Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные орбитали водородные связи

    Катализатор вступает в химическое взаимодействие с одним или обоими реагирующими веществами, образуя при этом промежуточное соединение (АХ) и входя в состав активированного комплекса. После каждого элементарного химического акта он регенерируется и может вступать во взаимодействие с новыми молекулами реагентов. Таким образом, катализатор направляет химическую реакцию по принципиально новому пути, который отличается от некаталитического числом и природой промежуточных соединений, составом и строением переходного комплекса. Природа сил, вызывающих взаимодействие катализатора и реагентов, та же, что и для обычных химических соединений. Это прежде всего ковалентная связь, донорно-акцеп-торное и кулоновское взаимодействие, водородная связь. Для возникновения химической связи требуется определенное соответствие молекулярных орбиталей реагирующих молекул и катализатора до энергии и симметрии, поэтому катализаторы обладают свойством ус- [c.617]


    Ввиду широкого интервала прочности водородных связей в комплексах трудно найти правило, которое было бы применимо ко всем таким комплексам. На основе анализа расчетов по методу молекулярных орбиталей и данных эксперимента Аллен 6] предложил эмпирическую формулу для расчета энергии связи О, имеющую вид [c.371]

    Вопрос о природе водородной связи окончательно не решен. Ясно, что здесь играют роль и междипольное взаимодействие, и эффект поляризации, и донорно-акцепторный механизм. Трудность квантовомеханического расчета водородной связи обусловлен тем, что погрешность вычисления значительно больше величины энергии водородной связи. По-видимому, наиболее надежные результаты можно ожидать от метода молекулярных орбиталей. [c.236]

    Согласно методу молекулярных орбиталей водородная связь, образуется за счет дисперсионных сил, ковалентной связи и электростатического взаимодействия. [c.10]

    Физическое взаимодействие не изменяет или очень слабо сказывается на строении взаимодействующих молекул. Но, кроме физического взаимодействия, молекулы очень часто образуют друг с другом молекулярные комплексы с участием определенных атомов и молекулярных орбиталей. Молекулярные комплексы делятся на два больших класса комплексы с водородной связью и комплексы с переносом заряда (КПЗ). Молекулярные комплексы занимают промежуточное положение между ассоциатами молекул, возникающими за счет физического взаимодействия, например диполь-дипольного притяжения, и молекулами. Физическое взаимодействие возникает в результате электростатического притяжения молекул, обладающих постоянным или наведенным диполем, Число взаимодействующих молекул, образующих ассоциат, может быть достаточно велико и меняться в зависимости от условий. Молекулярный комплекс имеет постоянный состав (чаще всего 1 1 или 1 2) если он меняется, то меняется и структура комплекса. Водородная связь в спиртах возникает путем взаимодействия группы О—Н с парой электронов атома кислорода другой молекулы. В отличие от молекул, которые образуются из других молекул в реакциях, протекающих с энергией активации, молекулярные комплексы образуются в процессах ассоциации, происходящих без энергии активации. Поэтому молекулярные комплексы находятся в равновесии с исходными молекулами. [c.337]


    ВзН см. разд. 13-2). В этой молекуле к центральному атому бора присоединены три атома водорода. Согласно теории локализованных молекулярных орбиталей, связь в этой молекуле осуществляется в результате гибридизации 2х-орбитали и двух 2р-орбиталей атома бора с образованием трех эквивалентных хр -гибридных орбиталей (рис. 13-3). Каждая гибридная орбиталь имеет на одну треть 5-характер и на две трети р-характер. Поскольку любые две р-орбитали лежат в одной плоскости, а х-орбиталь не имеет пространственной направленности, три хр -ги-бридные орбитали лежат в одной плоскости. Эти три хр -гибридные орбитали, перекрываясь с тремя водородными 1х-орбиталями, образуют три эквивалентные локализованные связывающие орбитали. Каждая из таких связывающих (хр -ь 1х)-орбиталей занята в молекуле ВН3 парой электронов, как это схематически показано на рис. 13-4. На основании представления о гибридньгх орбиталях можно предсказать, что молекула ВН3 должна иметь плоскую тригональную структуру. Угол между межъядерными осями Н—В—Н, называемый валентным углом Н—В—Н, должен составлять 120°. [c.553]

