Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементарный электрона

    Метод фотохимического разложения сероводорода. Разработан швейцарскими и итальянскими химиками. При фотохимическом разложении сероводорода в присутствии катализатора — суспензии сульфида кадмия и диоксида рутения — образуются водород и сера. Механизм этой реакции заключается в следующем. В сульфиде кадмия (соединение С полупроводниковыми свойствами) электроны под действием света начинают перемещаться, оставляя положительно заряженные дырки, и восстанавливают водород из водного раствора. Ион гидроксида разлагает молекулу водорода с образованием сульфид-иона, который окисляется до элементарной серы. Этот процесс можно использовать для очистки газов от сероводорода. [c.54]


    Атом представляет собой сложную микросистему находящихся в движении элементарных-частиц. Он состоит из положительно заряженного ядра и отрицательно заряженных электронов. Носителем положительного заряда ядра является п ротон. В ядра атомов всех элементов, за исключением ядра легкого изотопа водорода, входят протоны и н е й тр о к ы. Основные характеристики электрона, протона и нейтрона приведены в табл. 1. [c.8]

    Сборник содержит статьи, в которых дается историко-научный анализ и освещается современное состояние метода прогнозирования в учении о периодичности. Структура сборника соответствует концепции трех уровней представлений о периодичности — элементарного, электронного и нуклон-ного. Книга посвящена столетию со дня открытия галлия, которое узаконило правомерность самого метода прогнозирования. [c.360]

    Книга начинается с изложения отправных положений физики и химии дефектов твердого тела. Детальное рассмотрение роли дефектов в химических превращениях твердых тел характерно для последующих глав, посвященных конкретным типам- процессов. Отдельная (первая) глава посвящена дислокации в кристаллах. Значение дислокаций для физики твердого тела (теория упругости, пластичности) и роста кристаллов общеизвестно в химии им начали уделять внимание только в 50-х годах, и данная глава, написанная одним из создателей современной физической теории дислокаций Ф. Фрэнком, является попыткой перебросить в этом месте еще один мостик между физикой и химией твердого состояния. К первым двум физическим главам, естественно, примыкает глава о действии света на твердые тела, включающая также раздел о действии на них рентгеновских лучей и электронной бомбардировки, поскольку в фотохимии и радиационной химии твердого тела особенно непосредственно и отчетливо проявляются элементарные электронные и экситонные механизмы реакций. [c.5]

    Элементарные электронные центры окраски [c.21]

    В космических лучах следует отличать их первичные компоненты и вторичные излучения, являющиеся продуктами элементарных электронных и ядерных процессов, происходящих на больших высотах. Среди всех этих излучений имеются лучи как корпускулярного характера — потоки быстрых протонов, мезотронов и т. д., так и волнового — крайне жёсткие у-лучи. При соударении наиболее богатых энергией компонент космического излучения с атомами некоторых элементов происходят ядерные реакции. При этом имеет место появление в пучке космических лучей новых элементарных частиц, а также происходят так называемые ливни внезапное одновременное появление большого числа частиц, производящих усиленную ионизацию газа. Способы исследования космических лучей применение камеры Вильсона и применение счётчиков Гейгера. [c.241]


    Электронная теория катализа и другие теории катализа, которые носят в основном феноменологический характер, как правило, не являются альтернативами и не вступают в конкуренцию друг с другом. Их интересуют в катализе различные стороны дела, и они отличаются друг от друга, таким образом, прежде всего самим подходом к задаче. Электронную теорию интересует элементарный (электронный) механизм явления, и к вопросам катализа она подходит именно с этой точки зрения. [c.14]

    Исходя из того, что задачами электронной теории катализа являются 1) вскрытие элементарного электронного механизма реакций и 2) определение связи между электронными и каталитическими свойствами полупроводника, Ф. Ф. Волькенштейн основывает свои обобщения на квантовомеханическом анализе взаимодействия молекулы реагента с кристаллической решеткой твердого тела. Такой анализ приводит к ряду результатов. [c.124]

