Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементарный акт переноса электрона

    Рассмотрим вначале гальвани-потенциал 1,2 между двумя металлами. Соотношение, существующее между вольта- и гальва-ни-потенциалами, можно найти, используя правило, по которому сумма всех работ переноса элементарного заряда по замкнутому контуру равна нулю. Следовательно, должна быть равна нулю и суммарная работа переноса электрона через два контактирующих металла, находящихся в вакууме, по пути, указанному на рис. 10.2, т. е. [c.214]


    Процесс катализа состоит из нескольких последовательно протекающих элементарных актов диффузия молекул азота, кислорода и оксида серы (IV) к катализатору (I), хемосорбции молекул реагентов на поверхности катализатора (II), химического взаимодействия кислорода и оксида серы (IV) на поверхности катализатора с переносом электронов от молекул оксида серы к молекулам кислорода и образованием неустойчивых комплексов (III), десорбции образовавшихся молекул оксида серы (VI) (IV) и диффузии их из пор и с поверхности катализатора в газовую фазу. [c.165]

    Таким образом, реакция является сложной, чем, по-видимому, и объясняется аномально высокий предэкспоненциальный множитель, крайне мало вероятный для истинно элементарного процесса. Перенос электрона между ионом и молекулой может сопровождаться вторичными превращениями. Например, при реакции Ре + с перекисью водорода и персульфат-ионом перенос электрона от Ре- приводит к разрыву связи О—О (см. табл. 11). [c.104]

    Все сказанное выше о влиянии pH раствора на величину потенциала полуволны, а следовательно, и на скорость реакции при заданном потенциале относилось к процессам с обратимой стадией присоединения электронов. Если электродный процесс необратим, то его скорость зависит от pH раствора только в тех случаях, когда перенос протона предшествует переносу электрона или происходит одновременно с ним в едином элементарном акте. Протонирование продуктов реакции на скорости электродного процесса не сказывается. Согласно теории потенциал полуволны необратимого процесса с предшествующим протонированием определяется уравнением  [c.232]

    Вероятность перехода электрона различна для внешнесферных и внутрисферных реакций, так как в последнем случае необходимо учитывать изменение колебательных степеней свободы внутри иона. Так, в процессе перехода ре(Н20)б —>-Ре(Н20)б укорачивается связь Fe—О. Если частоты колебаний со для рассматриваемой степени свободы велики (ЙШ ЙТ) , то в элементарном акте реакции происходит перенос электрона и одновременное изменение длины соответствующей связи. Если же Йш-САГ, то изменение длины связи предшествует стадии переноса электрона. [c.96]

    В подавляющем большинстве случаев элементарные реакции включают разрыв одних и образование других химических связей. Исключение составляют лишь реакции, связанные с переносом электронов от одной частицы к другой, т. е. реакции окисления — восстановления. Наиболее типичны такие реакции для ионов переходных металлов и их комплексов, например  [c.360]


    Если рассматривать возможность прогноза, начиная с уровня элементарных превращений металлокомплекса, то следует заметить, что реализация такого подхода в настоящее время может позволить определить только класс металлокомплексов, способных, в принципе, вступать в искомую стехиометрическую реакцию. К сожалению, мы пока имеем очень скудную информацию об энергетике элементарных превращений (исключение, пожалуй, составляют реакции замещения лигандов и внешнесферного переноса электрона, для которых разработаны также и хорошие теории). Такое состояние дел, а также недостаточное количество данных об энергиях связей переходный металл — водород и влиянии на эти величины гетероатомов, принадлежащих лигандам, не позволяет оценить, например, значения констант равновесий таких элементарных превращений, как внедрение, окислительное присоединение, восстановительное элиминирование, что в конечном счете не позволяет выбрать металлокомплекс, наиболее склонный к заданной стехиометрической реакции. [c.253]

    Разрыв и образование новых связей происходят в одном элементарном акте при синхронном переносе электронов. Структура продукта присоединения подтверждается спектрами ЯМР. [c.285]

    Реакции переноса электрона между ионами, строго говоря, могут рассматриваться как элементарные, только если они происходят при прямом контакте между комплексными ионами без перестройки их координационных сфер. Такой перенос электрона назы- [c.151]

