Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилентерефталат температура

    Для аморфного неориентированного полиэтилентерефталата температура перехода второго рода равна 81°, для кристаллического неориентированного — 100° и 125° — для кристаллического ориентированного образца [2371. [c.330]

    Образуюш ийся высокомолекулярный полиэфир выдавливают в виде вязкого расплава азотом, охлаждают, измельчают в крошки. Кристаллический полиэтилентерефталат—белое непрозрачное вещество, плавящееся при температуре 264"С, не растворяющееся в обычных растворителях. Прядение его ведут из расплава в атмосфере азота, продавливая через фильеры прядильной машины. Получаемое волокно в СССР названо лавсаном, за границей—териленом. [c.314]


    Полиэтилентерефталат (технический полимер) имеет средний молекулярный вес 15 000—30 000, температуру плавления 255°С, плотность 1,33— 1,38 г/см1 [c.75]

    Пленка из полиэтилентерефталата, выпускаемая в СССР под названием лавсан, с США — майлар, в Англии — терилен, обладает высокой механической прочностью и химической стойкостью в широком диапазоне температур и хорошими диэлектрическими свойствами. Она применяется в качестве изоляционного материала, основы фото- и кинопленки. [c.76]

    В полиэтилентерефталат. Реакция с умеренным тепловым эффектом проходит при высокой температуре, достигающей в конце процесса 265° С. Повышенная вязкость заставляет вести перемешивание так, чтобы стенки реактора, через которые происходит перенос тепла от слоя растворенных полимеров, постоянно очищались от образующейся пленки. [c.131]

    На стадии окисления получается 99%-ная терефталевая кислота. Дополнительной очисткой ее получают кислоту, пригодную для прямой этерификации в полиэтилентерефталат (99,99%). Принципиальная схема представлена па рис. 14. Катализатор регенерируется на отдельной установке, куда непрерывно отводится часть реакционной массы. Горячая уксусная кислота с солями брома вызывает интенсивную коррозию реактора, что заставляет использовать аппараты из титана или особого сплава [73]. Можно отказаться от использования брома или других промоторов, но при этом увеличить содержание катализатора до 20—100% от массы -ксилола. Температура процесса и давление понизятся до 100—130 °С и 0,98 МПа, а выход кислоты достигнет 97—98%. В результате регенерации катализатора расход его на 1 т кислоты снижается до 0,9 кг. Смягчив условия окисления и отказавшись от бромсодержащих промоторов, можно использовать обычные нержавеющие стали и в несколько раз уменьшить стоимость блока окисления. [c.78]

    Несминаемость тканей обусловлена проявлением вынужденной эластичности. Чем больше доля высокоэластической деформации волокна в стеклообразном состоянии, тем меньше его сминаемость. Малая сминаемость тканей типа стирай - носи объясняется проявлением значительной высокоэластичности в волокне из полиэтилентерефталата при комнатной температуре. [c.136]

Рис. 149. Изменение температуры плавления блоксополимера полиэтилентерефталата и полиоксиэтиленгликоля (мол. вес 4000) с повышением содержания последнего. Рис. 149. <a href="/info/1817368">Изменение температуры плавления</a> <a href="/info/557916">блоксополимера полиэтилентерефталата</a> и полиоксиэтиленгликоля (мол. вес 4000) с <a href="/info/728016">повышением содержания</a> последнего.

Рис. 7.17. Зависимость остаточной электропроводности (Ом- -м ) от температуры для полиэтилентерефталата (/) и поливинилацетата (2) Рис. 7.17. <a href="/info/1117991">Зависимость остаточной</a> электропроводности (Ом- -м ) от температуры для полиэтилентерефталата (/) и поливинилацетата (2)
    Цель работы. Получение рентгенограмм исходного и прогретого полиэтилентерефталата при температуре выше его температуры стеклования, определение по рентгенограммам фазового состояния образцов, расчет межплоскостных расстояний. [c.190]

    Формование волокна из полиэфира аналогично формованию полиамидного волокна. Полиэтилентерефталат, применяемый для формования волокна, имеет молекулярный вес 15 ООО—-20 ООО и температуру плавления 250—265 С. [c.207]

    Второй компонент для получения полиэтилентерефталата — терефта— левая кислота — получается по этой схеме окислением и-ксилола 30— 40%-ной азотной кислотой при температуре 150—200° и давлении около 30—50 ат [51, 102]. Процесс выражается уравнением  [c.702]

