Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Орбиталей отталкивание

    Гибридизация орбиталей Отталкивание электронов  [c.183]

    Иная картина возникает, если ион попадает в октаэдрическое, тетраэдрическое или иное окружение (менее симметричное, чем сферическое). Допустим, положительный ион -элемента находится в октаэдрическом окружении отрицательно заряженных ионов или полярных молекул. В этом случае гг - и с2 /2-электроны испытывают большее электростатическое отталкивание от лигандов, чем йху-, г/г- и хг-электроны (рис. 207). Следовательно, энергия -электронов в этих условиях не одинакова в 2- и а,2 у 2-состоянии энергия выше, чем в 5,-, и ,уг-состоянии. Таким образом, если в свободном или находящемся в сферическом поле ионе пять -орбиталей имеют одинаковую энергию, то в октаэдрическом поле лигандов они разделяются на две группы с разными энергиями — в три и две орбитали (рис. 208). [c.505]


    У Низко- и высокоспиновые комплексы. Теория кристаллического поля достаточно просто и наглядно объясняет магнитные свойства комплексов, их спектры и ряд других свойств. Для понимания этих свойств необходимо знать характер распределения электронов по -орбиталям иона, находящегося в поле лигандов. Последнее зависит от соотношения величины энергии расщепления А и энергии отталкивания электронов друг от друга. [c.507]

    Рассчитано, что энергия отталкивания электронов одной и той же орбитали для иона Со равна 251 кДж/моль, энергия расщепления его З -орбиталей в октаэдрическом поле ионов Р составляет 156 кДж/моль, а в поле молекул НзМ — 265 кДж/моль. [c.508]

    Рассмотрение молекулярных орбиталей и химической связи во втором издании в общем понравилось большинству преподавателей, но показалось им несколько усложненным и трудным для восприятия. Теперь мы разбили этот материал на две части в гл. 12 излагаются основы теории молекулярных орбиталей и ее применения к некоторым двухатомным молекулам, а в гл. 13 рассматриваются многоатомные молекулы и молекулярная спектроскопия. Кроме того, написана новая глава (гл. 11), представляющая собой введение в теорию химической связи в ней используются только представления об электронных парах и отталкивании электронных пар и еще не упоминается о квантовой механике. Рассматриваемая в этой главе теория отталкивания валентных электронных пар (как это ни странно, мало известная в США) дает интуитивно понятный и простой способ качественного объяснения формы молекул. Эти три главы вместе с гл. 14, посвященной химической связи в кристаллах и жидкостях, дают студентам всестороннее представление о принципах химической связи, строения молекул и спектроскопии. [c.10]

    Первая энергия ионизации для В меньше, чем для Ве, потому что самый внешний электрон бора находится на менее стабильной (энергетически более высокой) орбитали. В атоме углерода. С, на двух из трех 2р-орбиталей находится по одному электрону. В согласии с правилом Гунда, в атоме азота. К, три р-электрона расселены по трем 2р-орбиталям, вместо того чтобы два из них оказались спарены на одной орбитали. Четвертый 2р-электрон в атоме кислорода, О, удерживается менее прочно, чем первые три, из-за отталкивания с другим электроном, спаренным с ним на 2р-ор-битали. Поэтому первая энергия ионизации О сравнительно мала. [c.393]

    По мере перехода к молекулам, центральный атом в которых имеет все большие размеры, электроны на валентных орбиталях в среднем располагаются все дальше друг от друга. Поэтому межэлектронные отталкивания оказывают все меньшее влияние на форму молекул. Например, атом серы имеет больший эффективный размер, чем атом кислорода, а атомные спектры свидетельствуют о том, что межэлектронное отталкивание для валентных орбиталей серы значительно меньше, чем для валентных орбиталей кислорода. По-видимому, по этой причине валентный угол Н—S—Н в молекуле сероводорода H S равен 92°, что намного ближе к значению 90% предсказываемому в рамках модели связывания, основанной на перекрывании (Зр + lsl-орбиталей (рис. 13-17). Очевидно, отталкивание двух связывающих электронных пар в H2S значительно меньше отталкивания двух связывающих электронных пар в HjO. [c.564]


