Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен соединение с водородом

    На многих предприятиях в качестве топлива используют заводские газы — побочные продукты технологических установок. Ресурсы заводских газов зависят от глубины переработки углеводородного сырья. В производствах, процессы которых протекают под давлением водорода (риформинг, гидроочистка, изомеризация), образуются газы, не содержащие непредельных углеводородов, п их применение для сжигания в печах не вызывает затруднений. В то же время, состав побочных газов термических и некоторых каталитических процессов характеризуется заметным содержанием непредельных углеводородов. Их концентрация зависит, главным образом, от жесткости режима и в определенной степени от состава сырья и применяемых катализаторов. Входящая в состав заводских газов жирная часть (изобутан, этилены) является ценным исходным сырьем для получения высокооктанового бензина, а сухая часть (водород, метан п этан- -этилен) применяется в качестве технологического топлива. Заводские топливные газы, особенно с установок пиролиза бензина, необходимо подвергать очистке от непредельных углеводородов (фракций С4, С5 и диеновых соединений). Указанные непредельные углеводороды легко полимери-зуются и сополимеризуются с продуктами сероводородной коррозии и образуют плотные отложения в арматуре трубопроводов, в узлах газовых горелок и в капиллярах КИП. Это нарушает работу горелок или совсем выводит их из строя. [c.48]


    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]

    И в данном случае образуется молекулярное соединение ВРз НР, которое является катализатором. Основанием такого заключения служат многочисленные наблюдения, когда каждое из этих соединений в отдельности не активирует реакцию алкилирования ароматических углеводородов олефинами, взятые вместе проявляют высокую каталитическую активность. Известно, Например, что в присутствии только фтористого водорода бензол не алкилируется этиленом. Недостаточно энергично взаимодействуют эти реагенты и с одним ВРз. При взаимодействии бензола с этиленом в молярных отношениях 1 0,2 в присутствии ВРз и НР при температуре 220° С и повышенном давлении реакция протекает очень энергично, и этилбензол получается с выходом до 86% от теоретического. Фтористый - бор в этих реакциях применяется обычно в количестве 3—6 вес. %, а НР — 5—15 вес. %. [c.86]


    Ароматические углеводороды вследствие своей резонансной характеристики более устойчивы к иррадиации [772, 773], но с ними могут индуцироваться химические реакции. Таким образом, обработка Х-лучами нейтральных водных растворов бензола, насьщенного кислородом, дает фенол, пирокатехин-хинол, пара-бензохинон, альдегид и следы дифенила. В этом случае молекулярный кислород, но-видимому, принимает участие в реакциях радикалов [774]. Можно заметить для сравнения в водном растворе, содержанием кислород и этилен, гамма-лучи вызывают цепные реакции, которые образуют альдегиды с меньшим содержанием спиртов, кислоты, перекиси водорода и других перекисей. Для альдегидов выход в молекулах на 100 эе был около 200 [775]. Подобным же образом индуцируется гамма-лучами хлорирование более низких ароматических соединений таких, как бензол, толуол, ксилол и мезитилен однако бензол устойчив [776]. Как для бензола, так и для толуола хлорирование пропорционально квадратному корню интенсивности излучения это применимо и к присоединению, и к замещению [777 ]. Изучалось также и влияние радиации на асфальты [778]. Изменения, по-видимому, в отличие от вызываемых продувкой воздухом, линеарны по времени и проходят с небольшой скоростью. [c.152]

    Микропримеси, которые могут оказаться в этилене, идущем на полимеризацию, бывают обусловлены различными причинами. Такие микропримеси, как азот и другие инертные газы, могут присутствовать в углеводородном газе или в растворенном виде во фракциях нефти, подвергающихся крекингу или пиролизу. В нефти содержатся сернистые соединения, из которых при пиролизе образуется сероводород, частично сероокись углерода и другие сернистые соединения. В процессе пиролиза углеводородов образуются водород, метан, ацетилен, этан, пропилен и другие углеводороды. При пиролизе в присутствии водяного пара образуются двуокись и окись углерода. В тех случаях, когда для удаления нежелательных компонентов применяются растворители, пары этих растворителей также попадают в этилен или иной продукт. [c.303]