    Рассмотрим молекулярные орбитали водородного мостика —А—Н.... ..В. Группа. 4—Н, подобно двухатомной молекуле, имеет ст- и ст -ор-битали (уа и /н), атом В—орбиталь неподеленной пары (/в)- Волно-ва>, функция электрона в Н-связи образуется как линейная комбинация этих трех орбиталей  [c.138]

    Рассмотрим образование водородной связи с позиций метода молекулярных орбиталей (МО ЛКАО). Для упрощения возьмем лишь водородный мостик —А—Н...В— и его четыре электрона, два от группы А—Н и два от неподеленной пары атома В. Группа А—Н, подобно двухатомной молекуле, имеет а- и а -орбитали ( )/ан и /ан )> атом В — орбиталь неподеленной пары (ч/в). Волновая функция электрона в Н-связи образуется как линейная комбинация этих трех орбиталей  [c.269]

    Изучение ИК-спектров очень помогает идентификации тех или иных функциональных групп в соединениях. Вместе с тем из данных табл. 10 видно, что даже образование водородной связи заметно смещает полосы поглощения, характерные для группы ОН. Поэтому проблема взаимного влияния атомов в молекуле заключается, во-первых, в решении вопросов о наличии общих молекулярных орбиталей (л-орбитали), а, во-вторых, в определении того, каким образом геометрическая форма молекулы может способствовать усилению или ослаблению этого влияния. [c.166]

    Электронное строение органических соединений возникает в результате образования химических связей нескольких типов ковалентной а-связи, ковалентной л-связи, сопряженной я,тс- и и,л-связи, ароматической п-связи, донорно-акцепторной (координационной) о- или п-связи, включая водородную связь. Образование химической связи между атомами приводит к превращению атомных орбиталей в молекулярные орбитали (МО). Эти МО могут быть локализованными (закрепленными) между двумя атомами или же делокализованными между тремя или большим числом атомов. [c.44]

    Электростатическая модель образования водородных связей верна только в первом приближении, поскольку энергетически дополнительное связывание атома водорода должна иметь химическую природу. Метод валентных связей не может объяснить образование дополнительной связи атома Н, так как атом водорода одновалентен (см. 6.13). Метод молекулярных орбиталей в его многоцентровом варианте дает следующее объяснение образования водородной связи. При сближении атома Н, ковалентно связанного с атомом [c.138]

    Изложение собственно теории валентности начинается с двухатомных молекул, рассмотрение которых производится при помощи двух методов — метода молекулярных орбиталей (МО) и метода валентных связей (ВС), причем автор в специальной главе подробно сопоставляет эти методы. Затем рассматриваются многоатомные молекулы с насыщенными и с сопряженными связями. Отдельная глава посвящена строению комплексных соединений, рассмотренных с точек зрения теорий кристаллического поля и поля лигандов. Две главы посвящены теории химической связи в неметаллических и в металлических твердых телах, а последняя глава — вопросам водородной связи, сверхсопряжения, строения молекул с электронным дефицитом и некоторым другим. [c.5]

    Строение пероксикислот тщательно изучалось некоторые из них получены в кристаллической форме [1, 2]. Твердые кислоты связаны прочной внутримолекулярной водородной связью меледу двумя смежными молекулами существует также межмолекулярная водородная связь, как показано в (4). Внутримолекулярная водородная связь сохраняется и при растворении пероксикислоты (установлено ИК-спектроскопией) [3], и, как полагают, соединение (5) представляет собой активный исходный агент для генерирования электрофильного кислорода при реакциях пероксикислот (по крайней мере в растворителях, не содержащих гидроксильной группы). Расчеты с помощью метода молекулярных орбиталей (методы [c.580]


    Для некоторых из этих систем возможны расчеты по методу молекулярных орбиталей различной степени сложности. Система 53, В, например, несет на О заряд —0,58 и —0,36 на а-углероде в системе 53, Е N,, N2 и О несут соответственно заряды - 0,22 -0,23 и -0,52 [383, 480]. Каждый отрицательно заряженный центр несомненно сольватирован, а в протонах растворителя наиболее электроотрицательный атом является, вероятно, центром образования наиболее сильной водородной связи. В результате будет происходить дополнительный сдвиг электронной плотности с другого заряженного центра (или центров) на растворитель, как в системе 54. [c.431]

