Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление паров хлорида натрия

Таблица 8.19 Давление паров воды над насыщенными растворами хлорида и сульфата натрия Таблица 8.19 <a href="/info/149706">Давление паров воды</a> над <a href="/info/2672">насыщенными растворами</a> хлорида и сульфата натрия

    ДАВЛЕНИЕ ПАРОВ ВОДЫ НАД НАСЫЩЕННЫМИ РАСТВОРАМИ ХЛОРИДА И СУЛЬФАТА НАТРИЯ [c.594]

    Вычислить при 100° С давление пара раствора хлорида натрия с концентрацией 0,01 масс, доли (1%). Кажущуюся степень диссоциации соли в растворе принять равной единице. [c.88]

    Давление паров воды над растворами хлорида натрия различных концентраций составляет  [c.189]

    Плотность насыщенного раствора хлорида натрия Рр.ра = = 1,20 г/см , плотность ртути pHg = 13,60 г/см . Парциальным давлением водяного пара ввиду его малого значения в насыщенном растворе поваренной соли в данном опыте можно пренебречь. Таким образом [c.38]

    Содержание хлорида натрия в паровой фазе увеличивается с ростом температуры. Это явление объясняется тем, что с ростом температуры повышается давление пара, он становится более плотным и в определенной степени растворяет соль так же, как и жидкая вода. [c.110]

    Давление паров хлорида натрия при различных температурах [17]  [c.34]

    При конструировании аппаратуры необходимо учитывать физические и химические свойства исходных и получающихся веществ. Реакцию восстановления проводят в запаянных толстостенных стеклянных трубках и стальных бомбах или под обычным давлением, пропуская пары хлорида цад раскаленным металлом-восстановителем. Если же давление пара хлорида мало, то над хлоридом для его восстановления пропускают пары натрия или калия увлекаемые током водорода. [c.46]

    Давление в газометре р составляет р = + Рг — Рз, где Р — атмосферное давление, Па р2 — давление по манометру, Па Рз — давление пара воды над запорной жидкостью (для насыщенного раствора хлорида натрия — 3564,4 Па при 293 К и 4548,6 Па при 303 К). [c.154]

    Непористые адсорбенты, на поверхности которых с ростом давления пара происходит моно- и полимолекулярная адсорбция. К ним относятся непористые кристаллические и аморфные адсорбенты хлорид натрия, графитированные сажи, аэросилы. [c.164]

    Последовательность выполнения работы. Установить термостат на температуру 40° С. Приготовить растворы соли (например, хлорида натрия) в во.де с содержанием (моль/1000 г) 1 2 3 4 5. На установке, описанной на с. 162, измерить давление насыщенного пара чистой воды р1,о и над приготовленными рас- [c.177]

    При электролизе на катоде разряжаются ионы Na+ с образованием металлического натрия, а на аноде идет разряд ионов С1 и образуется газообразный хлор. На практике эта простая первичная схема электролиза осложняется. рядом побочных процессов, я также обстоятельств, затрудняющих осуществление производственного процесса. Основная сложность процесса заключается в том, что хлорид натрия плавится при 800° С, а натрий имеет температуру кипения около 883° С выше 800°С давление паров натрия настолько высоко, что он почти полностью испаряется. Кроме того, при этих температурах натрий энергично растворяется в расплаве и начинает реагировать с кислородом воздуха и с веществами, входящими в состав футеровки ванн. [c.311]


    Ацетонитрил находится в жидком состоянии в удобной для работы области температур (от -45 до +82 °С), относительно легко очищается и не разлагается при хранении после очистки. Он токсичен, а давление его паров достаточно велико, чтобы создать потенциальную опасность достижения предельно допустимой концентрации, равной 20 млн [2]. Как растворитель ацетонитрил особенно удобен для обработки реакционных смесей с целью идентификации или выделения продукта. Достаточно высокое давление паров при комнатной температуре позволяет легко отделить ацетонитрил выпариванием. Ацетонитрил весьма эффективно можно использовать для спектроскопических измерений, так как он полностью прозрачен в видимой и ближней ультрафиолетовой областях. Приготовленные обычным методом жидкие образцы при толщине кюветы 1 см обладают 90%-ной трансмиссией в области от 1900 до 2000 А [3. Ацетонитрил может быть использован в кюветах толщиной 1 см с вычитанием фона чистого, растворителя в ближней ИК-области до 2 мкм. Он характеризуется интенсивным поглощением в области спектра между 170 и 173 нм. Как растворитель для инфракрасных измерений ацетонитрил мало подходит для области поглощения хлорида натрия. [c.5]

