Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газойль синтетический

    Природный из калинской нефти нижнего отдела Синтетический из газойля тяжелой балаханской и бинагадинской нефтей Природный [c.154]

    Синтетический из газойля тяжелой балаханской нефти [c.154]

    Соли тяжелых металлов. Катализаторы, как синтетические, так и природные, существенно изменяют избирательность при переработке сырья с высоким содержанием тяжелых металлов, главным образом никеля, меди и ванадия. Эти металлы, отлагаясь на поверхности катализатора, превращаются в каталитически активные окислы и ведут себя как катализаторы дегидрирования увеличивается выход кокса и малополезных газов, снижается выход бензина и легкого крекинг-газойля. Снижение активности является результатом спекания катализатора вследствие огромного выделения тепла в зоне вокруг адсорбированного металла во время регенерации и уменьшения удельной поверхности по мере закрытия пор. [c.21]


    Отравляется природный и синтетический катализатор. Отравление катализатора крекинга тяжелыми металлами происходит и в промышленных условиях [206]. Снижение селективности катализатора от отравления вызывает резкое ухудшение экономических показателей процесса. Это было показано на следующем эксперименте. На промышленной установке каталитического крекинга с псевдоожиженным слоем пылевидного катализатора в течение двух с лишним лет перерабатывалось сырье трех типов с высоким содержанием металлов полученные результаты сравнивали с результатами работы установки на чистом вакуумном газойле. Содержание металлов в сырье (в вес.%) приводится ниже  [c.148]

    Свойства синтетической нефти, получаемой из природных битумов, позволяют использовать для ее переработки различные технологические схемы. Для этой нефти характерно высокое содержание циклических структур, особенно ароматических соединений, которые сконцентрированы в средних дистиллятах и газойле. Этим объясняется низкое содержание в ней водорода и высокая плотность при отсутствии тяжелых остаточных [c.105]

    Одним из вариантов использования синтетических битумных нефтей может стать переработка их на специализированных предприятиях, где наряду с моторными топливами организуется производство ряда нефтехимических продуктов. В г. Эдмонтоне (Канада) в 1983 г. введено в действие первое такое предприятие мощностью 2,5 млн. т в год синтетической нефти. Помимо установки атмосферной перегонки в его состав входят процессы гидрокрекинга атмосферного газойля, гидроочистки и риформинга бензиновых фракций, экстракции и деалкилирования ароматических углеводородов, газофракционирования и производства водорода. Основная продукция, выпускаемая этим заводом,— бензин, дизельное и реактивное топлива и бензол. Капитальные затраты на его сооружение составили 820 млн, долл. (в ценах 1982 г.) [115]. [c.107]

    Если исходить из газойля, то при постоянном возвраш епии в процесс синтетического газойля суммарный выход бензина достигает 60—65% [c.240]

    Сернистые соединения в общем влияют на синтетические катализаторы незначительно, однако сырье, подобное арланскому, как правило, характеризуется повышенной смолистостью и содержит азотистые соединения и тяжелые металлы (ванадий, кобальт, никель). Эти металлы содержатся в нефтях в виде металлоорганических соединений и в основном концентрируются в остатках, однако попадают и в вакуумные газойли. В вакуумных, газойлях некоторых сернистых нефтей содержание ванадия (0,6-=-1,0) 10" %, а содержание никеля (0,3- -0,6) 10 %. В процессе крекинга эти, казалось бы, ничтожные количества металлов отлагаются на катализаторе, в результате чего его активность и избирательность снижаются. Так, никель ускоряет образование кокса и способствует реакциям дегидрирования с обогащением газа водородом. Избыточное коксообразование вызывают и другие тяжелые металлы. [c.142]


    Результаты пиролиза вакуумного газойля, предварительно подвергнутого гидрокрекингу, в лабораторном реакторе при 780°С, времени контакта 0,15 с и 100%-м разбавлении паром на катализаторе ванадат калия на синтетическом корундовом носителе приведены ниже [384] (выход продуктов пиролиза, %)  [c.182]

