Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натрий классификация

    Дальнейшая переработка содового раствора в очищенный бикарбонат натрия как при мокром , так и при сухом способах аналогична и включает следующие операции осветление содового раствора, карбонизацию содового раствора, фильтрацию суспензии бикарбоната натрия, сушку влажного бикарбоната натрия, классификацию (размол), магнитную сепарацию и затаривание готового продукта. [c.257]


    Группы потребителей Покупатели и потребители моторных масел могут иметь разные мотивы выбора и приобретения масел, которые наиболее соответствуют их потребностям. Поэтому изучению потребительского спроса нефтекомпании уделяют большое внимание. Группирование покупателей не всегда совпадает с системами классификации масел по назначению (API, АСЕА). Потребители в отношении потребности ассортимента моторных масел условно делятся натри группы  [c.101]

    Значительно упрощая проблему, делим весь технологический процесс на единичные элементы 1) единичные типовые процессы химической технологии и 2) единичные процессы с участием химических превращений. Во многих случаях разграничение между такими единичными процессами чисто условное. Часто единичные элементы процесса можно отнести к обеим указанным группам. Критерием классификации можно считать цель, для достижения которой предназначен единичный элемент. Если элемент процесса включает в себя химическое превращение и целью его является производство определенного продукта, то он относится к единичным химическим процессам, как, например, процесс абсорбции двуокиси углерода аммиачным раствором хлористого натрия в производстве соды по методу Сольвея. Абсорбцию же, проводимую с целью очищения отходящих газов от незначительных количеств вредных веществ, следует отнести к единичным типовым процессам химической технологии. [c.343]

    Активная окись алюминия. Активная окись алюминия используется для производства катализаторов процессов риформинга, изомеризации, гидроочистки, гидрокрекинга и др. Широкое применение находит она также в процессах адсорбции (для осушки газов, очистки масел, очистки газов и жидкостей от фторсодержащих соединений). В промышленных масштабах ее получают переосаждением гидрата глинозема путем его растворения в кислотах (серной, азотной) или в щелочи (едком натре) с последующими гидролизом, формовкой, сушкой и прокаливанием. Свойства синтезированной окиси зависят от структуры и морфологии исходной гидроокиси, а также от условий термообработки. Существует большое число модификаций окиси алюминия. Их классификация, обозначения, условия получения даны в [30, 31 ]. В промышленности активная окись алюминия [c.387]

    Выше рассмотрена классификация методов анализа в зависимости от типа реакции, на которой основано определение. Кроме того, различают методы объемного анализа по способу титрования. Наиболее прост метод прямого титрования, когда определяемый ион непосредственно реагирует с рабочим раствором. К таким методам прямого титрования относится, например, титрование едкой щелочи или углекислого натрия раствором соляной кислоты, титрование щавелевой кислоты или соли закисного железа раствором перманганата и т. п. Наряду с этим большое значение имеют непрямые методы определения из этих непрямых методов наиболее важны метод замещения и метод остатков. [c.280]


    Однако имеются определенные затруднения при использовании этого способа классификации. Так, в ряде кристаллов реализуется больше чем один тип связи как между соседними частицами в узлах решетки, так и в структуре самих частиц. Например, в кристалле графита атомы углерода в каждой плоскости связаны друг с другом ковалентными связями, а между плоскостями действуют силы Ван-дер-Ваальса. Сульфат натрия — ионный кристалл, однако в ионах 50/ действуют ковалентные силы. Тем не менее с определенным приближением большинство кристаллов можно отнести к одному из следующих четырех типов согласно реализуемым в них химическим [c.73]

    По химическим признакам среди металлов выделяют активные (ЩМ, ЩЗМ, РЗЭ) и инертные, или благородные (ПМ, титан и др.). Важной является классификация по способу получения металлы бывают самородными или входят в состав руд, где они находятся в окисленном состоянии. Восстановление из руд ведут металлотермическим способом, используя активные металлы (натрий, кальций, магний и др.), углерод, водород, приемы порошковой металлургии, электролиз растворов или расплавов и т. д. [c.255]