    При выборе катализатора следует учитывать не только способность катализировать основную реакцию, но в минимальной степени катализировать побочные процессы. Для того, чтобы не был нарушен процесс формования волокна катализатор должен растворяться в полиэтилентерефталате. В полимере растворяются большинство ацетатов двухвалентных металлов, окись свинца, двуокись германия, трехокись сурьмы. Многие из этих веществ растворяются в этиленгликоле или имеют температуру плавления несколько более низкую, чем температура поликонденсации, и при плавлении гомогенизируются в расплаве. Большое значение имеет растворимость катализатора при производстве полиэфиров для изготовления пленок, предназначенных для фотографических целей. [c.63]

    Вследствие высокой температуры кипения (244,8 °С) диэтиленгликоля основное количество остается в реакционной среде и он принимает участие в процессе переэтерификации или этерификации, входя в состав полимера. Б результате в полиэфире образуются звенья, содержащие диэтиленгликолевые остатки. Нарушая регулярность строения макромолекул, звенья диэтиленгликоля являются причиной снижения температуры плавления полиэтилентерефталата. вать следующими данными [97]  [c.84]

    Можно предположить, что при плавлении полиэтилентерефталата первыми распадаются концевые группы. В этот период их блокирование способствует повышению термоустойчивости полиэфира. В момент, когда начинает преобладать распад внутренних сложноэфирных групп по закону случая, блокирование катализаторов фосфорными кислотами или их эфирами оказывает благоприятное воздействие. При дальнейшем повышении температуры, когда становится заметным распад по радикальному механизму, некоторую положительную роль должны иметь добавки систем, способных блокировать образующиеся радикалы, не давая тем самым развиваться цепному процессу термоокислительной деструкции. Но при высоких температурах резко усиливается распад и по молекулярному механизму, который регулировать невозможно. [c.95]

Рис. 5.7. Зависимость удельной теплоемкости полиэтилентерефталата Ср от температуры Рис. 5.7. <a href="/info/869526">Зависимость удельной</a> <a href="/info/533375">теплоемкости полиэтилентерефталата</a> Ср от температуры
    О превращениях физической структуры полиэтилентерефталата можно проследить по зависимости удельной теплоемкости от температуры. УДель-ная теплоемкость возрастает при увеличении числа внутренних степеней свободы, т. е. зависит от возможных видов движения молекул. [c.109]

    На рис. 5.7 показана такая зависимость для закаленного образца полиэтилентерефталата [39]. Начиная с температуры —20 °С, удельная теплоемкость вначале линейно растет с повышением температуры. При температурах 60—80 °С более быстрое возрастание удельной теплоемкости свидетельствует о заметном увеличении подвижности структурных элементов макромолекул, приобретающих подвижность, достаточную для образования кристаллитов при температуре около 100 °С и выше. Новое возрастание удельной теплоемкости в интервале температур 220—270 С связано с плавлением кристаллитов полиэфира. [c.109]

    Температура стеклования не является вполне точной константой. Ее величина зависит от состояния образца, скорости его нагревания и от способа измерения. Было найдено [42], что изменяется в зависимости от степени ориентации и кристалличности полиэтилентерефталата  [c.110]

    В случае ароматического полиэфира в цепи появляется новая группировка — ароматическое ядро, влияние которого в большинстве случаев является преобладающим по сравнению с остальными группами. Это легко понять, сопоставив полиметилен, плавящийся при 132°, с полифе-ниленом, который не плавится до 500°, по-видимому, вследствие большой жесткости макромолекулы, плотной упаковки вследствие высокой симметрии и наличия значительных сил межцепного взаимодействия. При этом большое значение имеет взаимное расположение фенильных ядер [721. Так, п-пентафенил плавится при 395°, в то время как соответствующее мета-соединение плавится при 112°. п-Гептафенил плавится при 545°, а мета-соединение даже с 12 кольцами в цепи плавится лишь при 250 вследствие менее плотной упаковки молекул [86]. Поэтому полиэфиры ароматических пара-дикарбоновых кислот имеют более высокие температуры плавления, чем соответствующие полиэфиры алифатических дикарбоновых кислот [88]. Температуры перехода второго рода у ароматических полиэфиров также выше, чем у алифатических. Так, у полиэтилентерефталата температура перехода второго рода лежит при - -80°, а у полиэтиленадипината — при—80° [87]. Отметим, однако, что при сравнении полиэфиров терефталевой и адипиновой кислот нужно учитывать различие в длине молекул кислот [6, 87]. [c.272]