    Некоторые исследования, использующие теорию молекулярных орбиталей, также проясняют особенности гидратации. В работе [166] полуэмпирическим методом рассчитали структуру, энергию гидратации и другие параметры ионов Li+, Na+, Ве + и Mg +. Исследование влияния ионов на водородные связи молекул воды, соседних с ионами и более удаленных от них, показало, что влияние замещенных ионов аммония на молекулы воды в их окружении отличается от влияния щелочных металлов. Вычисления гидратации ионов Н3О+ показали, что энергия водородных связей не аддитивна. [c.534]

    Значения параметров а, Ь, с, d и т. д. могут быть найдены посредством минимизации энергии системы по каждому параметру. Подобный расчет для молекулы водорода показывает, что связь имеет на 17% ионный характер. Надо заметить, что по теории молекулярных орбиталей и простая волновая функция для водородной молекулы содержит ионные члены, соответствующие структурам III и IV, но им придан такой же вес, как и гомеополярным структурам. Зто можно увидеть, раскрыв уравнение волновой функции (5-37)  [c.182]

    Два ВНо-фрагмента связываются затем с помощью водородного мостика. При этом появляется дефицит электронов, так как связь ВНВ располагает только двумя электронами. Можно построить две трехцентровые связи, каждая из которых связывает молекулярной орбиталью два атома бора и один атом водорода. Для этого, — [c.197]

    Согласно качественному описанию Н-связи в ионе НРг , которое дал Пиментел с помощью метода молекулярных орбиталей, одна электронная пара находится на молекулярной орбитали, охватывающей 3 атома (трехцентровая молекулярная орбиталь), каждая связь, естественно, является слабой другая электронная пара находится на несвязывающей орбитали. Аналогичное распределение четырех электронов имеется и в других водородных связях. Все три атома в водородной связи обычно изображаемые X—Н У лежат на прямой линии и изгиб связи при Н энергетически невыгоден. [c.119]

    Для групповой орбитали Ф2 подходящей по условиям симметрии орбитали центрального атома нет, поэтому в ионе НР орбиталь фз играет роль несвязывающей (рис. 143). Четыре электрона (один от атома Н, два от двух атомов Р и один за счет заряда иона) распределяются на связывающей и несвязывающей а молекулярных орбиталях. Нахождение электронов на молекулярной а-несвязывающей орбитали соответствует концентрации избыточного отрицательного заряда иа концевых атомах. Следовательно, гидрогенат-ионы типа НХг должны быть наиболее стабильными в том случае, когда X — наиболее электроотрицательные атомы или их группировки. Так, в ионе НР связь почти в три раза прочнее межмолекулярной водородной связи (с. 92). [c.278]

    Лекция 7. Основные положения метода молекулярных орбиталей (МО). Энергетические диаграммы распределения электронной плотности в молекулах. Применение метода МО к молекулам, образованным из атомов элементов первого и второго периодов. Объяснение магнитных свойств и возможности существования двухатомных частиц с помощью метода МО. Лекция 6. Межмолекулярное взаимодействие. Природа межмолекулярных сил. Ориентационное, индуктивное, дисперсионное взаимодействие. Водородная связь. Влияние водородной связи на свойства вешества. Конденсированное состояние вещества. Кристаллическое состояние. Кристаллографические классы и втя системы.. Ьоморфизм и полимор( )Изм. Ионная, атомная и молеклярная, металлическая и кристаллическая рещетки. [c.179]

    Однако нельзя полностью игнорировать ковалентный вклад в энергию водородной связи. По крайней мере в тех соединениях, которые характеризуются высоким значением энергии водородной связи (прежде всего это относится к иону HF ), возможно существование молекулярных орбиталей. Молекулярная орбиталь в ионе НР получается из ls-орбитали водорода и орбитали фтора, направленной вдоль оси частицы. Связывающая орбиталь содержит два электрона и представлена суммой PF+PF + us = t3 B, где р-Е — орбиталь фтора (а — коэффициент) разрыхляющая орбиталь имеет вид Pf+Pf—а 5 = г зраз сумма Pf + Pf, очевидно, соответствует несвязывающей орбитали, так как не содержит орбиталь водорода. Связывающая орбиталь расположена по обе стороны от-центрального атома водорода, так что получаются две связи. [c.134]