    Периодическая система не только является выражением наиболее плодотворных идей о классификации и упорядочении огромной химической информации, но также дает идеальную возможность выяснить ряд ключевых вопросов в химии элементов. Чем, например, объясняется столь высокая реакционная способность натрия Почему плотность железа выше, чем у алюминия Как объяснить то, что неон представляет собой благородный газ Эти и многие другие свойства элементов могут быть систематизированы и даже предсказаны на основе учета некоторых [c.88]

    Размол производят в дисмембраторе готовый продукт с требуемой тонкостью помола отделяется с помощью воздушного сепаратора. На некоторых заводах применяют мельницы вертикального типа Также с пневматической классификацией. Эффективность этих мельниц значительно увеличивается при предварительной воздушной сепарации сухого кремнефторида натрия, так как при этом более 50% продукта отбирается в виде мелкой фракции помимо мельницы 25 .  [c.354]

    Классификация состава речной воды, приведенная на рис. 3.24, является упрощенной и не всегда соответствует действительности. Например, в результате выветривания полевых шпатов (см. п. 3.4.4) могут образовываться растворы с низкой ионной силой, но в то же время богатые натрием и кремнием, [c.128]

    Вся первая половина XIX в. отмечена открытием большого числа новых элементов. Английский химик Г. Дэви в начале века впервые применил электролиз растворов и расплавов солей для получения новых элементов. Так ему удалось получить и описать калий, натрий, магний, стронций, барий, кальций, газообразный хлор. В те же годы Берцелиус открыл церий, селен, кремний, цирконий, торий, а другие химики — бериллий, бор, палладий, радий, осмий, иридий, ниобий, тантал, йод и бром. К 1830 г. было выделено уже 55 элементов. Требовалась их систематизация с целью классификации по свойствам, сужения направления поиска новых элементов и предсказания свойств пока не открытых элементов. [c.13]

    По наиболее известной классификации [36] пластовые воды по химическому составу растворенных в них солей делят на хлоридно-кальциевые и щелочные. Первые, наиболее распространенные, содержат в своем составе смеси хлоридов натрия, магния и кальция (воды многих месторождений Башкортостана, Татарстана, Туркменистана, Азербайджана и др.). [c.48]

    Что является принципиальным недостатком металлического натрия как реагента для классификации веществ  [c.168]

    Причиной загрязнения бихромата натрия небольшим количеством сульфата (и хлорида) натрия явл 1ется недостаточно полное отделение наиболее мелкой фракции этих-солей при отстаивании бихроматного щелока. При получении кристаллического продукта содержание этих примесей может, быть незначительным при хорошем отстаивании бихроматного раствора перед его кристаллизацией. При плохой очистке этого растворз значительная часть взвешенного сульфата натрия может быть отделена от более крупных кристаллов бихромата натрия классификацией кристаллической пульпы нз ситах. Наконец незначительное разбавление бихромат- [c.602]

    В настоящей статье описываются лабораторные и заводские ис-штания гидроциклона в качестве классификатора при обогащении [ггористого натрия. Классификации подвергалась пульпа фтористо- о натрия и кремневой кислоты, получающаяся при разложении крем-1ефтористого натрия содой согласно уравнениям [1]  [c.111]

    В группу химических методов входят обработка бензинов теми или иными реагентами (серной кислотой, хлоридом алюминия, хлоридом цинка, едким натром, известью, плумбитом натрия, гипохлоритом л т. д.), термическая полимеризация, термическое обессеривание, прямое окислеиие кислородом воздуха и т. п. При полимеризации или обессериваппи (очистка бокситами), а также в других процессах очистки бензина могут и1 иользоваться катализаторы, в связи с чем появились методг.1, которые иел1..1Я охватить классификацией, исходя из понимания очистки как процесса, связанного обязательно с удалением из состава бензина веществ, ухудшающих его качество. [c.72]