    Расчет теплоты сублимации основан на том факте, что интенсивность пиков в спектре прямо пропорциональна давлению пара образца в ионном источнике. Образец помещают в емкость с отверстием очень небольшого диаметра (ячейка Кнудсена), соединяющим ее с ионным источником, поэтому вещество может попасть в источник только за счет диффузии чфез это отверстие. Если ячейка термостатирована и в ней имеется достаточное количество образца, так что часть его всегда находится в твердом виде, то теплоту сублимации образца можно определить, исследуя изменения интенсивности пика (которая связана с давлением пара) в зависимости от температуры образца. Небольшое количество образца, диффундирующее в ионный источник, не оказывает заметного влияния на равновесие. При таких исследованиях были получены интересные результаты относительно природы частиц, присутствующих в паре над некоторыми твердыми веществами, имеющими высокие температуры плавления. В паре над хлоридом лития были обнаружены мономеры, димеры и тримеры, а в паре над хлоридами натрия, калия и цезия — мономеры и димеры [20]. [c.327]

    Последовательность выполнения работы. Приготовить растворы соли (например, хлорида натрия) в воде концентрации (моль/1000 г) 1 2 3 4 5. На установке, описанной на с. 162, измерить давление насыщенного пара чистой воды и над приготовленными растворами, начиная с меньших концентраций. Измерения провести при температурах (°С) 50, 60, 70. На основании полученных экспериментальных данных а) рассчитать активность воды в указанных растворах при различных температурах по формуле б) построить график в координатах lgaпJO—1/7 и по тангенсу угла наклона кривой определить парциальную молярную т лоту растворения воды, ДЯ,, при разных концентрациях соли (дЯр5 д = 2,3 а) в) рассчитать химические [c.178]

    Хлорид серебра (т. пл. 455 °С) служит главным образом для вакуумноплотного приклеивания плоских окошек из стекла или кварца к стеклянным приборам. Его можно применять до —300 °С при этом давление пара 10 мм рт. ст. Хлорид серебра готовят из раствора нитрата серебра осаждением разбавленной соляной кислотой, промывают, сушат при 100 °С и при необходимости сплавляют в кварцевом или фарфоровом тигле. Он может сравнительно легко деформироваться даже при комнатной температуре. Соединяемые части нагревают до 500 °С, места контакта опускают в порошок хлорида серебра или посыпают им либо покрывают пленкой из хлорида серебра. Части соединяют и хлорид серебра равномерно проплавляют в пламени горелки, после чего место соединения медленно охлаждают, не допуская образования трещин. Для удаления замазки из хлорида серебра можно воспользоваться раствором тиосульфата натрия. [c.48]

    Физическая и аналитическая химия. В работе [65] были определены коэффициенты активности хлорида натрия в водно-метанольном растворителе и показано, что на стеклянные электроды в области их натриевой функции не действует специфически изменение природы растворителей, в отличие от наблюдаемого ранее в области водородной функции [66—68]. В дипломных работах, выполненных в ЛГУ под руководством М. М. Шульца, давление паров воды над насыщенными трехкомпонентными растворами солей рассчитывалось методом третьего компонента [69] по данным для э. д. с. элемента  [c.329]

    Концентрация солей в океане эквивалентна содержанию хлорида натрия в количестве примерно 30 000 вес. ч. на млн. ч. воды, а) Вычислите давление пара морской воды. (Р25 с 23 мм рт. ст.) б) Допустите, что морская Еода является идеальным раствором, и вычислите минимальную работу АО, необходимую для получения чистой воды и чистой соли из 1 кг морской воды, в) Дайте оценку обоснованности допущения об идеальности в пункте б . Еслн бы наблюдались отклонения от идеальности, было бы давление паров воды выше или ниже, чем над идеальным раствором  [c.197]


    Давление пара эвтонических растворов этой четверной системы исследовано почти до конца (до 486°,5, температура плавления эвтектики безводной системы из хлоридов и сульфатов натрия и калия равна 516°). [c.127]

    Вследствие большой растворимости при высоких температурах сульфатов натрия и калия в насыш,енных растворах хлоридов этих металлов максимальное давление пара эвтонических растворов значительно (на десятки и даже сотни атмосфер) ниже максимального давления пара насыщенных растворов хлоридов, взятых в отдельности. [c.128]

    С, так как дальнейшее повьЕБение температуры вызывает значительное испарение расплава вследствие роста давления пара хлорида натрия и хлористого железа. Кажущаяся. энергия активации найдена равной 10500 кал/моль для всего исследованного интервала температур. [c.80]