    На процесс разделения влияют и специфические химические взаимодействия. При таких взаимодействиях за счет перекрывания молекулярных орбиталей происходит хотя бы частичное обобществление электронов и возникают донорно-акцепторные связи. В комплексах с переносом заряда, представляющих интерес для хроматографии, в з виснмости от типа взаимодействующи.х молекул эти энергии лежат в пределах от 4 до 20 кДж/моль для водородной связи — в пределах 10—30 кДж/моль. В химии донорно-акцепторные взаимодействия щироко распространены, и поэтому [c.301]

    Под-комплексами с переносом заряда,, или донорно-акцепториы ми комплексами, понимают молекулярные ассоциаты, образованные в результате перекрывания высщей по энергии занятой молекулярной орбитали молекулы-донора (ВЗМО) с низшей вакантной молекулярной орбиталью акцептора (НВМО). Классификация комплексов связана с историческими причинами и в значительной мере условна. Теоретическое рассмотрение комплексов с водородной связью показывает, что в них возможно существенное перераспределение электронной плотности между молекулами, т. е. перенос заряда. В то же время в стабилизации КПЗ наряду с переносом заряда важную роль могут играть и другие типы взаимодействий. [c.346]

    В гл. 2 уже говорилось о том, что метан содержит два типа связывающих молекулярных орбиталей тотально симметричную 1/1 и три вырожденные орбитали 1/2, и /4, каждая из которых имеет узловую плоскость. Это не означает, что существует какое-то различие в связывании четырех атомов водорода. Водородные атомы размещены те-траэдрически вокруг центрального атома углерода, и связи имеют равную энергию. Чтобы рассчитать энергию диссоциации связи и другие физические характеристики связей углерод - водород, удобно скомбинировать 2в- и три 2р-орбитали атома углерода, и тогда получатся гибридные орбитали 8р (символ 8р указывает, что гибрид получен из одной 28- и трех 2р-орбиталей). Эти гибридные орбитали углерода перекрываются с Ь-орбиталями четырех атомов водорода, образуя четыре тетраэдрические связи. Гибридизация-это математический прием, позволяющий рассчитать энергию и пространственную ориентацию атомов в молекуле. Если исследовать энергетические уровни в метане, например, методом фотоэлектронной спектроскопии, то в действительности мы обнаружим два энергетических уровня, о чем говорилось в гл. 2. Кроме того, величину константы спин-спинового взаимодействия Н—в спектре ЯМР можно интерпретировать через 5-характер центрального атома углерода. [c.35]

    Важным элементом химии поверхности углеродных материалов являются свободные радикалы. Они возникают в результате термического расщепления углерод-водородных связей в процессе образования конденсированных углеродных колец. Освобождаемый неспаренный электрон поступает в циклическую углеродную систему и стабилизируется, переходя на молекулярную орбиталь в системе -связей. Трудность исследования свободно-радикальных состояний заключается в том, что помимо неспаренных электронов, связанных с локализованными центрами, имеются электроны проводгшости. Соотнощение между этими типами неспаренных электронов зависит от температуры обработки углеродных материалов  [c.17]

    Спаривание оснований осуществляется по следующему механизму аденин образует пары с тимином (в молекуле РНК - с урацилом) за счет двух водородных связей, а гуанин - с цитозином за счет трех водородных связей (модель Уотсона-Крика). Д. Во и А. Рич [90] установили, что при совместной кристаллизации обычных мономерных производных Ade и Ura наблюдается образование пар A-U, однако они никогда не являются уотсон-криковскими. В этих комплексах роль акцептора водородной связи играет азот N(7) имидазольной части аде-нинового кольца. Эта структура известна как хугстеновская, или ими-дазольная. Расчет методом молекулярных орбиталей, выполненный Пульманом и соавторами [91] дает для пары аденин-тимин следующую последовательность структур в порядке убывания их стабильности имидазольная структура, обратная имидазольная структура, уотсон-криковская структура. В случае G- пар имеет место только уотсон- [c.235]

    Связь между атомами бора осуществляется 10 водородными атомами при помощи водородных мостиков, как в диборане. Образование молекулы карборана и его стабильность не могут быть объяснены обычными валентными представлениями. Здесь неприменимы классические структурные формулы, и необходимо пользоваться представлением о мно-гоцентровых молекулярных орбиталях и делокализации электронов. В приведенной фор- [c.270]