    В основе реакций, происходящих с возбужденными молекулами, лежат различные типы элементарного химического акта диссоциация, перенос электрона и протона. Рассматривая процесс фотодиссоциации, следует различать три случая. [c.227]

    Сущность процесса (6.1) заключается в переносе электронов с одной формы пары к другой. Для превращения одного элементарного объекта Ох (или Неё) необходимо перенести 2 электронов. В случае 6,022045 10 элементарных объектов, т. е. для одного моля этих объектов, необходимо перенести гР кулонов электричества. Буквой Р здесь обозначен молярный заряд электронов, т. е. суммарный заряд одного моля электронов (постоянная Фарадея, 96 485 Кл/моль). [c.89]

    Элементарный акт переноса электрона с точки зрения электронных спинов является неадиабатическим процессом. Это означает, что акт переноса электрона происходит без изменения состояния спинов. [c.107]

    Вероятно, реакции предшествует образование донорно-акцепторного комплекса, а элементарный акт представляет собой перенос электрона с л-связи на О—О-группу с последующим ее гомолизом  [c.387]

    Блюменфельд (1972) выдвинул гипотезу релаксационных конформационных переходов в митохондриальных мембранах. Допустим, что элементарный акт состоит в присоединении электрона к активному центру (скажем, к группе гема цитохрома). Нейтральной форме макромолекулы соответствует равновесная конформация I, заряженной (восстановленной)—другая конформация — П. Перенос электрона происходит много быстрее конформационного изменения. Следовательно, при протекании элементарного акта образуется неравновесное конформационное состояние — электрон перешел, но конформация не успела измениться. Затем происходит медленная релаксация к состоянию П. Весь переход можно представить схемой (минус обозначает электрон)  [c.439]

    Элементарные процессы реакции. Химические реакции можно классифицировать с различных точек зрения, но самое важное в исследовании химической реакции — это изучение природы элементарного процесса, т. е. механизма разрыва и образования связи или переноса электрона. Рассматриваемые в этой главе многоатомные молекулы и ионы участвуют в разнообразных реакциях, и сопоставление с указанной выше точки зрения характерных примеров таких реакций поможет глубже понять связь свойств элемента с его положением в периодической таблице. [c.168]

    Механизмы окислительно-восстановительных реакций. Окислительно-восстановительные процессы на электродах являются гетерогенными реакциями. Реакция восстановления на катоде протекает через ряд элементарных процессов перенос ионов, находящихся в растворе, в прикатодное пространство, адсорбция их на поверхности электродов, перенос электронов, реакция замещения, следующая за переносом электронов, диффузия из приэлектродного пространства и т. д. Скорость окисления — восстановления определяется скоростями этих процессов, и поэтому выяснение механизмов этих реакций не всегда оказывается простым делом. [c.252]

    Исследования превращений органических соединений, их реакций являются одной из важнейших составных частей органической химии. Химические реакции по своему существу являются процессами, в которых происходит перераспределение электронной плотности в реагирующей системе. В результате этого некоторые химические связи исчезают (разрываются) и образуются новые. Часто это связано с переносом электрона от одного атома на другой, от одной молекулы на другую. Процесс, в котором происходит исчезновение одних и появление других химических связей, называется элементарным актом реакции. Иногда элементарный акт реакции связан с переносом электрона от одного компонента на другой. [c.63]


    Элементарная теория диффузного двойного слоя позволяет рассчитать только средние значения ф потенциалов. Для нахождения скорости реакции в выражение для тока [уравнение (79)] следовало бы подставлять не эти средние значения 1-потенциалов, а их локальные значения в точках, соответствующих максимальному приближению аниона к катиону в двойном слое эти значения, однако, до сих пор определить не удалось. Их величины могут заметно отличаться от средних значений [см. (63)]. Зависимость скорости электровосстановления от радиуса катиона, отрицательный температурный коэффициент тока в минимуме и торможение реакции восстановления некоторых анионов при добавлении в раствор двухвалентных невосстанавливающихся анионов [101] показывают, что электровосстановление анионов происходит в непосредственной близости от одного из катионов в двойном слое. Иначе говоря, восстанавливающиеся анионы связаны с поверхностью электрода катионными мостиками [112]. В отличие от концепции ионных пар Гейровского [123, 124], который считал их находящимися в растворе, здесь предполагается образование ионных пар в двойном электрическом слое. Следовательно, определяющей стадией при электровосстановлении анионов может быть перенос электронов на анионы, связанные с поверхностью катионными мостиками, а в некоторых случаях и самообразование ионных пар внутри двойного электрического слоя, облегчающее проникновение анионов через противодействующее электрическое поле двойного слоя. [c.223]