Рис. 14-11. Отталкивание электронов на заполненных орбиталях, а-очень большое расстояние между двумя атомами или молекулами частицы ведут себя как нейтральные они не притягиваются и не отталкиваются сила взаимодействия между ними равна нулю о-небольшое расстояние между двумя атомами или молекулами частицы еше недостаточно сближаются, чтобы между ними возникло сильное отталкивание, однако они притягиваются друг к другу Рис. 14-11. <a href="/info/96501">Отталкивание электронов</a> на <a href="/info/92580">заполненных орбиталях</a>, а-<a href="/info/1034817">очень большое</a> <a href="/info/24920">расстояние между</a> двумя атомами или <a href="/info/8579">молекулами частицы</a> ведут себя как нейтральные они не притягиваются и не отталкиваются <a href="/info/328677">сила взаимодействия между</a> ними равна нулю о-<a href="/info/1373070">небольшое расстояние</a> между двумя атомами или <a href="/info/8579">молекулами частицы</a> еше недостаточно сближаются, чтобы между ними возникло сильное отталкивание, однако они притягиваются друг к другу
    Вернемся теперь от теории локализованных молекулярных орбиталей, каковой в сущности является теория валентных связей, к чисто электростатической теории, в рамках которой химическая связь между металлом и лигандами считается ионной. Простая электростатическая теория предсказывает образование октаэдрической координации по той же причине, по которой шесть единичных зарядов, вынужденные двигаться по поверхности сферы, принимают октаэдрическое расположение, продиктованное требованием минимальной энергии. Здесь мы, в сущности, имеем дело с уже известными нам из разд. 11-3 представлениями об отталкивании электронных пар. [c.228]

    История развития этих теорий служит иллюстрацией утверждения, что неверную теорию всегда можно усовершенствовать, но никогда нельзя доказать, что она окончательно правильна. Успешное объяснение теорией валентных связей координационной геометрии и магнитных свойств комплексов не дает гарантии правильности этой теории или хотя бы правильности ее подхода. Каков, например, правильный ответ на вопрос-обусловлено ли расщепление уровней 2д и образованием молекулярных орбиталей (точка зрения теории поля лигандов), электростатическим отталкиванием (теория кристаллического поля) или выбором шести орбиталей для гибридизации (теория валентных связей) А может быть, неверны все три точки зрения, и когда-нибудь мы будем относиться к теории поля лигандов с тем же снисхождением, с каким сейчас относимся к теории валентных связей  [c.246]

    Энергия связи в молекуле р2 необычно мала (например, по сравнению с С12) это принято объяснять межэлектронным отталкиванием между 2р(я)-орбиталями, которое в р2 особенно велико из-за малого размера атома Р. Длина связи в Р2 меньше, чем в В2, потому что заряд ядра больше возрастание заряда ядра неполностью компенсируется дополнительными электронами. [c.522]

    При этом первый представляет собой среднюю энергию электростатического отталкивания электронов, находящихся на орбиталях ф/ и ф/, второй же появляется вследствие учета принципа антисимметрии. [c.79]

    Ковалентность снижает положительный заряд на ионе металла в результате индуктивного эффекта лигандов. При пониженном положительном заряде радиальная протяженность -орбиталей возрастает, при этом электрон-электронные отталкивания ослабевают и энергия состояния Р снижается, В теории кристаллического поля ковалентность не [c.94]

    До сих пор мы не принимали во внимание спин-орбитальное взаимодействие (член А.Ь-8). Для ионов первого ряда переходных металлов его можно учесть, добавив энергию взаимодействия X. Ь 8 к энергиям уровней в качестве возмущения их величины. Такой подход вполне приемлем, если только X. Ь 8 мало по сравнению с электрон-электронными отталкиваниями и влиянием кристаллического поля. Диагональные матричные элементы Ь 8 рассчитываются в базисе из действительных орбиталей и добавляются к энергиям как поправки. Если спин-орбитальное взаимодействие велико, подход, основанный на возмущении, неприемлем. Например, 2 и 2 (знак относится к значениям электрона) имеют одно и то же значение mJ = Ъ 2 и смещиваются под действием Ь-8. [c.140]

    Оо(р2) значительно ниже Оо(С12). Разумное объяснение этого неожиданного факта состоит в том, что в молекуле Рз взаимное отталкивание электронов на л-орбиталях велико, как и у р-электронов исходных атомов фтора. [c.80]