    В заводской практике процесс каталитического крекинга проводится в пределах 450—500° С. В этом интервале температур процесс образования бензина близок к оптимальному. Повышение температуры крекинга до 510—550° С сопровождается значительным увеличением выхода газа и кокса и глубокой ароматизацией каталитического газойля. На установках с циркулирующим катализатором, при прочих равных условиях, с ростом температуры в рабочей зоне реактора повышаются общая глубина превращения сырья, выход сухого газа, фракций Сз и С4 и, соответственно, содержание в этих фракциях пропилена и бу-тиленов. Выход бензина также растет, но отношение выхода дебутанизированного бензина к сумме выходов сухого газа, кокса и фракции С4 значительно снижается. Октановое число получаемого дебутанизированного бензина и плотность каталитического газойля с повышением температуры возрастают. В табл. 17 показано влияние повышения температуры крекинга тяжелого солярового дистиллята на выходы и качество продуктов при объемной скорости 1 м 1м ч, кратности циркуляции катализатора 1,5 и индексе активности шарикового синтетического алюмосиликата. [c.166]

    Б — температурные коэфициенты результирующей скорости газообразования а — синтетический парафин с молекулярным весом М = 320 б — нефтяной газойль с характеризующим фактором К = 11,72. [c.85]

    Основу отечественных дизельных топлив составляют прямо — генные дистилляты, причем около половины из них приходится на до/ю гидроочищенных фракций. Дистилляты вторичного происхождения используются в незначительных количествах (в частнос — ти, около 3 % приходится на долю легкого газойля каталитического крекинга). Необходимо отметить, что производство малосернистых сортов топлив с содержанием серы менее 0,2 % масс, сопряжено с пот ерями их ресурсов и значительными энергозатратами на глубо — кую гидроочистку. При гидроочистке одновременно с неуглеводо — родными гетеросоединениями удаляются из топлива имеющиеся в ио одной нефти природные антиокислительные, противоизносные, антикоррозионные и другие присадки. Поэтому при производстве тог арных гидроочищенных дизельных топлив возникает необходи — мо1 ть применения большого ассортимента и в достаточно больших ко 1Ичествах синтетических присадок. [c.277]

    Конвертор данного размера обслуживает установку, спроек-тиронанную для крекинга в ки-пящем слое алюмосиликатного синтетического катализатора 1980 м, сутки (< 1500 т. сутки) свежего сырья с глубиной разложения 53,3% без рециркуляции газойля. Внешний вид конвертора этой же установки представлен на рис. 97 (1991. [c.189]

    До возникновения повышенного спроса на стирол в связи с принятой с началом войны в США программой производства синтетического каучука его получали в небольшом количестве путем дегидрирования этилбензола. Для производства бутадиена в нефтяной промышленности применялись процессы высокотемпературного термического крекипга лигроинов и газойлей. При этом получались также другие ценные диолефины, такие как изопрен и циклопентадиен. Выходы бутадиена составляли всего лишь от 2 до 5% на сырье. К концу второй мировой войны процесс термического крекинга был также использован для получения так называемого qui kie бутадиена. Однако большая часть бутадиена получалась в результате дегидрирования бутенов. Применение бутана п тсачестве сырья для получения бутадиена составляло лишь небольшую долю намеченной программы. Широкое применение нашел сравнительно дорогой процесс превращения этилового спирта в бутадиен. Разработанный в Германии процесс получения бутадиена из ацетилена не был принят. После рассмотрения всех процессов правительство США утвердило план производства бутадиена, приведенный в табл. 1. [c.189]

    Крекинг—это процесс превращения высокомолекулярного газойля в бензин. Крекинг может быть проведен и без катализатора, но каталитический крекинг-процесс дает лучшие результаты. В качестве промышленных катализаторов применяют натуральные глины, синтетические алюмосиликаты и магнийсиликаты. Обьйно катализатор содержит также промоторы. Условия проведения процесса, природа исходного сырья и катализатора обусловливает выход и октановое число бензина, а также количество и состав побочных продуктов. [c.335]