    При классификации по донорно-акцепторным свойствам обычно выделяют протонные и апротонные растворители. П р отон-ные растворители обладают донорно-акнепторными свойствами по отношению к протону, т. е. могут отдавать или принимать протон и таким образом участвовать в процессе кислотно-основного взаимодействия. Апротонные растворители не проявляют кислотно-основных свойств и не вступают в протолитическое равновесие с растворенным веществом. Эта классификация в известной степени остается условной, так как большое значение имеет природа растворенного вещества. Например, обычно считающийся апротонным бензол в растворе амида натрия в аммиаке проявляет кислотные свойства. Однако для очень многих аналитически важных систем классификация вполне оправдывается. [c.34]

    АЗОТНЫЕ УДОБРЕНИЯ - неорганические и органические вещества, содержащие азот, хорошо растворяются в воде. Их вносят в почву для питания растений (соли) или применяют для поверхностной подкормки опрыскиванием (растворы аммиака, карбамида). Азот в А. у. может содержаться в нескольких формах аммиачной, нитратной, смешанной — аммиачно-нитратной, амидной. Этот признак и лежит в основе классификации А. у. Аммиачные удобрения л<идкий аммиак (82% К), аммиачная вода (20—22% Ы), сульфат аммония (21% Н), хлорид аммония (26% Ы) нитратные удобрения 1штрат натрия (16% Н), нитрат калия (14% Ы), нитрат кальция (16% Н) аммиачно-нитратные удобрения нитрат аммония (34% Ы) амидные удобрения цианамид кальция (35% Ы, технический продукт 19—22% Н), мочевина, или карбамид (47% Ы). Наряду с перечисленными А. у. применяются смешанные удобрения, также содержащие азот (ам-мофосы, нитрофоска). [c.11]

    Выбрав за основу классификации поверхностно-активных веществ природу гидрофильных групп, следует также учитывать и характер промежуточных состояний этих групп. Поверхностно-активные вещества можно было бы классифицировать на основе различий в природе гидрофобной части их молекул. Однако эти различия столь незначительны, что при такой системе классификации вещества с различными свойствами попали бы в один класс. Например, если сгруппировать вместе все поверхностно-активные вещества, содержащие радикал цетил, то пришлось бы объединить столь отличные друг от друга соединения, как пальмитат натрия, цетилсульфат, хлорид цетилпириди-ния. Используя один и тот же гидрофобный радикал, можно на его основе синтезировать большое количество поверхностно-активных веществ. Иногда поверхностногактивные вещества необоснованно классифицируют, в зависимости от их назначения, на смачиватели, моющие средства, эмульгаторы, гидротропные вещества, дисиергаторы известковых мыл и др. Между тем очевидно, что одно и то же вещество может эффективно выполнять несколько таких функций. Поэтому подобная классификация может иметь лишь ограниченное значение. [c.59]

    Более радикальна замена сероводорода на вещества, не содержащие серы. Например, С. Д. Бесков и О. А. Слизковская предложили новый метод анализа, основанный на кислотно-щелочных особенностях поведения катионов различных металлов и их окислов. Кислотно-щелочная классификация использует в качестве групповых реактивов соляную и серную кислоты, гидроокиси натрия и аммония. Таким образом, здесь проявляется различное отношение катионов к важнейшим кислотам и основаниям. Эта классификация катионов непосредственно связана с положением соответствующих элементов в периодической системе Д. И. Менделеева (см. таблицу Кислотно-щелочная классификация по Ф. М. Шемякину). [c.149]

    Техническая классификация предусматривает следующие важнейшие группы красителей прямые (субстантивные)—окрашивающие целлюлозные волокна из нейтральных растворов сернистые—окрашивающие целлюлозные волокна из водных растворов сернистого натрия кислотные—окрашивающие шерсть и шелк из кислой ванны протравные для шерсти—окрашивающие шерсть подобно кислотным красителям, но с последующим закреплением окраски обработкой, например, хромовыми солями кубовые красители—окрашивающие целлюлозные волокна в форме бесцветных продуктов восстановления (так называемых лейкосоедине-ний) из слабощелочного раствора (куба) с последующим образованием красителя при окислении кислородом воздуха непосредственно на ткани пигменты и лаки—нерастворимые в воде красители, часто употребляемые в виде солей (они широко применяются в лакокрасочной и полиграфической промышленности). [c.516]