    Для расплавов полимеров характерно постепенное падение вязкости во времени, вызванное термическим распадом полимера. Уже отмечалось, что при переработке полимеров в волокна через расплав необходимо отыскивать оптимальные решения, обусловленные, с одной стороны, стремлением использовать полимер с возможно более высоким молекулярным весом, что позволяет повысить комплекс физико-механических свойств получаемых волокон, и, с другой стороны, наличием максимального предела вязкости, выше которого технические возможности формования значительно усложняются. Поэтому для понижения вязкости выбирают такую температуру расплава, при которой термический распад пе успевает пройти в такой степени, чтобы существенно повлиять на свойства получаемого волокна. В С1ШЗИ с этим продолжительность нахождения расплава в прядильной головке по возможности сокращают. О скорости снижения вязкости под влиянием термической деструкции можно судить по приведенным ниже данным относящимся к расплаву полиэтилентерефталата (температура расплава 270° С)  [c.132]

    Лавсан —полиэтилентерефталат может быть получен поликонденсацией телефталевой кислоты с этиленгликолем. Но вследствие высокой температуры плавления терефталевой кислоты, которая уже при 300 С возгоняется, и плохой ее растворимости в этиленгликоле в производстве полиэфирной смолы обычно применяется ее диметиловый эфир—диметилтерефталат (ДМТ). [c.311]

    Ценными свойствами обладают трубы из сополимера винилхлорида с винилидеихлоридом, выпускаемые под маркой саран и широко применяемые на химических заводах США. Для транспортировки солевых растворов и сырой нефти используются трубы из ацетнлбутнратцеллю-лозы.. Из ударопрочного полистирола (сополимера стирола сакрилонит-рильным каучуком) изготовляют фитинги и в небольших количествах трубы. Другие пластики—полиэтилентерефталат, полиамиды еще в мень-И1ей мере используются для изготовления трубопроводов. Для перекачки агрессивных жидкостей прп повышенных давлениях и температурах применяют стальные трубы с внутренней футеровкой их пластиками, стойкими против коррозии. [c.220]

    Полиэтилентерефталат представляет твердое вещество белого цвета с температурой размягчения 245 С. Плотность полиэтилентерефталата (ПЭТФ) зависит [c.420]

    Взаимодействием нафталина с этилбензолом или с этиленом в присутствии л(-ксилола и хлорида алюминия можно получать 2-этилнафталин и далее 2-винилнафталин [107]. Полимеры 2-ви-нилнафталина и сополимеры со стиролом имеют достаточно высокую механическую прочность и теплостойкость, 2-винилнафталин применяется также в производстве ионообменных смол. Окислением 2,6-диметилнафталина получают 2,6-нафталиндикарбоно-вую кислоту — сырье для полиэфирных волокон более термо- и водостойких, чем полиэтилентерефталат [108]. Алкилированием нафталина хлоралканами производятся парафлоу — депрессоры, понижающие температуру застывания смазочных масел. Нафталин может использоваться также в качестве сырья для синтеза антра-хинона [109]. [c.339]

    При какой температуре (60, 100, 150, 180, 220, 270 °С) аморфизированный полиэтилентерефталат будет кристаллизоваться с наибольшей скоростью, если известно, что его = = 80 °С  [c.159]

Рис. 4.20. Влияние разветвленности макромолекул X полиэтилентерефталата на реологические сврйства его расплавов температура 280°С [г ] = 0,64 в смеси фенол-тетрахлорэтан (6 4) при 25°С Рис. 4.20. <a href="/info/840864">Влияние разветвленности</a> макромолекул X полиэтилентерефталата на реологические сврйства его расплавов температура 280°С [г ] = 0,64 в смеси фенол-тетрахлорэтан (6 4) при 25°С
    Кристаллический полиэтилентерефталат предстанляет собой очень твердое, белое, непрозрачное вещество температура стеклования полимера 81, температура плавления 264", степень кристаллизации 55—75%. Ориентацией полимерных цепей можно повысить степень кристаллизации полиэфира. Ориентацию можно проводить медленным вытягиванием нити и./1и пленки, нагретой выше температуры стеклования. [c.423]

    При постепенном повышении температуры некристаллизующе-гося стекла происходит нечто аналогичное внезапной кристаллизации при отжиге, застеклованных кристаллизующихся полимеров типа полиэтилентерефталата. Вязкость убывает по экспоненциальному закону, и системе все легче вернуться к равновесному (для температуры опыта) состоянию, энергия Гиббса которого отлична от энергии Гиббса того состояния, с которого началось замораживание. Эта разность энергий Гиббса и выделяется в виде теплоты [c.89]

    VI. 5. При какой температуре аморфизованный полиэтилентерефталат будет кристаллизоваться с наибольшей скоростью, если известно что температура его стеклования 80°С  [c.215]