    Особый интерес представляют смазки, получавшиеся синтетическим путем в Германии в условиях военного времени [55, 56]. Этилен и олефины с более длинной цепью полимеризовали (катализатор — хлористый алюминий), получая с хорошим выходом масла, которые обладают неплохими вязкостно-температурными свойствами. Парафинистый газойль, полученный синтезом по Фишеру — Тропшу, хлорировали продукт синтеза конденсировали с нафталином, что дало масло сравнительно невысокого-качества. В качестве смазочных масел использовались эфиры адипиновой кислоты, но себацинаты широкого распространения не получили. [c.501]


    Сырьем служат в основном жидкие и твердые парафиновые углеводороды (/ л. 28—52 °С), выделенные из нефти, и парафин, полученный при перегонке бурых углей или при производстве синтетического бензина по реакции Фишера — Тропша. Реже используют жидкие фракции (керосин, газойль, церезины с = 70—80 С) и неочищенные парафинистые фракции с установок депарафинизации смазочных масел (гач, петролатум). [c.145]

    Синтетический из газойля сураханской отборной нефти гумбрин гиляби [c.154]

    Как уже указывалось [21, исследованные нами бензины являлись продуктом двухступенчатого каталитического крекинга в псе доожиженпом слое высокоактивного синтетического алюмосиликата газойлевых фракций из ба.ттахапской тяжелой и сураханской отборной нефтей с осуществлением первой ступепи для каждого газойля при 420 и 480 °С, а второй ступени для всех четырех вариантов при 420 °С. [c.298]

    Об обработке отравленного катализатора ацетилацетоном в литературе встречаются разноречивые данные. Известен патент [346], в котором предлагается метод реактивации отравленного катализатора ацетилацетоном. Эксперименты были проведены на катализаторе, состоящем из 90,85 вес. % окиси кремния, 9 вес. % окиси алюминия и 0,15 вес. % окиси хрома и отравленном 0,01 вес. % никеля при работе в течение 141 сут на смеси калифорнийских газойлей на промышленной крекинг-установке с движущимся слоем катализатора. Обрабатывали 200 г этого катализатора 300 мл ацетилацетона при кипении с обратным холодильником 4 и 16 ч, после чего катализатор отделяли от ацетилацетона, промывали, сущили и прокаливали при 537 С. Ацетилацетоном очищали также более загрязненный синтетический катализатор, содержащий около 91% окиси кремния, 9% окиси алюминия и приблизительно 255-10 % никеля, а также пробу природного катализатора, активированную кислотой, — монтмориллонитовую глину, которая содержала около 190-10 " % никеля. Эту пробу (100 г) обрабатывали 130—160 мл ацетилацетона 4 ч. Затем катализатор отделяли от ацетилацетона, сущили, прокаливали при 760 °С и обрабатывали паром 10 ч при 650 °С. Результаты крекинга после обработки катализатора по методу Кат-А приведены в табл. 58. [c.218]

    Для обеспечения удовлетворительной циркуляции катализатора на пилотной установке от него отдували до 35% мелких фракций. Лабораторные исследования показали, что 65%-ный остаток имел примерно такую же активность, удельную поверхность и такое же содержание металлов, как и исходный неотвеянный катализатор. Систему догружали свежим синтетическим алюмосиликат-ным катализатором, содержащим 13% окиси алюминия. Сырьем служила смесь газойлей следующего качества  [c.228]

    Интересны также микробиологические методы разделения углеводородов, в частности депарафинизации газойлевых фракций. Микроорганизмы используют в качестве питательной среды нормальные алканы, и в результате процесса получаются синтетический белок и деиарафинизированный газойль. Предложен также микробиологический метод обессеривапия нефти. Под действием некоторых микроорганизмов сернистые соединения превращаются в водорастворимые продукты, легко удаляемые из нефти. [c.81]