    Элементы больших периодов. Периоды 4-й и 5-й содержат по 18 элементов. У атомов элементов 4-го периода начинает заполняться 1ч-орбиталь слоя N (п =4). Появление злектрона в 45-состоянии ари наличии свободных З -орбиталей обусловливается экранирова-чием (заслонением) ядра плотным и симметричным электронным лоем Зз Зр . В связи с отталкиванием от этого слоя для 19-го электрона атома кальция и 20-го электрона атома кальция оказывается [c.26]

    Если энергия межэлектронного отталкивания оказывается больше энергии расщеЖёния, то пять -орбиталей последовательно за-полняются С11а ала Т10 одному, а Затём "по второму электрону. Это случай с л а б о г о Т[Ъ л я. Т сЖ же энергия расщепления А превышает энергию межэлектронного отталкивания, то сначала полностью заполняются орбитали с меньшей энергией, а затем орбитали с большей энергией. Это случай сильного поля. [c.507]

    В свободном атоме или ионе электроны, находящиеся на любой из орбиталей d-иодуровня, обладают одинаковой энергией. Если этот ион (атом) поместить в центре сферы с равнораспределенным на ее поверхности отрицательным зарядом (гипотетический случай), то на все пять d-электропных облаков будет ийствовать одинаковая сила отталкивания. В результате энергия всех d-электроноз возрастет на одну и ту же величину. [c.205]


    Если же ион (атом) попадает в создаваемое лигандами менее симметричное, чем сферическое, поле, то энергия d-электронов будет возрастать тем значительнее, чем ближе к лиганду расположено соответствующее электронное облако. Например, при расположении лигандов в вершииах октаэдра (октаэдрическая координация) электронные облака d .- и dx -y -орбиталей направлены к лигандам (рис. 5,а) и испытывают более сильное отталкивание, чем электронные облака dxy-, dxz- и ( г-орбиталей, направленные между лигандами (рис. 5,6). Поэтому энергия dz - и dx -y -электронов возрастет в большей степени, чем энергия остальных rf-электронов. [c.205]

    Лиганды, расположенные в начале спектрохимиче-гкого ряда [лиганды сильного поля), вызывают значительное расщеплепие -подуровня. При этом энергия расщепления превышает энергию межэлектрон-ного отталкивания спаренных э [ектронов. Поэтому сначала заполняются е-орбитали — сперва одиночными, а затем спаренными электронами, после чего происходит заполнение у-орбиталей. [c.207]

    Теория кристаллического поля основана на нред- тавлении об электростатической природе взаимодействия менаду 1,ентральным ионом и лигандами. Однако, в отличие от простой тонной теории, здесь учитывается различное пространственное расположение орбиталей (см. рнс. 20 на стр. 84) и связанное с этим )азличное изменение энергии -электронов центрального атома, зызываемое их отталкиванием от электронных облаков лигандов. [c.595]

    Рассмотрим состояние -орбиталей центрального иона. В сво бодном ионе электроны, находящиеся на каждой из пяти -орбн талей, обладают одинаковой энергией (рис. 160, а). Представим себе, что лиганды создают равномерное сферическое электростати ческое поле, в центре которого находится центральный ион. В этом гипотетическом случае энергия -орбиталей за счет отталкиваю щего действия лигандов возрастает на одинаковую величину, т, е все -орбитали останутся энергетически равноценными (рис. 160, б) В действительности, однако, лиганды неодинаково действуют на различные -орбитали если орбиталь расположена близко к ли ганду, энергия занимающего ее электрона возрастает более значи тельио, чем в том случае, когда орбиталь удалена от лиганда Например, прн октаэдрическом расположении лигандов вокруг центрального нона наибольшее отталкивание испытывают элек троны, находящиеся ка орбиталях г= и 1 ,/> направленных к ли гандам (рис. 161, а и б) поэтому их энергия будет более высокой, чем в гипотетическом сферическом поле. Напротив, , г и .г-ор-битали направлены между лигандами (рис. 161, в), так что энергия находящихся здесь электронов будет ниже, чем в сферическом поле. Таким образом, в октаэдрическом поле лигандов происходит расщепление -уровня центрального иона на два энергетических уровня (рис. 160,в) более высокий уровень, соответствующий [c.595]