    На основании исследований хемосорбированного молекулярного и атомарного кислорода на поверхности окислов металлов следует, что ион 0 более реакционноспособен, чем ион ОГ, а окислительная способность этих ионов зависит от природы активной поверхности катализатора. Хемосорбцию кислорода нельзя считать элементарным актом она представляет собой сложный процесс, в котором имеются стадии переноса электрона из твердого тела на молекулу Ог, диссоциации молекулы Ог на атомы, и, наконец, перестройки донорного центра адсорбции в решетке катализатора под влиянием акта адсорбции. Кислород влияет на адсорбцию другого компонента — углеводорода, изменяя центр адсорбции и его заряд и тем инициируя хемосорбцию углеводорода. [c.42]

    На кинетику термоокислительного старения битумов заметно влияет ультрафиолетовая часть солнечного спектра. Поглощённые кванты света осуществляют элементарный акт переноса электрона и являются своеобразными генераторами свободных радикалов. Значение энергии, соответствующее квантам света ультрафиолетовых волн, отнесённое к одному молю, находится соответственно в пределах 300...403 КДж, то есть становится соизмеримым с прочностью С - С связей. [c.120]

    Что касается элементарного акта фотохимической реакции восстановления железа(1П) до железа(П), то он заключается во внутрикомплексном переносе электрона от лиганда к иону железа(1П), в результате чего образуется железо(П) и свободные радикалы [231, 395]. Механизм фотохимического восстановления железа(1П) до железа(И) в присутствии щавелевой кислоты рассмотрен в гл. V. Фотохимическая активность железа(1П) в присутствии различных органических соединений использована для разработки титриметрических, фотометрических и кинетических методов его определения. [c.46]

    В реакциях изотопного обмена на элементарной стадии переноса электрона [последовательные реакции (I)—-(III)] реагенты и продукты химически идентичны, хотя они могут быть различимы по некоторым физическим свойствам, например радиоактивности. В таких реакциях А/- —О, А6 = 0, е = е2 el==e . Если учесть, что в этом случае r=2ai = 2a2 = 2o и е е2 — е е2 — 0, то в соответствии с уравнением (4.76) т = — 7г- При этом уравнение (4.77) дает [c.109]

    Основные научные исследования посвящены кинетике и механизму быстрых химических реакций Создал уникальные установки больщой мощности для импульсного фотолиза. Получил кинетические характеристики элементарных реакций переноса электронов в жидких растворах с участием сложных ароматических молекул. Изучил кинетику триплетного состояния хлорофилла б. Исследовал реакционную способность большого количества короткоживущих ароматических анион-радикалов Разработал новые методы изучения физико-химических свойств полимеров и растворов полимеров. [c.240]

    Новое направление в кинетике химических реакций — динамика элементарных процессов — представлено обзором, посвященным расчетам сечений элементарных реакций. Фундаментальное явление — перенос электрона — рассмотрено на примере закономерностей и особенностей реакции электрохимического выделения водорода, Освещены также вопросы ионной ассоциации и теоретические аспекты радиационной стойкости веществ. [c.2]

    Перенос электрона относится к наиболее фундаментальным явлениям физической химии, лежащим в основе большинства окислительно-восстановительных и кислотно-основных реакций, исследуемых в самых различных областях химии и биологии. Их широкое исследование стимулировало развитие как теоретических представлений, так и поиск достаточно простых модельных систем для проверки предсказаний теории. Среди изучаемых моделей особое место принадлежит электродным реакциям, важной особенностью которых по сравнению с гомогенными реакциями переноса электронов в конденсированной фазе является линейная связь энтальпии процесса с потенциалом электрода, позволяющая плавно ее изменять при сохранении остальных условий протекания реакции. Благодаря этой дополнительной степени свободы можно определить не только температурную зависимость константы скорости реакции (например, энергию активации в случае аррениусовской зависимости), но и установить ее связь с энергетикой элементарного акта. Именно по этой причине результаты изучения простейших электродных реакций обеспечивают более всестороннюю проверку выводов теории переноса электронов в полярных средах. [c.202]