    Комбинированное использование двухкомпоцентного цеолитсодержащего катализатора для алкилирования изопарафинов олефинами и каталитического крекинга предусмотрено в схеме, описанной в работе [19]. Углеводороды, кипящие в пределах температур кипения газойля, подвергают крекингу на регенерированном двухкомпонентном катализаторе, состоящем из обычного цеолитсодержащего катализатора и синтетического цеолита ZSM-5. Условия процесса подбирают таким образом, чтобы обеспечить максимальный выход бензина и низкокипящих углеводородных газов, содержащих олефины и парафины. Газовую часть отделяют от бензина и направляют для контактирования со свежим катализатором. Содержащийся в нем цеолит ZSM-5 способствует алкилированию, циклизации и ароматизации. Продукты второй стадии смешивают с продуктами крекинга перед их фракционированием. Закоксованные катализаторы с I и II стадий крекинга объединяют и подвергают регенерации. Регенерированная смесь используется для крекинга газойля. [c.270]

    Каталитическая очистка бензинов применяется для удаления непредельных углеводородов из бензиновых фракций вторичного происхождения. Она осуществляется на обычных установках каталитического крекинга без изменения их схемы и замены катализатора — синтетического алюмосиликата. На некоторых НПЗ сооружены блоки из трех установок каталитического крекинга, две из которых предназначены для получения бензина из более тяжелых фракций, а третья — для его очистки (тритинга). Температура в реакторе каталитической очистки около 450°С, выход продуктов равен авиационного очищенного бен шна 70%, тяжелого бензина-компонента автомобильного топлива 6%. газойля 5%, сухих и сжиженных газов 10—12%. [c.321]

    П отличие от газойля прямой гонки, газойль, полученный при разгонке продуктов крекйпга, называют синтетическим . [c.237]

    В состав завода входят установки АВТ производства водорода гидроочистки, бензинов, вакуумного газойля, дизельного топлива каталитического крекинга А-1 мощностью 900 тыс.т/год каталитического рифорлшнга суммарной мощностью 600 тыс.т/год гидрокрекинг мощностью I млн.т/год висбрекинг мощностью I млн.т/год производства масел, серной кислоты, синтетических жирных кислот, высших жирных спиртов, комплекс по производству ароматических углеводородов. АО "Уфанефтехим" входит в состав АО "Башкирская нефтехимическая компания". [c.109]

    Как ВИДНО из табл. 21, значительного увеличения октанового числа и содержания в бензинах ароматических соединений удалось достигнуть на катализаторах, где в качестве носителя применялся синтетический алюмосиликат [43]. Опыты проводились при 250 атм давления и температурах около 400°С с газойлем нефти (уд. вес 0,846 и границы кипения от 187 до 330° С) температуры подбирались в опытах таким образом, чтобы на обоих катализаторах получалась одна и та же степень конверсии. Алюмосиликатный катализатор оказался менее активным. Большое содержание ароматических соединений, полученное при приме-неиин алюмосиликатного катализатора, особенно отчетливо видно в более высококипящ их фракциях. Количество парафиновых углеводородов с разветвленной цепью в обоих случаях почти одинаково, как это следует из октанового числа используемых для сравнения фракций, не содержащих ароматических углеводородов. [c.305]

    КОНТАКТ ПЕТРОВА представляет собой густую прозрачную жидкость, от темно-желтого до бурого цвета с синим отливом. К- П. содержит около 40% нафтеновых сульфокислот, 15% вазелинового масла, небольшое количество свободной серной кислоты и воды. Подобно мылам К. П. проявляет поверхностноактивные свойства, но в отличие от них смачив. зет и эмульгирует даже в кислой среде, не требуя нейтрализации. К- П., эмульгируя жиры, увеличивает поверхность соприкосновения с омыляющей жидкостью, ускоряя тем самым реакцию. К. П. впервые получен в России в 1912 г. Г. С. Петровым и применен как эмульгатор в нефтепромышленности. К- П. образуется в результате действия серной кислоты, серного ангидрида или олеума на высококипящие фракции нефти при очистке нефтепродуктов (керосина, газойля, солярового масла и др.), содержится также в кислых гудронах, образующихся при сернокислотной очистке нефтепродуктов. К. П. широко применяется в различных отраслях промышленности для расщепления жиров, в качестве синтетических моющих средств, антикоррозионных веществ, пластификаторов для цемента и бетона, как промывные жидкости при бурении, в текстильной промышленности при крашении и обработке тканей, в производстве фенолформальдегидных смол, клеев и др. [c.134]