    Разложение этана процесс протекает в три стадии 1) обратимая диссоциация этана на этилен и водород, 2) образование нестабильного промежуточного соединения и 3) разложение его и образование конечных продуктов, таких, как метан и продукты конденсации [c.89]

    I Полимеризация пропилена в полипропилен проводится в растворителе в пределах температур 20—120° С, но обычно при 60—80° С. Реакция ведется под давлением 2—8 ат в течение от /2 До 10 час. Молекулярный вес полученного полипропилена в зависимости от условий реакции и применяемых катализаторов находится в пределах 40 000—150 000— 700 ООО. Для того чтобы получить полипропилен заданного молекулярного веса, применяется ряд регуляторов молекулярного веса, способствующих обрыву кинетических цепей. В качестве регуляторов молекулярного веса используется молекулярный водород, который добавляется к этилену, хлористый водород и соединения, содержащие подвижный атом водорода амины, меркаптаны и пр. Полимеризация пропилена и других а-олефинов в присутствии анионных катализаторов происходит медленней, чем полимеризация этилена. [c.94]

    Как сказано ранее, Дальтон при определении относительных атомных весов принял вес атома водорода за единицу. Изучая два соединения водорода с углеродом, этилен и метан, он нашел, что в этилене на одну часть водорода приходится 5,4 части углерода, тогда как в метане на то же количество углерода приходится двойное количество водорода. При установлении атомного веса углерода Дальтон также основывался на составе угольной кислоты. Уже Гей-Люссак нашел, что она состоит из 72% кислорода и 28% углерода (или, принимая С равным 12 и О равным 16, из 73,64% О и 26,36% С). Дальтон заключает Из различных соединений углерода с другими элементами... вес его конечного атома получается равным 5 или, вероятно, 5,4, принимая вес атома водорода ва единицу  [c.171]

    Развивая аналогию, можно отметить, что увеличенная электрофильность атома водорода в полиядерных карбонилах соответствует повышенной кислотности атома водорода, находящегося у системы сопряженных связей в органических соединениях (водород в бензоле имеет более кислый характер, чем в этилене [2]). [c.35]

    Для очистки от серы газы промывают щелочью и водой. Для очистки этилена от ацетилена проводят селективное гидрирование ацетилена. Жесткие требования к этилену, применяемому в производстве этиленоксида, предъявляются также по содержанию непредельных соединений, водорода и оксидов углерода. Воздух, используемый для окисления этилена, также должен содержать минимальное количество ацетилена и серосодержащих соединений. Кроме того, в воздухе не должно быть пыли, масел и других примесей, которые могли бы снизить активность катализатора. [c.148]

    Известно, что металлы, ускоряющие гидрирование ненасыщенных соединений — никель, медь, платина, палладий — обладают способностью при более повышенной температуре дегидрировать насыщенные соединения. Так, например, при температуре около 200° этилен при помощи катализаторов можно легко гидрировать в этан, но при повышении температуры до 250—300° этан под действием тех же катализаторов распадается на этилен и водород. Вполне очевидно, что при пограничных температурах мы имеем дело с равновесным состоянием СНг СНг + Нг СНз СНз. Так как гидрирование под действием палладия происходит и при обыкновенной температуре и так как тут тоже можно предположить наличие обратимой реакции, то Виланд поставил себе задачей исследовать, может ли палладий дегидрировать водородистые соединения и при обыкновенной температуре. [c.118]


    Анализ свидетельствует о том, что в газообразных продуктах реакции присутствует из непредельных соединений только этилен. Кроме водорода и этилена, в газовой фазе обнаруживалось от 1 до 5% СО и предельных углеводородов, СО — в количестве от 4 до 8%. [c.175]

    Осветление растворов, а также выделение из них нерастворимых, чувствительных к воздуху веществ легко достигается центрифугированием. В связи с крайней чувствительностью алюминийорганических соединений к следам кислорода и влаги этилен и водород перед употреблением очищались. [c.320]

    Электролизом комплексных соединений триэтилалюминия можно получать практически с количественным выходом тетраэтилсвинец в этом случае анод электролизера изготавливают из свинца. Тетраэтилсвинец мало растворим в электролите, стекает с анода и собирается внизу в виде жидкого слоя, который можно непрерывно отбирать. Выделяющийся на катоде алюминий реагирует с этиленом и водородом, образуя триэтилалюминий, который возвращают в электролит. [c.14]