    Химическая экология природных вод. Химический состав и классификация природных вод. Макрокомпоненты хлорид-, сульфат-, карбо-нат- и гидрокарбонат-ионы, катионы натрия, калия, магния, кальция. Ионы кремния, железа, алюминия, фосфора, азота в разных степенях окисления, органические вещества в природных водах. Микрокомноненты ионы лития, стронция, меди, серебра, хрома, марганца, бромид-, иодид-ионы и их способность к комилексообразовапию. Эколого-химические особенности загрязнения гидросферы. Металлы как загрязняющие вещества источники ностунления в воду, токсические эффекты, химическое состояние. Органические соединения - загрязнители вод разных типов хлорорганические, фосфорорганические соединения. Особенности нефтяного загрязнения. Детергенты в природных водах. Коллоидные ПАВ и их влияние на загрязнение природной воды. [c.4]

    Сушат бикарбонат натрия горячим воздухом, нагнетаемым в сушилку вентилятором 18. Воздух подогревается в калорифере 16 водяным паром и очищается от частиц NaH Oj рукавным фильтром 11, после чего выбрасывается в атмосферу. Для классификации частиц сухого бикарбоната натрия служит сито-трясучка 14. Разделенный на фракции бикарбонат натрия проходит через магнитные сепараторы 15 и идет на расфасовку. [c.260]

    Синтез Фридлендера. При нагревании ацетанилида с хлористым цинком образуется краситель флаванилин [148]. Реакция, приводящая к синтезу фла-ванилина, и структура красителя оставались неясными до тех лор, пока Фридлендер не получил хинолин конденсацией о-аминобензальдегида с ацетальде гидом в присутствии едкого натра [149]. Замыкание цикла по Фридлеидеру состоит из двух различных реакций 1) образование шиффова основания (взаимодействие аминогруппы анилина и карбонильной группой ацетальдегида) и 2) реакция конденсации типа Кляйзена между альдегидной группой ароматического альдегида и а-водородными атомами ацетальдегида. Эта реакция, а также другие, весьма сходные с ней, будут отнесены к реакциям циклизации типа II, принимая во внимание признаки, определяющие такую классификацию (стр. 7). На практике обычно не изолируют первоначальный продукт реакции и хинолин получают непосредственно из реакционной смеси. [c.35]

    Исследование биологического действия на растения и животных наиболее изученных перхлоратов натрия и калия привело к открытию многих интересных фактов. В то время как эти два соединения относятся по классификации Ходжа и Стернера к слаботоксичным (для животных), перхлорилфторид или нитроэфир холин-перхлората действуют как среднетоксичные вещества, другие перхлораты могут быть более токсичными. Таким образом, биологическая активность перхлоратов изменяется в очень широком диапазоне. К сожалению, изучены немногие из большого числа известных перхлоратов и еще предстоит заполнить значительные пробелы в данной области, прежде чем станет возможным детальное выяснение механизма биологического действия перхлоратов. [c.165]

    Кинетика структурообразования и многообразие образующихся при формовании вискозных волокон структур во многом зависит от состава осадительных ванн, вызывающих осаждение ксантоге-ната из раствора. В качестве осадительных ванн применяют растворы серной кислоты и ее солей, растворы сульфата аммония, бикарбоната натрия, фосфорнокислых солей, органических кислот и др. Делались неоднократные попытки дать классификацию ванн. Наибольшую известность получила классификация, предложенная Сиссоном [106], в основу которой положена последовательность протекания процессов коагуляции, разложения ксаитогената и вытягивания волокна. Как уже отмечалось, процесс разложения ксаитогената из-за его сравнительно медленного протекания не оказывает существенного влияния на структуру геля, поэтому эту классификацию нельзя признать удачной. Более логичная классификация может быть построена на основе признаков какого-либо одного процесса. Таким процессом является коагуляция, т. е. фазовый переход от раствора к гелю [4]. [c.212]