    При заселении орбиталей с одинаковой энергией (например, пяти 3 /-орбиталей) электроны в первую очередь расселяются поодиночке на вакантных орбиталях, после чего начинается заселение орбиталей вторыми электронами. Это происходит в соответствии с правилом Гунда, согласно которому на орбиталях с одинаковой энергией электроны остаются по возможности неспаренньши. Такая особенность объясняется наличием электрон-электронного отталкивания. Два электрона, один из которых находится на р Орбитали, а другой на р -орбитали, имеют возможность находиться на большем расстоянии друг от друга, чем два электрона, спа--репные на одной р -орбитали (см. рис. 8-22). Следствием правила Гунда является особая устойчивость полузаполненного набора орбиталей (полного набора всех орбиталей с одинаковой энергией, на каждой из которых находится по одному электрону). При заселении набора из пяти -орбиталей шестым электроном он вынужден спариваться с другим электроном, уже находящимся на какой-либо из орбиталей. Взаимное отталкивание отрицательно заряженных электронов приводит к тому, что для удаления (ионизации) этого шестого электрона требуется меньшая энергия, чем для удаления одного из пяти электронов из полузаполненного набора пяти -орбиталей. По аналогичной причине четвертый электрон, заселяющий набор из трех р-орбиталей, удерживается в атоме менее прочно, чем третий электрон. [c.387]

    Таким образом, метод ОВЭП приводит к выводу об экваториальной ориентации неподеленной пары электронов в 8р4, так как она отвечает меньшему числу сильных отталкиваний под углом 90°. По аналогии с этим случаем можно понять, что вторая и третья неподеленные пары (например, в молекулах С1Рз и 1з соответственно) должны также располагаться на экваториальных орбиталях центрального атома, что позволяет объяснить предсказания формы молекул, сделанные на рис. 11-3. [c.496]

    Существуют две основные разновидности вандерваальсовых сил. На коротких межмолекулярных расстояниях наиболее важное значение имеет отталкивание между заполненными орбиталями атомов соседних молекул. Это отталкивание электронных пар схематически иллюстрируется на рис. 14-11. Для описания энергии межмолекулярного отталкивания часто используется следующее аналитическое выражение  [c.611]

    Отрицательные заряды, изображающие лиганды, оказывают наибольшее воздействие на <1 - и --орбитали, так как пучности этих орбиталей направлены прямо на лиганды (рис. 20-10). Электроны на ii-opбитaляx испытывают электростатическое отталкивание от неподеленных пар лигандов. Вследствие этого те электроны, которые находятся на двух указанных -орбиталях, приобретают большую энергию, чем электроны, находящиеся [c.228]

    Возникающая в результате образования молекулярных орбиталей комплекса диаграмма энергетических уровней изображена на рис. 20-14. В ее нижней части находятся уровни шести связывающих орбиталей, заполненные электронными парами. Их можно пр)едставить как шесть электронных пар, поставляемых лигандами-донорами, и больше не обращать на них внимания. Точно так же можно исключить из рассмотрения четыре верхние разрыхляющие орбитали, являющиеся пустыми, за исключением предельных случаев сильного электронного возбуждения, которыми можно пренебречь. Несвязывающий уровень и нижний разрыхляющий уровень соответствуют двум уровням, и вд, к которым приводит расщепление кристаллическим полем (см. рис. 20-13). Мы будем продолжать называть их по-прежнему уровнями 12д и е даже в рамках молекулярно-орбитального подхода. Но важно отметить разницу в объяснении расщепления между этими уровнями. В теории кристаллического поля оно является следствием электростатического отталкивания, а в теории поля лигандов-следствием образования молекулярных орбиталей. Как мы убедились в гл. 12 на примере молекул НР и КР, теория молекулярных орбиталей позволяет охватить все случаи от чисто ионной до чисто ковалентной связи. Поэтому выбор между теорией кристаллического поля и теорией поля лигандов основан лишь на рассмотрении одной из двух предельных моделей связи. В комплексе СоР довольно заметно проявляется ионный характер связи, потому что, как можно видеть из рис. 20-14, орбитали лигандов располагаются по энергии ниже орбиталей металла и ближе к связывающим молекулярным орбиталям. Поэтому связывающие молекулярные орбитали по характеру должны приближаться к орбиталям лигандов, а это должно обусловливать смещение отрицательного заряда в направлении к лигандам. Таким образом, связи в данном случае должны быть частично ионными. [c.235]