    Отходящие газы при дегидрировании бутана пентана бутиленов амиленов Метано-водород-ная фракция при получении синтетического спирта Пирогаз при пиролизе бензина Отходящие газы с установки деал-килирования Отдувочные газы с установки гидроочистки Сухой газ крекинга вакуумного газойля [c.104]

    Вследствие недостатка жиров для производства мыла и жирных спиртов, пригодных для производства синтетических моющих средств, наибольший промышленный интерес представляло для Германии в годы войны гидрокарбо-нилирование олефинового сырья, выкипающего в пределах 180—320° (олефины Си — j,). При этом наиболее целесообразно исходить из олефинов нормального строения с двойной связью при концевом атоме углерода [67 ]. Такие олефины получали крекингом газойлей или крекингом мягкого парафинового гача Фишера-Тропша. Таким образом, оксопроцесс весьма теспо связан с нефтяной промышленностью. Хотя в Германии оксоспирты вырабатывали в полупромышленном масштабе две фирмы ( Рурхеми и И. Г. Фарбениндустри ) еще в начале 40-х годов, промышленное производство изооктилового спирта в США было начато [4] лишь в 1948 г. (фирма Эссо стандарт ойл в Батон-Руже). В качестве сырья в этом случае использовалась олефиновая фракция С,. [c.261]

    Различия в объеме пор при определении титрованием водой и по адсорбции азота указывают на существование двух типов пор, отсутствующих у малоглиноземистого синтетического катализатора. Выходы и октановые числа бензина (при крекинге мичиганского и вайомингского газойлей) почти не изменялись, но существенной экономии удалось достигнуть па добавках свежего катализатора. [c.178]

    Физические свойства синтетических масел, полученных конденсацией газойля с дихлорэтадом и бензолом [c.250]

    В процессе Феба - комби - крекинг (КСС) н Феба - LG - крекинг в качестве добавки (катализатора) используется порошкообразный контакт Байера (железный хлам - отход алюминивой промышленности) или буроугольный кокс. Процесс характеризуется высокой гибкостью по отношению к ассортименту и выходу продуктов. Изменяя параметры процесса можно варьировать выход продуктов в широких пределах бензин 17-35 % средних дистиллятов 30 - 40 % вакуумного газойля 12 - 32 остатка 5 %. Основное достоинство процесса - отсутствие офаничений по качеству исходного сырья. Гибкость процесса обеспечивается тем, что газофазный реактор может работать как в режиме гидроочистки, так и в режиме гидрокрекинга. Процесс КЭНМЕТ схож с процессом V , в котором использование нового катализатора позволяет снизить давление процесса. Процесс НДН аналогичен вышеперечисленным процессам и предназначен для производства высококачественной синтетической нефти из тяжелого углеводородного сырья (прежде всего из мазутов). [c.25]