    Среди отложений подвижного прибрежного мелководья на глубинах 30-50 м образуются толщи переслаивания, в которых глинистые прослои сильно опесчанены. Содержание алевро-пес-чаного материала в них достигает предельных значений, содержание карбонатов — до 5% и более, примесь органического вещества преимушественно гумусового типа незначительна. Глинистая фракция характеризуется полиминеральным составом (преобладают иллит, хлорит, каолинит), размеры чешуек до 3 мкм. Содержание обменных катионов натрия и кальция не превышает 1-3. Проницаемость пород по газу 10"2 мД, характерна значительная литогенетическая микротрещиноватость. Породы такого облика практически не могут быть покрышками, авторы рассматриваемой классификации относят их к VI классу. [c.292]

    Дналктичвские фуппы катионов — классификация катионов, основанная на свойствах таких соединений, как гидроксиды, карбонаты, сульфаты, сульфиды, хлориды. Существует несколько классификаций сульфидная (включает пять аналитических фупп катионов) /сисг/от-но-основная(шестьаналитическихфупп) аммиачно-фосфатная (пять аналитических фупп). В перечисленных классификациях имеется фуппа катионов 11, Ма, К и МН , дпя которых отсутствует фупповой реактив. Большинство их солей растворимо в воде. В сульфидной классификации к этой фуппе отнесен и катион Мд . Во всех классификациях сходны фуппы катионов, осаадаемые серной кислотой, карбонатом алюминия и гидрофосфатом натрия в присутствии аммиака (Са , Ва , 8г ). В фосфатной классификации с этими катионами объединены Мд , Ре , Ре , Ср, Мп , образующие нерастворимые осадки с РО "-ионом, а также А1 и В1 . Во всех классификациях выделяют фуппу катионов, образующих осадки с НС1, — Ад, и Нд , РЬ . В сходных фуппах находятся амфолиты-катионы — 2п , А1 , Зп , Зп , Аз , Аз , Сг . В аммиачно-фосфатной классификации учтены свойства катионов Зп , Аз , ЗЬ переходить в состояния наивысшего окисления под влиянием окислителей. Катионы N1 , Со , С<1 , Нд , Си образуют комплексы с аммиаком, что также объясняет сходство аналитических фупп в указанных классификациях. [c.28]

    Эрионит. Другим типом кислотостойких цеолитов является эрионит. В классификации, принятой в России, эрионит обозначают буквой Э, например, Na3, КЭ и т. д. Его открытие и описание относится к концу XVni столетия. Кроме катионов натрия в состав природных эрионитов могут входить катионы калия, кальция и магния. [c.369]

    По Усановичу, хлор является кислотой, потому что может присоединять анион-электрон, а натрий—основанием, так как он этот анион-электрон отдает. С1"—основание, ибо он может присоединить катион, Na" —кислота, так как он может присоединить анион. Но приведенный пример является окислительно-восстановительной реакцией. Следовательно, под формулировку кислотно-основных реакций Усановича подходят реакции солеобразования, окислительно-восстановительные реакции, реакции обмена одного иона на другой и т. д. Классификация стала настолько широкой, что она охватывает все классы химических соединений и поэтому становится сомнительной. К этому следует добавить, что всякое нейтральное вещество, выделив катион, становится анионом, и, наоборот, выделив анион, становится катионом. Фактически любое незаряженное вещество выделяет одновременно катион и анион, и поэтому очень трудно сказать, к [c.310]

    По-видимому, двумя наиболее существенными свойствами, которые могут быть использованы для определения относительных конфигураций, являются вращательная дисперсия и растворимость, т. е. характеристики, использованные первоначально Матье и Вернером. Этот метод может быть легко иллюстрирован примером одной недавней работы. 1-цис-[Соап Л У реагирует со смесью этанола и фтористого водорода (1 1) в присутствии карбоната серебра с образованием (1-цис-[Совп ] [166]. Предполагается, что при асимметрическом синтезе конфигурация сохраняется, так как кривые вращательной дисперсии реагента и продукта реакции очень похожи друг на друга (рис. 26). На рисунке видно также, что, хотя хлористое соединение является правовращающим в отношении линии натрия (590 Л1[д,), оно является левовращающим в отношении красной линии кадмия (644 жц), и, поскольку Вернер использовал в своих первых исследованиях линию кадмия, он приписал комплексу конфигурацию /-формы. Это указывает на необходимость при классификации оптических й- или г-изомеров [или (- -) или (—)] обязательно указывать длину волны. [c.199]