    Атом бора имеет три валентных электрона и четыре валентные орбитали. Обычно он использует три орбитали, образуя 5р -гибриды в таких соединениях, как ВРз- Углерод имеет четыре валентных электрона и четыре орбитали. За исключением тех случаев, когда он образует кратные связи, эти орбитали используются для 5р -гибридизации. Атом азота имеет пять валентных электронов и четыре орбитали. Как правило, он образует три связи с другими атомами в структурах с тетраэдрической конфигурацией, а четвертая гибридная 5р -орбиталь у него занята неподеленной электронной парой (разд. 13-3). Углерод и азот способны образовывать двойные и тройные связи в результате я-перекры-вания, обсуждавшегося в разд. 13-4. По сравнению с длиной простой связи длина двойных связей, образуемых этими элементами, сокращается на 13%, а длина тройных связей-на 22%. Прочность кратной связи повыщается благодаря наличию электронов на связывающей молекулярной п-орбитали, возникающей в результате перекрывания атомных я-ор-биталей. Но перекрывание я-типа между орбиталями становится достаточно больщим для возникновения связи только при близком расположении атомов. По этой причине 81 и другие элементы третьего и следующих периодов неспособны образовывать кратные связи. Кремний имеет 10 внутренних электронов по сравнению с 2 в атомах С и N. Отталкивание этих внутренних электронов не позволяет двум атомам 81 сблизиться настолько, насколько это необходимо для достаточного я-перекрывания р-орбиталей и возникновения двойных связей. Несмотря на все попытки химиков синтезировать соединения со связями 81=81 и 81=С, ни одна из них до сих пор не увенчалась успехом. За небольшими исключениями, образование двойных и тройных связей ограничено элементами второго периода, в атомах которых число внутренних электронов не превышает 2. Исключения, к числу которых относятся 8=0, Р=0 и 81=0, объясняются перекрыванием между р- и -орбиталями, этот вопрос будет рассмотрен в разделе, посвященном кремнию. [c.271]

    Он характеризует кулоновское отталкивание между электронными плотностями [ / ( )1 , ( ) т,-—плотность в (] электронов и ], находящихся на орбиталях т и г, где т может быть равно или не равно п. Существуют и другие интегралы, которые мы обозначим как Х, , которые имеют нулевое значение, если спгшь электронов спарены, и отличны о г нуля, если спины параллельны. Интегралы К, имеют следующий вид  [c.25]

    Обычно, когда проводигся исследование ионов переходных металлов, мы имеем дело не с индивидуальными ионами, а ионами, входящими в состав комплексов. Для определения влияния лигандов, входящих в комплексы ионов переходных металлов, на энергии -орбиталей пользуются двумя приближениями кристаллического поля. Электроны иона металла в комплексе отталкиваются друг от друга, отталкиваются они и от электронной плотности основания Льюиса (лиганда). Если отталкивание между электронами металла и электронной плотностью лигандов мало по сравнению с межэлектронным отталкиванием, применяют так называемое приближение слабого поля. Если лиганды — сильные основания Льюиса, отталкивание между электронами металла и электронами лигандов превыщает по величине межэлектронное отталкивание, в этом случае используется приближение сильного поля. [c.71]

    Полезно связать энергии наблюдаемы.х с1 — -переходов с энергетическими уровнями, используемыми при описании октаэдрических комплексов с помощью метода молекулярных орбиталей (МО). На рис. 10.15 показана диаграмма МО для комплекса (л-связывание не учитывается). Разность энергий и составляет ЮОд. По мере увеличения прочности ст-связи металл - лиганд Е понижается, а Е увеличивается на ту же самую величину, в то время как Од возрастает. Если электроны. vJeтaллa образуют п-связи со свободными р- или -орбиталями лиганда, энергия уровня в комплексе снижается, а Од увеличивается. Электрон-электронные отталкивания электронов и несвязывающих электронов металла повышают энергию совокупности и понижают Д. Изложенные выще соображения были использованы при интерпретации спектров ацетилацетонатов некоторых переходных металлов [15, 16]. [c.97]

    В базис, предназначенный для расчета полной матрицы комплекса слабого поля, должны входить волновые функции, учитывающие элек-трон-электронное отталкивание в приближении кристаллического поля. Для комплекса сильного поля хорошим базисом будут действительные -орбитали. Таким образом, при нахождении наилучшего базиса большое значение имеют относительные величины факторов, влияющих на энергию -орбиталей. Приведем приблизительные величины некоторых эффектов. [c.139]