    По природе связей между атомами твердые тела делят тоже на две группы ионные, к которым относятся полупроводники и изоляторы, и ковалентные, включающие металлы. К ионным твердым телам относят вещества с большой долей ионной связи—типа галогенидов щелочных металлов, а также некоторые тела, у которых ионность невелика и преобладают ковалентные связи. Общим для них является изменение электрических свойств — от свойств, типичных для изоляторов, до свойств, проявляющихся у полупроводников. Такие вещества связывают адсорбат посредством электронной пары либо за счет проявления полярности. К ковалентным твердым телам помимо металлов относят элементарные полупроводники и отдельные полупроводниковые соединения. Объединяет их способность связывать адсорбат за счет свободных связей. [c.180]

    В докладе на IV Менделеевском съезде (сентябрь 1925 г.) И. И. Черняев изложил объяснение трансвлияния, основанное на элементарных электронных представлениях [67]. По мнению И. И. Черняева, если химическая связь есть путь движения электронов от одного атома к другому , то в химических реакциях во внутренней сфере преимущественную роль играет инерция электронов. При движении электронов и благодаря инерции происходит явление пролета электронов через атом, т. е. получается перескок химического действия через центральный атом. Избыточное электронное облако, возникающее в результате этого на противоположной стороне атома, и вызывает лабилизацию транс-лиганда. Кислотные лиганды, по мнению Черняева, должны иметь больше возможностей для переброски своих электронов через атом благодаря своему заряду, чем нейтральные лиганды. [c.128]

    К этой группе восстановителей относятся металлы и некоторые другие элементарные вещества, как, например, водород, углерод и др., атомы которых способны терять электроны и переходить в окисленное состояние. Металлы образуют при этом соответствующие соли в зависимости от кислоты, участвующей в реакции. Такие металлы, как цинк, алюминий и некоторые другие, могут восстанавливать и в щелочной среде, поскольку эти металлы растворимы в щелочах с образованием гидроксоцинкатов, гидроксоалюминатов и т. д. Являясь сильными восстановителями, при реакции, например, с некоторыми растворами азотной или серной кислоты, они способны восстановить центральные ионы этих кислот до низщих степеней окисления, т. е. до или по схемам  [c.151]

    Рассмотрим вначале гальвани-потенциал 1,2 между двумя металлами. Соотношение, существующее между вольта- и гальва-ни-потенциалами, можно найти, используя правило, по которому сумма всех работ переноса элементарного заряда по замкнутому контуру равна нулю. Следовательно, должна быть равна нулю и суммарная работа переноса электрона через два контактирующих металла, находящихся в вакууме, по пути, указанному на рис. 10.2, т. е. [c.214]

    Невозможность объяснить все кинетические особенности электрохимического выделения металлов с какой-либо одной общей точки зрения заставляет искать новые пути истолкования этих процессов и прибегать к предположениям частного характера. Так, например, существует мнение, что перенапряжение при выделении металлов связано с числом электронов, участвующих в элементарном акте разряда (Гейровский). При этом предполагают, что одноэлектронные реакции протекают практически без торможения. В тех случаях, когда только один электрон участвует в акте разряда (или когда процесс можно разбить на ряд последовательных одноэлектронных стадий), перенапряжение должно быть низким. Если в разряде ионов металла участвуют одновременно два электрона, то следует ожидать появления высокого металлического перенапряжения. Согласно этим представлениям низкое перенапряжение, наблюдаемое при выделении таллия и серебра, связано с тем, что реакция восстановления требует участия одного электрона  [c.472]