    Из полиэфиров ценными техническими свойствами обладает нолиэти-ленторефталат, высокие механические свойства которого обусловлены теми же причинами, что и полиамидов. Полиэфиры алифатических дикарбоновых кислот не обладают такими свойствами. В частности, низкая температура их плавления (ниже 100°) препятствует использованию их в качестве волокнообразующих материалов. В отличие от них полиэтилентерефталат обладает высокой кристалличностью, высокой температурой плавления (265°) и образует прочные волокна, что объясняется большей жесткостью цепи благодаря наличию симметричных п, и -фениленовых группировок и полярностью эфирных групп [75]. [c.671]

    Рентгенографическим анализом шейки обрата кристаллического полиэтилентерефталата, растянутого При комнатных температурах, была обнаружена аморфная стрз Ктура, С пойышенисм температуры Ориентация аморфного образца в шейке де тается все более совершенной, но кристал.тн-тов не образуется. Эффект кристаллизации становится заметным только при достижении области температур стеклования. При Этом образуются кристаллиты, которые могут быть или ориентированы, или расположены хаотически. [c.220]

    Доктор Уинфилд позднее рассказал [6] об открытии полиэтилентерефталата Мысль о том дне, когда мною будет открыто синтетическое волокно, прочно сидела в моей голове с 1923 г., когда я сотрудничал с Кроссом. Я возвращался к этой мысли снова и снова на протяжении последующих 18 лет. В 1935 г. я даже пытался получить волокно из крахмала, но к тому времени я уже хорошо ознакомился с работой Карозерса... Первым провел конденсацию терефталевой кислоты с этиленгликолем Диксон. Я предполагаю, что он воспользовался масляной баней с температурой около 200 С просто для того, чтобы отогнать избыток гликоля после начальной стадии реакции, ускорить и завершить полимеризацию. Так или иначе, но он вскоре прибежал ко мне и сообщил, что прп этой температуре вся масса неожиданно затвердела. Это, по-моему, была неожиданная н большая удача, и я в свою очередь рад был видеть, что застывшая масса непрозрачна — факт, дающий твердое основание предполагать микрокристаллическую структуру. Мы постепенно повышали температуру до тех пор, пока при температуре около 260 °С не произошло расплавление массы. Через несколько часов мы закончили эксперимент, получив почти бесцветный полимер, который, однако, имел хотя и слабую, но вполне определенную тенденцию к вытяжке на холоду. А немного позднее были получены рентгеновские снимки вытянутого терилена. [c.10]

    Поэтому установление предельной толщины слоя, меньше которой реакция проходит в кинетической области, т. е. скорость ее определяется только скоростью реакции поликонденсации, имеет очень важное зачение. Было высказано предположение [49], что при толщине слоя расплава 0,5 мм исключается влияние диффузии на общую кинетику процесса, тогда как при использовании более толстых слоев наблюдается переход в диффузионную область. Эти выводы малочубедительны из-за недостаточно надежного определения порядка реакции и отсутствия данных для более тонких слоев. Процесс поликонденсации в гонких слоях полиэтилентерефталата был исследован Стевенсоном [50], Кэмпбеллом [51] и описан в ряде патентов [52]. Чефелин [53] использовал методику Маркеса поликонденсации в вакууме в запаянных вращающихся ампулах и динамометрический метод с применением весов Мак-Бена с кварцевой спиралью и показал, что только в пленке расплава толщиной 0,005—0,02 мм исключено влияние диффузии на скорость реакции и константа скорости возрастает при повышении степени полимеризации исходного полимера, концентрации катализатора и температуры. Он же привел данные [53] о том, что в области конверсии 95—98% при 280 °С и остаточном давлении 0,16 кПа (1,25 мм рт, ст.) выделение этиленгликоля протекает как реакция второго порядка с константой скорости К-= 1,30-10 г-мoль с" при концентрации ацетата сурьмы 0,092% (масс.). [c.69]

    По данным Чалла [33, 3.4], тепловой аффект реакции поликонденсации при высоких степенях завершенности АН = 0. Поэтому значение истинно равновесной молекулярной массы полиэтилентерефталата не зависит от температуры реакции. Величину молекулярной массы определяют полнота удаления выделяющегося в реакции этиленгликоля и глубина побочных деструктивных процессов. [c.75]

    Росс [66] первый установил, что в полиэтилентерефталате содержится До 1% вещества, экстрагируемого трихлорэтаном, растворимого в диметилформамиде, нитробензоле и серной кислоте это вещество было ими идентифицировано как тример с температурой плавления 325—327 °С. Данное значение температуры плавления оказалось завышенным. Позднее Гудмен и Несбитт [67 ] нашли, что общее содер>кание низкомолекулярных веществ, способных экстрагироваться из полиэтилентерефталата, составляет 1,3— 1>7 (масс.). На основе элементного анализа, изучения свойств и инфракрасных [c.75]