    Эти данные подводят нас к теореме Купманса, согласно которой энергия вертикальной ионизации для удаления электрона с молекулярной орбитали равна собственному значению с обратньЕМ знаком, полученному при расчетах молекулярных орбиталей с помощью метода самосогласованного поля (ССП МО) Хартри — Фока [36] (стабильная орбиталь имеет отрицательное собственное значение). Основное допущение этой теоремы состоит в том, что молекулярные орбитали, соответствующие исходной молекуле, будут теми же, что и для ионизованной молекулы. При наличии электронной релаксации (т.е. при изменении молекулярньгх орбиталей в ионизованной молекуле, обусловленном изменением энергии электронного отталкивания) или при заметном изменении энергий корреляции (член, не включенный в расчет по методу МО он учитывает зависимость координат каждого электрона от координат всех других электронов) теорема Купманса не вьшол-няется. [c.336]

    Теория кристаллического поля. Эта теория рассматривает воздействие лигандов на -орбитали иона-комплексообразователя. Форма и пространственное расположение -орбиталей представлены ранее на рис. 1.7. В свободном атоме или ионе энергии всех -электронов, принадлежащих к одной и той же электронной оболочке, одинаковы — эти электроны занимают один энергетический уровень. Лиганды, присоединяемые к положительному иону-комплексообразователю, могут быть нли отрицательными ионами, или полярными молекулами, которые обращены к комплексообразователю своим отрицательным концом. Между электронными облаками -электронов и отрицательными лигана,ами действуют силы отталкивания, приводящие к увеличению энергий -электронов, Однако воздействие лигандов па различные -орбитали неодинаково. Энергия электронов иа -орбиталях, расположенных близко к лигандам, возрастает больше, а на -орбиталях, удаленных от лнгаилов, меньше в результате под действием лигандов происходит расщепление энергетических уровней ё-орбиталей. [c.122]

    Исключительная химическая активность фтора обусловлена, с одной стороны, большой прочностью образуемых им связей, так, энергия связи (Н—Р) == 566, (51—Р)= 582 кДж/моль, с другой стороны, низкой энергией связи в молекуле Ра [ (Р—Р) = 151 кДж/моль, ср. для СЬ = 238 кДж/моль]. Большая энергия связей Э-—Р является следствием значительной электроотрицательности фтора и малого размера его атома. Низкое значение энергии связи в молекуле Ра, по-видимому, объясняется сильным отталкиванием электронных пар,, находящихся на л-орбиталях, обусловленным малой длиной связи Р—Р. Благодаря малой энергии связи молекулы фтора легко диссоциируют на атомы и энергия активации реакций с элементным фтором обычно невелика, поэтому процессы с участием Ра протекают очень быстро. Известно много прочных фторндных комплексов ([Вр4] , [81Рб] ", [А1Рб] и др.). Большое значение АО/ обусловливает малую реакционную способность координационно насыщенных соединений фтора (5Рб, Ср4, перфторалканы и др.). [c.469]

    На расстоянии оо интеграл О и (оо) = а = Е(Н). На других расстояниях р< О и Еа > а = Е(Н), т. е. при сближении ат омов в состоянии фл энергия системы непрерывно возрастает по сравнению с энергией разделенных атомов. Это значит, что на любом расстоянии между атомами преобладают силы отталкивания, образование устойчивой молекулы невозможно. На рис. 22, б представлены атомные волновые функции Хг и Хг с разными знаками и образованная путем ЛКАО волновая функция фл. В центре межъядерной оси и в плоскости, проходящей через нее перпендикулярно оси, Гд, = гв,, откуда XI = Ха и фл = 0. Здесь функция меняет знак (узловая точка, узловая плоскость). Электронная плотность 1ф в узловой плоскости равна нулю. Это означает, что на МО типа фл электронная плотность в межъядерной пространстве понижена, в результате чего отталкивание ядер преобладает над притяжением к ним электрона и химическая связь не образуется. Поэтому молекулярная орбиталь называется антисвязывающей или разрыхляющей МО. Она также обладает осевой симметрией и относится к а-типу. [c.71]


Смотреть страницы где упоминается термин Орбиталей отталкивание: [c.184]    [c.145]    [c.54]    [c.526]    [c.530]    [c.562]    [c.562]    [c.564]    [c.612]    [c.232]    [c.62]    [c.72]    [c.91]    [c.100]   
Гетероциклические соединения и полимеры на их основе (1970) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Гибридизация орбиталей модель межэлектронного отталкивания

Отталкивание

Теория отталкивания электронных пар валентных орбиталей

Эффект отталкивания орбиталей



© 2025 chem21.info Реклама на сайте