    Материя как объективная реальность существует в двух формах вещество и поле. Обе формы находятся в тесной связи, проявляя в своих взаимопревращениях те глубокие внутренние противоречия, которые являются обязательным атрибутом всякого объективного существования. Веществом называют ту форму существования материи, в которой она проявляет себя прежде всего в виде частиц, имеющих собственную массу (масса покоя). Это материя на разных стадиях ее организации так называемые элементарные частицы (электроны, протоны, нейтроны), атомные ядра, атомы, молекулы, агрегаты молекул (кристаллы, жидкости, газы), минералы, горные породы, растительные ткани и т. д. Поле (гравитационное, электромагнитное, внутриядерных сил) — это форма существования материи, которая характеризуется и проявляется прежде всего энергией, а не массой, хотя и обладает последней. [c.5]

    Для протекания элементарного акта реакции необходимо, чтобы орбитали взаимодействующих частиц перекрывались и создавались условия для перехода электронов с занятых орбиталей на свободную, т. е. создавались условия для перераспределения электронной плотности — разрыва старых связей и образования новых. Рассмотрим механизм реакции между Hj [(ст ) (оГ ) ] и [...( 1лГ) ( Г Т]-Допустим, молекулы Н и сталкиваются, как показано на рис. 116, а, т. е. сочетание орбиталей происходит на оси z. Это отвечает следующим комбинациям орбиталей  [c.199]

    Для ядер, у которых число нейтронов меньше числа протонов, характерен позитронный распад, т. е. распад с выделением позитрона (Р "-частицы). Позитрон — элементарная частица с элементарным положительным зарядом и массой электрона. р-Распад является следствием превраш,ения одного протона в нейтрон  [c.658]

    Качество моторных и трансмиссионных масел в процессе их производства и применения оценивают самыми разнообразными методами — от элементарных, сводящихся к визуально1му контролю за внешним видом и состоянием пробы масла, до сложнейших, в которых те или иные характеристики масла определяют на аппаратуре, оборудованной новейшими электронными, радиотехническими и другими аналогичными приборами. Все методы анализа и контроля смазочных масел можно для удобства условно разделить на три группы  [c.115]

    Под общим понятием механизма реакции в настоящее время подразумевают процессы столкновения реагирующих частиц, перераспределения электронной плотности в них и другие элементарные стадии с учетом в каждом отдельном акте возможно более точной стерео-химической картины перехода от реагентов к продуктам [c.9]

    Элементарные процессы, сопровождающиеся электронными переходами, являются неадиабатными. Электронный переход соответствует переходу системы, при достижении вершины барьера, с одной потенциальной поверхности на другую. При неадиабатных процессах достижение вершины потенциального барьера еще не говорит о безусловном переходе к конечным продуктам, и существует конечная вероятность перехода системы с нижней потенциальной поверхности на верхнюю. Таким образом, для неадиабатных процессов трансмиссионный коэффициент X заведомо меньше единицы. Как правило, процесс протекает неадиабатно, если реакция связана с изменением суммарного электронного спина или соответствует какому-ни будь другому запрещенному переходу. Трансмиссионный коэффициент для неадиабатных процессов чаще всего оказывается порядка 10 . Приближенные расчеты показывают, что неа диа батные реакции встречаются довольно редко. [c.146]

    Оказалось также, что уравнение де Бройля справедливо не только для электронов и фотонов, но и для любых других микрочастиц. Так, для определения структуры веществ используется явление дифракции нейтронов (об этих элементарных частицах см, 35), [c.70]

    Суммарный заряд ионов, находящихся в левой части этой схемы, равен восьми элементарным положительным зарядам, а в правой ее части имеются лишь незаряженные частицы. Поскольку суммарный заряд в ходе процесса не изменяется, то, следовательно, в процессе восстановления принимают участие также восемь электронов  [c.267]

    Следующее у )авнение предположительно описывает суммарный процесс, происходящий на Солнце. Излучаемой частицей является позитрон — элементарная частица с массой электрона, но несущая положительный заряд. [c.343]