    Чтобы перейти к дальнейшим обобщениям, сделаем следующее допущение. Пусть для перегородки, разделяющей фазы аир, будут характерны такие свойства для молекул компонентов фаз а или р она непроницаема, а для атомов, из которых состоят эти молекулы, — проницаема. Например, фаза а содержит этан, а фаза 3 — этилен и молекулярный водород. Молекулы этих соединений не могут пройти через перегородку, в то время как элементарный углерод и атомарный водород проходят сквозь нее. Так как фазы системы не содержат элементарных углерода и водорода, то в их состав могут входить только три компонента системы и после переноса атомы вновь соединятся, образуя те же три компонента  [c.128]

    Что реакция переноса водорода отчасти идет при этилировании в присутствии хлористого алюминия, показывает образование этана в количестве 7% [22]. Из катализаторного слоя был выделен гексаэтилбензол с выходом 14% на этилен. Выделение этого соединения указывает на то. что бензол образовался но реакции переноса водорода так как бензол гораздо легче, чем циклопарафиновые углеводороды, вступает в реакцию с олефинами, то весь образовавшийся бензол был полностью этилирован. [c.339]

    Реакция является сильно эндотермичной при превращении этана в этилен поглощается 32 ккал моль. Расщепление этана начинается при температуре 500°. Повышение температуры значительно увеличивает скорость реакции, при температуре 600° она достигает заметной величины. При температуре 820—830°, времени контакта 1 сек. и давлении 1 ama разложение этана составляет 60—62%, выход этилена 45—47% на пропущенный и 77% на разложенный этан [216]. При дальнейшем повышении температуры и том же времени контакта выход этилена снижается в результате вторичных реакций, ведущих к образованию ацетилена, ароматических соединений, п далее метапа, углерода и водорода  [c.39]

    Чаще всего баллонный водород содержит небольшие количества кислорода. Нередко в нем встречаются галогены (главным образом хлор) и соединения серы. Водород, полученный из природного газа или легких углеводородов, может содержать галогены, серу, щелочь, диоксид углерода, азот и даже ацетилен и этилен. [c.105]

    В результате сильных электрических разрядов возникают частицы плазмы, которые обладают высокой химической активностью. Это обстоятельство, в свою очередь, создает предпосылки для протекания таких реакций, которые невозможны при обычных условиях. По мнению Воробьева, метан, выделяющийся из органических соединений, при воздействии подземного электрического разряда может подвергнуться частичному дегидрированию, то есть потерять некоторую долю водорода. В результате образуются свободные углеводородные радикалы СН, СН2 и СНз. Соединяясь между собой, они образуют ацетилен, этилен и другие углеводороды, входящие в состав нефти. [c.28]

    Пиролиз этана при продолжительном нагревании давал непредельные и ароматические углеводороды [186]. При температурах порядка 800—900° С главной реакцией является дегидрогенизация. При этом получается этилен и водород [187, 188]. Пиролиз пропана, как было установлено, дает большое количество этилена и пропилена, а также бутадиен и некоторые ароматические углеводороды. Пиролиз бутана [189, 190] в качестве основных продуктов реакции дал этилен и пропилен. Бьши обнаружены также углерод, метан, другие олефиновые углеводороды, ацетиленовые и ароматические соединения. В 1923 г. Дж. Галингаэрт изучил пиролиз пентана [191] и нашел, что при этом образуется значительное количество этилена (25%) и бутилена (20%). Из всех работ по пиролизу алифатических углеводородов наибольшее число в конце прошлого и в начале нашего века было посвящено к-гексану [192—196], поскольку па его примере химикам представлялся наиболее вероятным переход от алифатических углеводородов к ароматическим. Эти работы показали, что главными продуктами пиролиза являются этилен, бензол и ненасыщенные углеводороды. При этом термодинамические расчеты Дж. Турке-вича и Г. Тэйлора [197] для к-гексана подтвердили, что его пиролиз должен давать бензол и водород [c.86]

