочным жидкостям прп бурении в осложненных (осыпями и обва гами) условиях. [c.66]

    При бурении СКВ. 1 Бахмутьская (трест Харьковнефтегазраз-ведка) с применением высококальциевой промывочной жидкости, пройти глинистые отложения длительное время не удавалось. При забое скважины 3573 м было решено перейти на малосиликатную промывочную жидкость. Осаждение ионов кальция проводили кальцинированной содой. При этом величина pH промывочной жидкости повысилась до 12. Забойная температура превышала 100° С. Для снин ения величины pH был применен гидролизный лигнин производства Запорожского гидролизного завода, который вводили в промывочную жидкость через ФСМ. Следует отметить, что гидролизный лигнин на этом заводе нейтрализуют аммиаком до pH примерно 7. При введении 1,2% (в расчете на сухое вещество) гидролизного лигнина величина pH промывочной [c.152]


Смотреть страницы где упоминается термин Отложения на ионитах: [c.339]    [c.109]    [c.186]    [c.409]    [c.48]    [c.87]    [c.339]    [c.293]    [c.210]    [c.69]    [c.18]    [c.197]   
Ионообменная технология (1959) -- [ c.262 ]

Ионообменная технология (1959) -- [ c.262 ]




ПОИСК





Смотрите так же термины и статьи:

Изготовление изделий способом ионного отложения

Ионная атмосфера Ионное отложение

Ионное отложение

Ионное отложение

Получение пленок методом ионного отложения

Сульфид-ионов определение в отложениях

спектроскопии ионного отложения



© 2025 chem21.info Реклама на сайте