    Экспериментальные данные часто дают более сложные зависимости, чем это вытекает из элементарных электронных представлений, изложенных выше. Далее будут детально рассмотрены некоторые причины этого. Не все расхояодения в экспериментальных данных пока удается объяснить. Это в значительной степени снижает прогнозирующую способность электронной теории в отношении закономерностей подбора катализаторов. [c.12]

    В целом можно констатировать, что F, Л4-метод Дьюара и Грисдейла является большим успехом количественной электронной теории органической химии, а достигаемая с его помощью раздельная оценка элементарных электронных эффектов заместителей согласуется с таковой в методе Тафта— Льюиса. [c.223]

    Однако эти методы, основанные на подсчёте вероятности нахождения электрона в какой-либо точке пространства или в каком-либо энергетическом состоянии, или вероятности какого-либо элементарного электронного процесса, в большинстве случаев не приводят к общим аналитическим соотношениям. Результаты получаются в виде кривых для отдельных частных случаев. В общем и целом соответствующие соотношения установлены экспериментально. Поэтому, как иравп,ло, эти расчёты, изложение кото-рых заняло бы много места, приведены нами не будут ). [c.13]

    Теория Таунсенда была существенно дополнена в 1931— 1932 годах Роговским путём учёта искажения электрическою поля в разряде пространственными зарядами. Это дало возмоя -ность распространить теорию также и на самостоятельный тлеющий разряд. Что касается элементарных электронных и ионных процессов, играющих большую роль в современной электронике, то успешное их исследование и объяснение стало возможным только после открытия электрона в 1897 году и создания теории атома Бора в 1913 году. Из явлений на поверхности катода термоэлектронная эмиссия была обнарулгена в начало 80-х годов прошлого столетия Эдисоном, но не была им пи истолкована, ни применена. Только спустя полтора десятка лет эффект Эдисона был применён для создания первого электровакуумного прибора двухэлектродной катодной лампы , выпрямляющей переменный [c.16]

    Корреляционная обработка данных по сдвигам /. акс Для соединений с бициклическим ароматическим ядром, проведенная нами в работе [5], показала наличие линейной зависимости между величиной Vмaк и резонансными -константами. Наряду с такой обработкой определенный интерес представляет задача выяснения изменений элементарных электронных эффектов — зх-индукционного и эффекта я-электронной делокализации (мезомерного), которая может быть решена на основе квантово-химической теории возмущения, использующей в качестве нулевого приближения волновую функцию родоначального углеводорода. В частности, теория устанавливает существование в некоторых случаях линейной зависимости между параметрами и значениями кулоновского интеграла а [6]. [c.82]

    Строение атомных ядер. Изотопы. Согласно современным представлениям, атомные ядра состоят из протонов и нейтронов. Протон (от греч. нротос — первый)—элементарная частица, обладающая массой 1,00728 а. е. м. и положительным зарядом, равным по абсолютной величине заряду электрона. Нейтрон также представляет собой элементарную частицу, но не обладающую электрическим зарядом масса нейтрона составляет 1,00867 а. е. м. Протон принято обозначать символом р, нен-трон — н. [c.103]

    Вопрос о природе элементарных электронных эффектов мы попытались рассмотреть с точки зрения квантовой механики на примере фторзамещенных карбанионов. В тех случаях, где не сказывается существенно влияние / -эффекта, можно качественно оцепить направление смещения полос под действием резонансного эффекта заместителей. С этой целью методом молекулярных орбиталей Хюккеля (МОХ) были рассчитаны изосопряженные модели гипотетических дианионов, изо-я-электронных фторзамещенным карбанионам с двумя экзоциклическими х/ -гнбрпдизованными атомами углерода. [c.83]