    Имеются довольно интересные материалы по элементарному механизму переноса электронов. Голубые растворы щелочных металлов в жидком NHз дают классический пример, несомненно указывающий на возыо кность существования сольватированных электронов в растворах. [c.504]

    В третьем издании курса рассмотрены вопросы, которые приобрели фундаментальное значение, но не затрагивались в прежних изданиях. В гл. III ( Элементарные химические реакции ) введен параграф, посвященный вычислению констант скоростей с помощью корреляционных соотношений, рассматриваемые типы элементарных реакций дополнены реакциями переноса электронов, лежащими в основе большого числа окислительно-восстановительных процессов. В параграфе, посвященном методу квазисгяционарных концентраций, подробно рассмотрена общая теория стационарных реакций, введено понятие маршрута и с этих позиций рассмотрены кинетические схемы основных типов сложных реакций — сопрялжнных, каталитических и цепных. [c.6]

    Эта реакция протекает в верхних слоях земной атмосферы. Для нее установлено уравнение Kopo Ti. = к [О ] [NO], и предполагается, что она осуществляется в одну элементарную стадию. Однако можно исходить из того, что эта реакция включает разрыв связи NO и образование новой связи между N и О или что она представляет собой п )осто перенос электрона от молекулы NO к ио ly О . Эти две возможности иллюстрируются рис. 13.10. Для того чтобы ответить на вопрос о том, какой из двух [c.25]

    Влияние адсорбированных на границе электрод/раствор поверхностно-активных органических веществ (ПАОВ) на электрохимическую кинетику может быть весьма сложным и затрагивать различные стадии электродного процесса как собственно элементарный акт, так и стадию массопереноса. Чаще всего в литературе рассматривается влияние адсорбции ПАОВ на стадию переноса электрона. Гораздо меньше изучен и обсужден вопрос о действии ПАОВ на шроцессы массопереноса при протекании электродных реакций. Более того, нередко утверждается, что не существует связи между адсорбционными процессами и процессами подвода реагентов к поверхности электрода или отвода от нее продуктов реакции. В общем виде это неправильно, во многих случаях установлено существование такой взаимосвязи, причем действие ПАОВ на стадии массопереноса зависит от степени заполнения им поверхности электрода и структуры адсорбционного слоя. [c.124]

    В отличие от газа, где столкнувшиеся частицы-реагенты изолированы от других молеул, в жидкости молекулы растворителя создают для реагентов новые условия и возможности в осуществлении элементарного акта. Если реакция идет с переносом электрона, то возникает возможность его туннелирования. Реакция с участием атома Н может идти с переносом протона или гидрид-иона. Возрастает вероятность и роль реакций с участием ионов и ионных пар из-за сильной сольватирующей способности полярного растворителя. [c.137]

    Неравновесяая сольватация. Говоря о неравновесной сольватации, обычно имеют в виду, что координата р-ции X описывает движение ядер в субстрате (а не в среде, как при переносе электрона), и в ходе элементарного акта р-ции координаты р-рителя не успевают подстраиваться под [c.209]

    Первая электрохимическая элементарная стадия представляет собой обратимый перенос электрона с электрода иа молекулу карбонильного соединения (до илн после протонирова-ння). Найдены корреляция потенциалов восстановления с энергией п,л -триплетных переходов и корреляция константы скорости переноса электрона со спиновой плотностью электрона на реакционном центре (карбонильной группе) [35, 36]. В случае ароматических соединений образующиеся радикалы относительно стабильны, и многие нх свойства поддаются изучению, в том числе электрохимическими методами [37—44]. Радикалы, об разующиеся нз алифатических соединений, обычно не удается обнаружить [33, 45—48]. Некоторое представление о том, насколько сильно различаются свойства радикалов алифатических и ароматических соединений, дают следующие данные время полупревращения анион-раднкалов ацетона составляет 72 мкс, тогда как для ацетофенона оно равно 1,5 мс [49], [c.321]