    Уже при температуре плавления летучесть хлоридов относительно велика. Так, давление пара хлорида натрия при 800° равно 1 мм рт. ст., тогда как у хлорида калия при 800°—4,5, а при 700°—1,5 мм рт. ст. Плотности паров соответствуют формулам Na l, K l и т. д. Следовательно, образуются ионные пары. [c.611]

    Исторический обзор возникновения интереса к неводным растворителям, а следовательно, и к выяснению роли растворителя в природе растворов, дан в известных монографиях Вальдена 121 иЮ. И. Соловьева [3]. Еще в середине XVI в. Бойль заинтересовался способностью спирта растворять хлориды железа и меди. Позднее ряд химиков отмечает и использует растворяющую способность спирта. В 1796 г. русский химик Ловиц использует спирт для отделения хлоридов кальция и стронция от нерастворимого хлорида бария, как будто положив начало применению неводных растворителей в аналитических целях. В первой половине XIX в. подобные наблюдения и их практическое применение встречаются чаще, причем химики устанавливают случаи химического взаимодействия растворителя с растворенным веществом, показывая, что и в органических жидкостях могут образовываться сольваты (Грэхем, Дюма, Либих, Кульман). Основным свойством, которое при этом изучалось, была растворимость. В 80-х годах XIX в. Рауль, исследуя в целях определения молекулярных весов понижение температур замерзания и повышение температур кипения нри растворении, отмечает принципиальное сходство между водой и неводными средами. Но систематическое физико-химическое изучение неводных растворов наряду с водными начинается только в самом конце столетия, когда Каррара осуществляет измерение электропроводности растворов триэтилсульфония в ацетоне, метиловом, этиловом и бензиловом спиртах, а также ионизации различных кислот, оснований и солей в метиловом спирте. В этот же период М. С. Вревский проводит измерения теплоемкостей растворов хлорида кобальта в смесях воды и этилового спирта [4], а также давлений и состава паров над растворами десяти электролитов в смесях воды и метилового спирта [5]. Им впервые четко установлено явление высаливания спирта и определено как .. . следствие неравномерного взаимодействия соли с частицами растворителя . Несколько раньше на самый факт повышения общего давления пара при растворении хлорида натрия в смесях этанола и воды, на первый взгляд противоречащий закону Рауля, обратил внимание И. А. Каблуков [6]. Пожалуй, эти работы можно считать первыми, в которых подход к смешанным растворителям, к избирательной сольватации и к специфике гидратационной способности воды близок современному пониманию этих вопросов. Мы возвратимся к этому сопоставлению в гл. X. [c.24]

    Напишите электродные реакции, протекающие в растворе хлорида натрия. Рассчитайте равновесные потенциалы этих реакций при стандартных пар-циальны.х давлениях газов. Объясните последовательность электродных реакций на примере электролиза данного раствора. [c.223]

    В производстве хлора электролитическим разложением водного раствора хлорида натрия из электролизера выделяются хлор и водород — соответственно на аноде и катоде. При этом от анода отводится смесь хлора и водяных паров. Из этой смеси сначала конденсируют влагу при 20—30 °С, затем хлор полностью осушают купоросным маслом и применяют его как в газообразном, так и в ожиженном виде. Ожижают хлор или при Т 293 К, но после повышения давления до 1,4н-1,6 МПа, или при атмосферном (иногда пониженном) давлении с охлаждением до 223 К или при промежуточных условиях Т = 248-н268 К и Р = 0,3- -0,6 МПа. В первом случае для охлаждения применяют промышленную воду, во втором — хладон-30 (дихлорметан, Гдл = 176 К, 7 кип = 313 К), в третьем — водный раствор СаС1з. [c.60]

    Получение соды каустической. Соду каустическую диафраг-менную (товарный продукт) выпускают по ГОСТ 2263—79 сорт РД — высший (гидроксида натрия не менее 46%, хлорида натрия не более 3,0%, карбоната натрия не более 0,4%, железа в расчете на РегОз не более 0,007%, хлората натрия не более 0,25%) или по специальному требованию потребителей с содержанием гидроксида натрия не менее 50%. Ее получают путем выпарки электрощелоков в многокорпусных выпарных системах с двух-, трех- и четырехступенчатым использованием пара. Число ступеней вьгаарки, т. е. число последовательно включенных по пару корпусов, определяется давлением греющего пара Рсв и давлением сокового пара в последней ступени [c.68]

    Если вести обработку такой соли, как хлорид натрия, в жестких условиях (при температуре 500 °С и давлении 1 МПа, с применением воды в виде перегретого пара), то Na l гидролизуется. Хлороводород начинает удаляться с паром, и парадоксальный гидролиз становится явью  [c.99]