    С технической точки зрения различие между машинами третьего и четвертого поколений состоит в большей степени интеграции последних и использовании в них больших интегральных схем. Как уже упоминалось, под БИС понимается интегральная схема, содержащая в одном кристалле кремния более 100 или 1000 элементарных электронных схем, таких, как логические элементы или триггеры. Поскольку размеры кристалла БИС невелики (<1 см ), легко представ1ить себе, какая гигантская дистанция отделяет электронную технологию первых ЭВМ, когда объем одной элементарной электронной схемы составлял приблизительно 1 дм , от технологии машин четвертого поколения. [c.138]

    Здесь АО Л , — энергия образования хлорида натрия из элементарных натрия и хлора, взятых в их стандартных состояниях (твердый кристаллический натрий и газообразный моле кулярный хлор), равная 384 кДж.моль- ЛОсуб = 78 кДж-моль — энергия сублимации натрия АО оп=496 кДж-моль —энергия его ионизации А0дие=203 кДж-моль — энергия диссоциации молекулярного хлора Л(5ср=387 кДж-моль —эне )гия, характеризующая сродство электрона к газообразному атомарному хлору. Если цикл проведен обратимо и изотермически, то полное изменение энергии равно нулю, что приводит к уравнению, позволяющему найти энергию решетки  [c.45]

    Урлвнопия, описывающие э.пектрохимическое перенапряжепне, былп получены в предположении, что в элементарном электрохимическом акте принимают участие электроны металла . Модельную реакцию [c.375]

    Современное учение о материи отражает ее дискретность, поскольку любое тело и любое поле составлены из элементарных тел и элементарных полей — так называемых микрочастиц и микрополей. Все многообразие макрообъектов (веществ и полей) возникает из м)югообразия возможных сочетаний ограниченного числа (нескольких десятков) качественно различных микрообъектов, например электронов, позитронов, протонов, нейтронов и т. п. [c.5]

    Атом водорода по сравнению с атомами других элементов наиболее простой по структуре Is . Но это, конечно, не означает, что его химия наиболее проста. Наоборот, она во многом отличается от химии других элементов. Основная особенность атома водорода заключается в том, что в отличие от всех других элементов (кроме гелия) его валентный э1ектрон находится непосредственно в сфере действия атомного ядра — у него нет промежуточного электронного слоя. Положительный ион вадорода Н+ представляет собой элементарную частицу — протон. [c.272]

    Концентрация радикалов в реакционной системе обычно невелика и вероятность их столкновения между собой ничтожно мала. При термолизе более значительно преобладают взаимодействия между радикалом и молекулами исходного сырья. Поскольку радикал имеет свободный неспаренный электрон, то его реакция с молекулами, все электроны которых спарены, должна в силу принципа неуничтожимости свободной валентности привести к обра — зованию нового вторичного радикала. Если последний не является малоактивным, то он, в свою очередь вступит в реакцию с новой молекулой сырья и т.д. Так как число радикалов, могущих образоваться при термолизе, невелико, на некоторой стадии образуется радикал, принимавший участие в одной из предыдущих стадий, и возникает регулярное чередование двух или более последовательно параллельных элементарных реакций с образованием конечных продуктов. Этот процесс продолжится до тех пор, пока радикал не "гогибнет" в результате реакций рекомбинации или диспропорци-онирования. Реакции такого типа называются цепными. [c.26]

    Имеются довольно интересные материалы по элементарному механизму переноса электронов. Голубые растворы щелочных металлов в жидком NHз дают классический пример, несомненно указывающий на возыо кность существования сольватированных электронов в растворах. [c.504]

    Для химической формы движения, т. е. для химического процесса, характерно изменение числа и расположения атомов в молекуле реагирующих веществ. Среди многих физических форм движения (электромагнитное поле, движение и превращения элементарных частиц, физика атомных ядер и др.) особенно тесную связь с химическими процессами имеет внутримолекулярная форма движения (колебания в молекуле, ее электронное возбуждение и ионизация). Простейший химический процесс—элементарный акт термической диссоциации молекулы имеет место при нарастании интенсивности (амплитуды и энергии) колебаний в молекуле, особенно колебаний ядер вдоль валентной связи между нимн. Достижение известно критической величины энергии колебаний по направлению определенной связи в молекуле приводит к разрыву этой связи и диссоциации молекулы на две части. [c.17]