    По-видимому, значительно больший интерес представляют сведения [44, 95, 96] о возможности приготовления металлорганических соединений электролизом с растворимым анодом эфионых растворов анионсодержащих комплексных соединений бора общей формулы NaB( 2H5)4. В качестве растворителя рекомендуется применять высококипящие эфиры, например диметиловый или диэтиловый эфир этиленгликоля [44, 961 Пои этом выход тетраэтилсвинца по току приближается к 100%. Образующийся в процессе электролиза В(С Н5)з регенерируют, пропуская через него в присутствии катализаторов этилен и водород. Образующийся на аноде тетраэтилсвинец экстрагируют гексапом. [c.501]

    Установлено, что в результате реакции ларофазного окисления бензола кислородом образуются фенол, различные конденсированные соединения (включая дифенил), так называемые амолы , с температурой кипения выше, чам у фенола, окись углерода, углекислый газ, продукты пиролиза (метан, этилен, ацетилен, водород и др.), а также хинон и формальдегид. Малеиновый анпидрид и дифениловый эфир не обнаружены. Количество смолы определяют (путем отгонки бензола из навески конденсата на полумикродистиллящ ионной колонке. Разгонкой с паром и обработкой щелочью установлено, что смола в основном состоит из дифенила (от 30 до 50% по весу) и высокомолекулярных кислородсодержащих соединений, нерастворимых в щелоча Х. [c.96]

    Много усилий было затрачено на разработку методов определения микропримесей сероводорода и других газообразных соединений серы в чистых газах, например в этилене [109], водороде [110], диоксиде углерода [111], азоте [112] и, конечно, в воздухе [113—116] причем содержание таких примесей часто составляет всего несколько 10 %. [c.354]

    При присоединении хлорноватистой хаюлоты к олефинам, например к этилену, образуются хлоралкоголи — соединения, в которых атом хлора и гидроксильная группа находятся у соседних углеродных атомов. Такие соединения называют хлоргидринами. Реакцией хлоргидринов со щелочами, сопровождающейся отщеплением хлористого водорода, очень легко образуются циклические эфиры, так называемые окисные соединения  [c.183]

    Так, например, хлористый этилен при 300—425° можно хлориро- вать в ржплавленной соляной бане с образованием 1,1,2-трихлор-этана. При более высоких температурах в качестве основных продуктов реакции образуются ди- и трихлорэтилен. Образование этих соединений объясняется отщеплением хлористого водорода от трихлорэтана и тетрахлорэтапа при указанных высоких температурах. Этим же способом можно также проводить хлорирование бензола. [c.155]

    Утверждение, что парафиновые углеводороды являются соединениями врагнт а или слишком малоактивными , было твердо и окончательно опровергнуто после того, как Ипатьев [20] и его сотрудники показали, что конденсация изопарафинов и олефинов идет даже при обычной температуре в присутствии кислотных катализаторов. В июне 1932 г. Ипатьев и Пайне показали, что хлористый алюминий, промотированный хлористым водородом, катализирует алкилирование гексдна этиленом. Позднее Гросс исследовал другие парафиновые углеводороды и катализаторы, в частности такой катализатор, как фтористый бор. Аналогичное алкилирование циклопарафинов изучал Комаревский. [c.304]

    Облучение к-гептапа силой в 8,7 10 электронвольт (эв) дает смесь, содержащую 16 соединений, включающих к-пептан и 3-метилпентан наиболее тяжелый — н-додекан циклогексан да ет н-гексан и дициклогексан. Интересно, что электронная иррадиация этана и дейтероэтана показывает, что молекулы водорода могут внутримолекулярно разрываться [763]. Образование полимеров сопровождает эту парафиновую иррадиацию этилен, бутадиен образуются от этана вместе с небольшим количеством ацетилена, который в конце выделяется как твердое тело. Реакция, вероятно, представляет собой полимеризацию прибавления, инициированную радикалами. Полиэтиленовые синтетические смолы могут образовываться гамма-лучевой иррадиацией этилена [764,, 765]. [c.151]

    В промышленности приняты следующие процессы жидкофазный процесс синтеза этилбензола на катализаторе AI I3. Процесс ведут в стальных колоннах, облицованных специальными антикоррозионными материалами, реакция идет при температуре кипения реакционной смеси (80—100°С) и атмосферном давлении. В качестве сырья используется бензол со степенью чистоты пе -ниже 99%. Твердый хлорид алюминия прибавляется к реакционной смеси и -в реакторе образуется соответствующее комплексное соединение. Бе-нзол-сырье и бензол-рециркулят после предварительной осушки подаются в реактор. Хлористый водород или хлористый этилен также добавляются в реактор. Жидкие продукты из алкилатора охлаждаются и направляются в отстойник, где -каталитический комплекс отделяется и возвращается в алкилатор. Алкилат промывается водой, затем 20%-пой водной щелочью для нейтрализации НС1, после чего разделяется на -индивидуальные компоненты на стадии ректификации. [c.266]