    В солевом составе речных и грунтовых вод обычно преобладают хлориды, сульфаты, бикарбонаты натрия, кальция и магния. Поэтому шестикомпонентная взаимная система Ка , Са , Мд //СГ, ЗОГ НСОз + Н2О получила название речной. Ввиду особой важности для народного хозяйства пресных вод их исследованию посвящено очень много работ. При этом предложены различные принципы классификации, которые позволили бы ориентироваться в огромном экспериментальном материале. Среди них видное место занимают геометрические методы, частично основанные на некоторых положениях физико-химического анализа. [c.83]

    Основная область научных исследований — химия белка. Разработал (1920—1930) методы получения пептидов, в частности ами-нолизом азлактонов аминокислотами или их эфирами (реакция Бергманна). Открыл (1926) реакцию циклизации К-галогенацил-аминокислот с одновременным де-галогенированием при нагревании с уксусным ангидридом в пиридине с образованием азлакюнов (реакция Бергманна). Установил (1928) способность натрия и лития присоединяться к многоядерным ароматическим углеводородам. Совместно с Л. Зервасом предложил (1932—1936) способы получения исходных производных аминокислот, в частности способ создания К-карбоксипроизводных. Провел цикл исследований, посвященных протеолитическим ферментам и положенных в основу современной классификации последних. Открыл (1934) реакцию определения С-концевой аминокислоты в пептидах через соответствующие альдегиды, полученные превращением пептида в азид, затем в карбобенз-оксипроизводное с последующими гидрированием и гидролизом (карбобензокси-метод, или реакция Бергманна). Издал труды Э. Г. Фи- [c.50]

    Предложенная классификация позволяет разделить сточные воды на сравнительно ограниченное число типов, для каждого из которых может быть выбрана наиболее рациональная технологическая схема огневого обезвреживания. В качестве примера рассмотрим определение типа сточной воды для щелочного стока производства капролактама со следующим составом примесей натриевые соли низших дикарбоновых кислот (в основном адипинат натрия) — 20—21,9% циклогексанон — 0,1—0,7% циклогексанол — 1,8—2,5% едкий натр — до 1% циклогексан — до 0,5%> Рассматриваемая сточная вода содержит углеводород (циклогексан), окисленные углеводороды (циклогексанон, циклогексанол), органические соединения натрия и минеральное вещество (едкий натр), т. е. относится к классу II. В ней содержатся как легколетучие (циклогексан), так и высококипящие органические вещества (натриевые соли органических кислот), т. е. по наличию легколетучих веществ эта сточная вода должна быть отнесена к группе Б. Экспериментальное исследование огневого обезвреживания показало, что температура отходящих газов, равная 980— 1000° С, является рабочей. При этом натриевые соли органических кислот превращаются в карбонат натрия, а едкий натр подвергается карбонизации, т. е. конечным минеральным продуктом процесса обезвреживания является карбонат натрия, имеющий температуру плавления 850° С, близкую к рабочей температуре процесса. В связи с этим сточная вода входит в подгруппу 1. Известно, что при температуре 980—1000°С карбонат натрия частично возгоняется, поэтому рассматриваемую сточную воду следует отнести к подгруппе в. Таким образом, в соответствии с предложенной классификацией щелочной сток производства капролактама представляет сточные воды типа ПБ1в. Предложенная классификация сточных вод распространяется и на жидкие горючие отходы, в составе которых могут быть минеральные вещества и органические соединения некоторых металлов. [c.123]


Смотреть страницы где упоминается термин Натрий классификация: [c.474]    [c.94]    [c.301]    [c.320]    [c.46]    [c.11]    [c.55]    [c.129]    [c.291]    [c.165]    [c.274]    [c.402]   
Справочник по ядохимикатам (1956) -- [ c.10 , c.11 , c.12 , c.24 , c.25 ]




ПОИСК







© 2025 chem21.info Реклама на сайте