    Во-вторых, предполагают, что элементарный акт реакции протекает адиабатно. Этот термин в данном случае имеет только формальное сходство с понятием адиабатности в термодинамике и означает, что движение ядер атомов происходит гораздо медленнее, чем движение электронов, поэтому при каждой конфигурации ядер электроны успевают перестроиться, а движение их — принять такой же характер, как если бы ядра пребывали бесконечно долго в одном положении. Таким образом, адиабатный характер движения ядер приводит к тому, что ядра движутся независимо от движения электронов, и потенциальная энергия при движении ядер изменяется непрерывно, так как это движение не сопровождается электронными переходами. [c.144]

    Источником энергии в разряде является электрическое поле, сообщающее ускорение в первую очередь свободным электронам, которые передают свою энергию молекулам газа посредством упругих и неупругих ударов. В результате неупругих ударов происходит возбуждение и ионизация молекул, а также диссоциация их на свободные ради1 алы или атомы. Принципиально любая нз этих частиц, т. е. возбужденная молекула, ион и свободный радикал, могут являться химически активной частицей, участвующей в первичном элементарном акте. За первичным актом могут последовать, в зависимости от условий, различные вторичные реакции, причем последние могут развиваться не только в самой плазме разряда, но и на стенках разрядной трубки. Таким образом, весьма сложная задача изучения механизма реакций в разряде сводится, во-первых, к выяснению природы первично активной химической частицы и характера первичного элементарного акта и, во-вторых, к изучению возможных вторичных реакций. Следует иметь в виду, что плазма разряда может быть изотермической и неизотермической. В изотермической плазме температуры электронного и [c.250]

    Таков заряд, несомый одним грамм-эквивалентом ионов любого вида. Умножив это число на 2 (число элементарных зарядов нона), получим количество электричества, которое несет 1 г-ион. Разделив число Фарадея на число Авогадро, получим заряд одного одновалентного иона, равный заряду электрона  [c.387]

    Элекгрои — элементарная частица, обладаюн.1ая наименьшим существующим в природе отрицательным электрическим. зарядом (1,602- И)- Кл). Масса электрона равна 9,1095- 1Q-2 г, т. е. почти в 2000 раз меньше массы атома водорода. Было установлено, что электроны могут быть выделены из любого элемента так, они служат переносчиками тока в металлах, обнаруживаются в пламени, испускаются многими веществами ири нагревании, освещении или рентгеновском облучении. Отсюда следует, что электроны содержатся в атомах всех элементов. Ио электроны заряжены отрицательно, а атомы не обладают электрическим зарядом, они электро-нейтральны. Следовательно, в атомах, кроме электронов, должны содержаться какие-то другие, полол<ительно заряженные частицы. i Иначе говоря, атомы представляют собой сложные образобания, построенные из более мелких структурных единиц.  [c.57]

    Окислителями могут быть элементарные вещества, нейтральные атомы которых способны путем присоединения электронов переходить в отрицательно заряженные ионы с электронной структурой ближайшего благородного ггза. [c.147]


Смотреть страницы где упоминается термин Элементарный электрона: [c.5]    [c.371]    [c.374]    [c.374]    [c.222]    [c.137]    [c.405]    [c.288]   
Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.10 , c.235 ]




ПОИСК





Смотрите так же термины и статьи:

Молин Моделирование элементарных реакций переноса электрона в раствоКрылов Элементарные акты катализа и их константы скорости

Охлобыстин. Перенос электрона как элементарный акт гетеролитических реакций

Элементарная теория основного состояния атомов с двумя электронами

Элементарные электронное возбуждение

Элементарный акт переноса электрона



© 2024 chem21.info Реклама на сайте