    Химические эквиваленты различных элементов не постоянны и в разных соединениях для одного и того же элемента могут быть не одинаковы. Так, например, химический эквивалент кислорода в воде равен 8, а в пероксиде водорода Н2О2 — 16. Эквивалент углерода в метане СН4 равен 3, в этапе СгНа — 4, в этилене С2Н4— 6, в ацетилене С2Н2 и бензоле СбНа — 12 и т. д. Однако для большинства элементов набор значений эквивалентов не так разнообразен. [c.15]

    Реакции насыщенных соединений с этиленом, инициируемые свободными радикалами (образующимися, например, из пероксидов), приводят к образованию в основном полимеров, молекулы которых состоят из углеводородного радикала и полиметилено-вой цепочки, заканчивающейся атомом водорода [1]. [c.131]

    Этилдиоксан-1,3 (ХУП) был получен при взаимодействии диоксана-1,3 с этиленом в присутствии соляной кислоты и грег-бутилпероксида при 130—140 °С (опыты 29 и 30). Однако основными продуктами были бис(2-хлорэтиловый) эфир (XIX) и образующийся в меньшем количестве 2-гидроксизтил-2 -хлорэтило-вый эфир (XVIII). Эти соединения были получены в результате гидролиза диоксана-1,3 хлористым водородом  [c.148]

    Катализируемые основаниями реакции углерод-углеродного (по С—С-овязи) шрисоединения представляют интерес для препаративных целей, поскольку они позволяют получать с хорошим выходом углеводороды и аналогичные им соединения щростым одностадийным процессом. Возможность проведения этих реакций определяется тем, что углеводороды и другие соединения, содержащие бензильный или аллильный атом водорода, являются углеродными кислотами , имеющими рКа в интервале от 35 до 37 они могут отдавать протон основанию и превращаться в карба-нионы. Эти карбаиионы способны присоединяться по двойной связи ненасыщенных углеводородов. Превращения, наблюдаемые в ходе цепной каталитической реакции, иллюстрируются приведенными ниже уравнениями (реагенты — толуол и этилен, катализатор — натрий) [5]  [c.164]

    Отличительная особенность реакций алкилароматических соединений с олефинами, катализируемых основаниями, — возможность удлинения алкильной группы. Алкилароматические углеводороды, используемые в этой реакции, должны содержать бензильный атом водорода, а в качестве наиболее часто применяемых олефинов можно назвать этилен, пропилен, стирол и его производные. Весьма эффективными катализаторами являются натрий и калий, причем натрий обычно требует присутствия инициатора для начала реакции. [c.169]

    Перерабатывать образовавшуюся в результате пиролиза газовую смесь мои но несколькими способами. На рис. 19 приведена схема переработки газовой смеси дистилляцией под давлением. Газ после компримирования обезвоживают, затем сжижают охла кде-нием и разгоняют. Вначале отделяется остаточный газ (водород и метан), который используют для отопительнрлх целей затем этилен отделяется от этана, кипящего значительно ниже. Этан и углеводороды Ся выделяют одновременно с образовавшимися нри пиролизе ароматическими углеводородами. Из 100 кг подвергнутого пиролизу пропана получают примерно 12 кг продуктов, кипящих выше него, в первую очередь ароматические углеводородьс (главным образом бензол). Этан и углеводороды Сз отделяют от этих соединений, смешивают со свежим газом, подлежащим переработке, и снова пускают в процесс. [c.88]


Смотреть страницы где упоминается термин Этилен соединение с водородом: [c.19]    [c.299]    [c.10]    [c.95]    [c.260]    [c.31]    [c.63]    [c.467]    [c.19]    [c.247]    [c.454]    [c.371]    [c.91]    [c.163]    [c.164]    [c.129]   
История химии (1966) -- [ c.323 ]




ПОИСК





Смотрите так же термины и статьи:

Водород из этилена

Водород соединения



© 2025 chem21.info Реклама на сайте