    Электрически нейтральные атомы и молекулы, валентно-насыщенные в обычном понимании, способны к дополнительному взаимодействию друг с другом. Степень проявляемого при этом взаимодействия может меняться в весьма широких пределах. Так, при процессах комплексообразования, когда в координационной связи участвуют электронные орбитали частиц и образуются достаточно устойчивые сложные продукты, эффект взаимодействия проявляется очень ярко. С меньшим энергетическим эффектом и более слабым участием электронных орбиталей, а следовательно, и с менее выраженным химизмом происходит образование водородных связей. И наконец, совсем слабыми силами с очень незначительным энергетическим эффектом характеризуется ван-дер-ваальсово или меж-молекулярное взаимодействие, проявляющееся между любыми частицами на расстояниях, исключающих возможность перекрывания электронных орбиталей. [c.98]

    Шаг в направлении расчетов аЫп111о энергии водородной связи во льду был сделан Вейссманом и Коэном [382]. Они вычислили энергию системы Од—Н... Об, используя метод ССП-молекулярных орбиталей. Несмотря на то что их модель включает только четыре электрона и едва ли может быть строгим описанием льда, вычисленная ими энергия водородной связи очень близка к экспериментальной величине (табл. 3.18). Найденная этими авторами величина электростатической энергии, подобно величине, вычисленной с помощью большинства моделей точечного заряда, больше, чем расчетная общая энергия водородной связи. Трехцентровые интегралы в их расчете были вычислены приближенными методами. [c.151]

    Энергия, необходимая для изгиба водородных связей, была вычислена теоретически Минтоном [66] с использованием расширенной теории молекулярных орбиталей Хюккеля. Результаты расчета находятся в хорошем соответствии с ранее полученными данными. Одновременно было установлено, что структуру воды нельзя удовлетворительно описать, если учитывать только потенциал попарного взаимодействия ближайших соседних молекул. [c.43]

    Ряд исследователей указывают на возможность образования в воде циклических полимеров из молекул. Недавно Лендом и Ширагой [596] методом молекулярных орбиталей были проведены подробные вычисления стабильности различных видов циклических и нециклических полимеров, содержащих ограниченное число молекул воды. Авторы этой работы пришли к выводу, что образование циклических полимеров в воде не приводит к существенному увеличению стабильности ассоциатов, т. е. стабильность циклической структуры по сравнению с нециклической возрастает только за счет увеличения общего числа водородных связей. Циклический три-мер менее стабилен, чем линейный, поскольку содержит боль- [c.57]

    Для РНР -иона с симметричной структурой проведены расчеты методом молекулярных орбиталей. Ситуация до некоторой степени подобна положению для некоторых других молекул Р—X—Р (см. стр. 253). Так, если использовать р- или зр-гибридные орбитали на каждом атоме Р, направленные в сторону атома Н, и 1 5-орбиталь водорода, можно образовать три трехцентровые МО соответственно связывающую, несвязывающую и разрыхляющую. Две электронные пары, вначале заселявщие орбитали Р, теперь располагаются на связывающей и несвязывающей МО, образуя две эквивалентные связи Н—Р, причем порядок каждой равен 0,5. В принципе этот метод с таким же успехом можно распространить на случай несимметричных водородных связей, но пока еще он не стал предметом детального изучения. [c.32]


Смотреть страницы где упоминается термин Молекулярные орбитали водородные связи: [c.98]    [c.28]    [c.302]    [c.348]    [c.33]    [c.381]    [c.125]    [c.16]    [c.127]    [c.348]    [c.192]    [c.159]    [c.87]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Водородная связь и метод молекулярных орбиталей

Водородные связи

Молекулярные орбитали а- и я-связи

Молекулярные орбитали аддукта водородной связью

Молекулярные орбитали орбитали

Орбиталь молекулярная

Связь водородная, Водородная связь

Универсальные межмолекулярные взаимодействия . 4.9.2. Составляющие межмолекулярного взаимодействия по методу молекулярных орбиталей Специфические межмолекулярные взаимодействия. Водородная связь Агрегатные состояния вещества



© 2025 chem21.info Реклама на сайте