    В полиэтилентерефталате всегда содержатся концевые карбоксильные группы, и их число в среднем равно числу концевых гидроксильных групп. Поэтому при высокой температуре возможен и четвертый вариант механизма процесса олигоциклизации с расщеплением по схеме кислотного гидролиза  [c.79]

    Трудности изучения механизма термораспада полиэтилентерефталата обусловили применение первыми исследователями модельных соединений, содержащих характерные группы макромолекулы полиэфира. Первым был использован этилендибензоат [102, 104]. Было показано, что его расщепление при температурах 250—300 °С протекает через шестизвенное циклическое переходное соединение, в результате распада которого образуются бензойная кислота и винилбензоат  [c.86]

    Поликонденсации в твердой фазе при температурах несколько ниже температуры плавления, но значительно выше температуры стеклования полиэтилентерефталата подвергают полиэфир, уже достигший среднего уровня молекулярной массы. Этот процесс интересен возможностью достижения высоких значений степени полимеризации, уменьшением (по условиям равновесия) содержания циклических олигомеров, но отличается большой продолжительностью, повышенным расходом тепла и инертного газа. Кроме того, при этом не исключаются трудности, связанные с понижением молекулярной массы при плавлении в процессе формования волокна. Возможности осуществления такого способа поликонденсации (вернее, дополиконденсации) стали известны давно по ряду патентов [129]. [c.96]

Рис. 4.28. Степень конверсии реакции тверд0фазн01г поликонденсации полиэтилентерефталата а в зависимости от температуры, продолжительностп процесса х и размера частиц (—160 °С ----180 С Рис. 4.28. <a href="/info/740205">Степень конверсии реакции</a> тверд0фазн01г <a href="/info/127973">поликонденсации полиэтилентерефталата</a> а в зависимости от температуры, продолжительностп процесса х и размера частиц (—160 °С ----180 С
Рис. 4.29. Влияние температуры на скорость твердофазной поликонденсации полиэтилентерефталата и сополиэфиров с этиленадппиновыми звеньями Рис. 4.29. <a href="/info/15368">Влияние температуры</a> на <a href="/info/195826">скорость твердофазной</a> <a href="/info/127973">поликонденсации полиэтилентерефталата</a> и сополиэфиров с этиленадппиновыми звеньями
    При быстрол охлаждении расплава полиэтилентерефталата (закаливание), например, при литье его в воду или формовании волокна с быстрым охлаждением, полиэфир получается прозрачным, аморфным и при комнатных температурах находится в застеклованном состоянии.  [c.107]

    Зависимость температуры стеклования, характеризующей гибкость и подвижность кинетических элементов только в аморфной фазе, от степени кристалличности и ориентации представляет большой интерес. При изучении влияния кристаллизации полиэтилентерефталата на его диэлектрические потери, было отмечено, что кристаллизация приводит к уменьшению подвижности сегментов в аморфной фазе [36]. Применение метода ядерного магнитного резонанса позволило установить [44], что интенсивность движения в аморфных областях полимера уменьшается с увеличением степени кристалличности. Подвижность частей молекул, расположенных в аморфных областях, ограничена за счет того, что другие их части входят в состав кристаллических областей. Другой причиной снижения подвижности макромолекул в аморфной фазе, по-видимому, является напряжение. Херви экспериментально установил [45], что температура стеклования увеличивается при повышении напряжения при растягивании полиэфирного волокна. [c.111]

    Область рабочих температур волокон из некристаллизуюпщхся полимеров ограничена уровнем их температуры стеклования, выше которой их деформация носит характер необратимого пластического течения. Примером таких волокон являются поликарбонатные волокна = 150 °С), которые могут быть получены в закристаллизованном состоянии только в виде сополимеров, содержащих вполне определенное число гибких алифатических звеньев с таким же периодом идентичности, как и основные звенья цепи [47]. Способность полиэтилентерефталата легко кристаллизоваться в ходе технологических операций во многом определяет успех и свойства полиэфирного волокна. [c.111]


Смотреть страницы где упоминается термин Полиэтилентерефталат температура: [c.230]    [c.166]    [c.30]    [c.209]    [c.676]    [c.2294]    [c.108]   
Физико-химические основы технологии химических волокон (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Полиэтилентерефталат



© 2025 chem21.info Реклама на сайте