    Из циклических с п и р т о в при производстве диэфирных пластификаторов употребляется циклогексиловый [5] и бензи-ловый спирты [16, 39], а при производстве фосфорсодержащих — фенол [28], и алкилфенолы (крезол, ксиленолы, изопропил-фенол, п-изобутилфенол) [5, 28]. Одним из главных источников. получения смеси крезолов и ксиленолов является коксохимическая смола или газойли нефтепереработки. Основным промышленным методом получения дикрезольной и ксиленольной смеси синтетическим путем является окисление толуола или ксилола. При любом способе производства изомерный состав крезолов и ксилено-. лов существенно зависит от природы исходного топлива или спосо-. ба синтеза. Наиболее реакционноспособными для реакции этерификации являются лгета-изомер, затем пара- и орго-изомеры, однако орго-изомеры, особенно о-крезол, наиболее токсичны. Поэтому для производства пластификаторов фосфатного типа применяют три-крезолы с минимальным (до 3%) содержанием орго-изомера или дикрезолы (смесь мета- и пара-изомеров). [c.20]

    Интересны также микробиологические методы разделения углеводородов, в частности депарафинизация газойлевых фракций, Микроорганизмы используют в качестве питательной среды н-алкаиы, в результате получаются синтетический белок и депарафинизироваиный газойль. Предложен также микробио- [c.99]

    Производство синтетических масел из олефинов крекинга газойля и масла, их качества и применения. Для получения олефинов проводится (в Рурхеми-Холтен) парофазный крекинг газойля, Получаемого к процессе Фишер-Тропша, и масла, образующегося при выпотеваяии парафина. Конечный продукт — автомобильное масло СС-1202. [c.96]

    ЭЛОУ 2 - блок АТ 3 - установка коксования 4 - колонна разделения продуктов коксования 5 - блок гидроочистки продуктов коксования 6 - блок получения ВСГ I -ВВН II - бензиновая фракция III - фракция 150-260 °С IV - облегченный мазут (выше 260 °С) V - кокс У1-1Х - продукты коксования - газ, бензин, дизельная фракция и тяжелый газойль X - синтетическая нефть XI - ВСГ XII - природный газ XIII - водяной пар [c.475]

    Применение. Изомеризация используется для полу-чения разветвленных алкенов (олефинов) Сд-Сб, имеющих важное практическое значение. В процессе каталитического крекинга вакуумного газойля образующиеся разветвленные олефины имеют более высокие октановые числа, а изобутилен, изопентилен и изогексены используются как сырье для получения высокооктановых эфиров. Для этой цели, а также для получения мономеров синтетического каучука, используются также процессы скелетной изомеризации н-бутенов и -пептенов. Важное значение имеет реакция миграции двойной связи бутена-1 в смесь цис- и /ирлнс-бутена-2 (стадия подготовки сырья для получения алкилбензина). В то же время разветвление углеродной цепи в молекулах высших олефинов Сц-Сн — нежелательная реакция при производстве линейных алкилбензолов для детергентов. [c.891]

    Среднедистиллятные топлива (керосин, дизельное тошшво) содержат достаточное количество различных гетероатомных соединений, являющихся природными ингибиторами окисления, поэтому антиоксиданты ддя них не нужны. Однако при производстве реактивных топлив тииа РТ и Т-б используют процессы глубокой гидрогенизации, в которых природные ингибиторы разрушаются, что приводит к необходимости введения синтетических антиоксидантов. Дизельные топлива, содержащие вторичные компоненты, например негид-роочшценные газойли каталитического крекинга, также нуждаются в стабилизации. [c.940]

    Каплан и Форней [24а] описали процесс Форварда получения ароматизованных бензинов [С. В. Форвард, ам. пат. 2007087 (1939)]. Процесс непрерывный и проходит при температуре около 565° С и давлении 16 кг/см . Выход синтетического сырья из газойля близок к 70%. Бензин составляет около 50% синтетического сырья содержание ароматических углеводородов в бензине около 85—91%. Эти результаты близки к результатам Кука и др. Темпеоэтурные [c.172]


Смотреть страницы где упоминается термин Газойль синтетический: [c.240]    [c.153]    [c.159]    [c.272]    [c.82]    [c.212]    [c.171]    [c.22]    [c.222]   
Химия и технология моноолефинов (1960) -- [ c.237 ]




ПОИСК





Смотрите так же термины и статьи:

Газойль



© 2024 chem21.info Реклама на сайте