    Важнейшей специфической особенностью ферментов является их многоцентровость. Именно многоцентровостью объясняются основные преимущества ферментов - такие, как эффективное связывание и ориентация субстратов, синхронные элементарные акты и обеспечение многостадийного процесса с оптимальной для каждой стадии скоростью. Однако внимательный анализ конкретных реакций показывает, что эти преимущества не могли бы реализоваться в совершенно жестких структурах. Действительно, даже такой простой процесс, как перенос электрона с одного центра на другой, должен завер- [c.558]

    Вывод уравнения поляризационной кривой феноменологическим методом был приведен в разделе 2 этой главы. Полученный результат не связан с какой-либо конкретной моделью переходного состояния, однако, конечно, желателен более глубокий анализ процесса необходимо исследовать связь между кинетическими параметрами и молекулярной структурой. Хориути и Поляни [55] в 1935 г. впервые попытались построить молекулярную модель электрохимического акта и ввели с этой целью диаграммы потенциальной энергии (см. также работу Тёмкина [37]). Такие диаграммы часто используются в элементарных курсах для демонстрации влияния потенциала электрода на кинетику, поскольку они позволяют ввести коэффициент переноса электрона графическим методом. Это построение приведено на рис. 87, который заимствован из обзора Парсонса [55а] и практически не отличается от оригинального графика Хориути и Поляни. Принимается, что изменения фм и ф2 не влияют на форму кривых [c.187]

    Баланс количества прореагировавших ионов железа (III) и выделившейся СОг подтверждает протекание реакции (1). Экстракцией эфиром с последующим испарением выделен в твердом виде комплекс Pt O(H)2X2 (МК). Элементарный анализ соответствует формуле 1. В кислых растворах комплекс присоединяет Х-ион, становясь шестикоординационным отрицательно заряженным анионом, что подтверждено выделением комплекса с тяжелым катионом ( 2H5)4N [РЮО(Н)2Хз]. Это кристаллические очень устойчивые соли. Их устойчивость обусловлена ке только молекулой СО, но и молекулами НХ. Отщепление НХ ведет к разрушению комплекса. Стабилизирующее действие НХ связано, по-видимому, с тем, что электронная пара Pt(0), составляющая связь Pt—Н, сильно оттягивается к Н-атомам, так что последние могут стать гидридными. Следовательно, увеличиваются степень окисления платины и стабильность комплексов. В литературе есть аналогичные данные для других металлов [3]. При проведении реакций с отщеплением НХ, например при присоединении СО, происходит обратный перенос электронов на Pt и образуется Pt° (СО)г. [c.450]

    В принципе имеется два типа физических механизмов, которые могут приводить к магнитным эффектам в биологии и медицине — молекулярные и макроскопические. Молекулярные механизмы были рассмотрены выше и связаны с изменением спниа в элементарных реакциях радикалов, ионов и триплетных молекул. Опи могут проявляться в процессах переноса электрона по цепи цитохромов и в сопряженных с ними реакциях фосфорилирования, в ферментативных реакциях, в окислительно-восстановительных реакциях с участием ионов железа и меди, в процессах фотосинтеза и т. д. Как показывают экспериментальные результаты, обобщенные в ряде монографий по магнитобиологии [58, 59], [c.43]


Смотреть страницы где упоминается термин Элементарный акт переноса электрона: [c.374]    [c.374]    [c.244]    [c.539]    [c.337]    [c.270]    [c.121]    [c.259]    [c.30]    [c.297]    [c.62]    [c.539]    [c.511]   
Смотреть главы в:

Электродные реакции -> Элементарный акт переноса электрона




ПОИСК





Смотрите так же термины и статьи:

Молин Моделирование элементарных реакций переноса электрона в раствоКрылов Элементарные акты катализа и их константы скорости

Охлобыстин. Перенос электрона как элементарный акт гетеролитических реакций

Элементарный электрона



© 2025 chem21.info Реклама на сайте