    Эти значения были предоставлены авторам Р. А. Робинзоном. Они были согласованы с наилучшими результатами определения коэффициентов активности хлоридов и бромидов натрия и калия с помощью метода электродвижущих сил и по давлению пара (десять независимых измерений), а также с результатами последних определений изопиестических отношений. Значения осмотических коэффициентов даны с точностью до четвертого знака после запятой, чтобы можно было с их помощью провести плавную кривую. Последняя значащая цифра не имеет физическог значения. [c.276]

    Правильность некоторых значений средних коэффициентов активности для более высоких концентраций была независимым путем подтверждена Стоксом [30] с помощью метода, при котором раствор соли при 25° приводится в равновесие с водой, находящейся при более низкой температуре, через газовую фазу. Путем точного измерения разности температур находят температуру воды и определяют ее активность из данных но стандартным значениям, давлений пара, приведенным в International riti al Tables . Результаты, полученные для концентрированных растворов хлоридов натрия и кальция, а также для гидрата окиси натрия, свидетельствуют о том, что этот метод является весьма точным. [c.568]

    Отличительной особенностью адсорбции этана при —183 или —195°, удобной для практического использования, является низкое давление насыщенного пара (0,0083 и 0,0017 Л1м рт. ст. соответственно). В соответствии с этим мала поправка на мертвое пространство (см. стр. 352), Эта особенность использовалась рядом исследователей. Первое исследование, по-видимому, принадлежит Вутену и Брауну [64], которые брали для молекулы этана Л, = 24 А , в то время как Росс [65] полагал Лт = 23 А при адсорбции на хлоридах натрия и калия и двуокиси титана, основываясь на сравнении с площадью, определенной по изотермам азота. Однако Джонсон и др. [66], а позже О Коннор и Улиг [67] использовали значение 20,5 А , основываясь на плотности твердого этана. В этом случае получено удовлетворительное соответствие значений удельной поверхности, рассчитанной методом БЭТ, и геометрической площади для стержней и шариков из стекла пирекс в качестве адсорбента. Например, по данным адсорбции этана при —183° шарики имели площадь поверхности 142 сл1 и геометрическую площадь 137 см . Для фольги железа, восстановленной водородом при 1000°, а затем откачанной при 400°, было получено значение фактора шероховатости г, равное 1,2. Для нержавеющей стали, травленной кислотой, г = = 1,4, а для полированной электрически — 1,12. [c.98]

    Чистый хлорид натрия не гигроскопичен. Известное увлажнение поваренной соли на влажном воздухе объясняется содержанием в ней примесей. Хлорид натрия кристаллизуется в виде бесцветных правильных кубов удельного веса 2,17. При температуре плавления (801°) он уже заметно летуч, однако в меньшей степени, чем хлорид калия. (Давление пара Na l по данным Хориба (Horiba) при 800° равно 1 мм рт ст, в то время как у КС1 — при 800° давление пара равно 4.5 и при 700° 1,5 мм рт ст). Плотность пара соответствует формуле Na l. [c.214]

    Па рис. 2 приведены изотермы сорбции-десорбции паров воды для золотисто-желтого образца, полученного при окислении железа в 1 % растворе хлорида аммония при комнатной температуре, с удельной поверхностью 22-м /кг (образец 1) и землистого (сиена) цвета образца, полученного при окислении железа в 10 /о растворе хлорида натрия при 371 К, с удельной поверхностью 1 56-10 м /кг (образец 2). Изотермы сняты эксикаторным методом. Образцы перед снятием изотерм не подвергали термической обработке, а только выдерживали до постоянной массы над ангидроном. Обе изотермы полностью обратимы. Адсар бция паров воды образцом 1 в интервале равновесных относительных давлений от 0,1 до 0,65 незначительна и увеличив1ается только при более высоких давлениях, что свидетельствует о малой сорбционной активности образца. Адсорбция паров воды образца 2 [c.74]


Смотреть страницы где упоминается термин Давление паров хлорида натрия: [c.518]    [c.180]    [c.298]    [c.318]    [c.186]    [c.346]    [c.298]    [c.322]    [c.211]    [c.427]    [c.100]    [c.41]    [c.127]   
Справочник по производству хлора каустической соды и основных хлорпродуктов (1976) -- [ c.149 ]




ПОИСК





Смотрите так же термины и статьи:

Давление натрия

Давление паров воды над насыщенными растворами хлорида и сульфата натрия

Давление паров воды над насыщенными растворами хлорида натрия

Давление паров над растворами хлорида натрия

Натрия хлорид

Хлорид натрия Поваренная соль давление паров над растворами

Хлорид натрия давление паров водных растворов

Хлориды давление паров



© 2025 chem21.info Реклама на сайте