Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутадиен реактор

    Реакторы принципиально такого же типа (рис. III. 12) применяются для эндотермической реакции дегидрирования бутиленов в бутадиен (реактор на рис. III.12, а показан без тепловой изоляции). На изготовление шарообразного реактора (рис. 111.12,6) при одинаковом реакционном объеме требуется меньше металла, чем для цилиндрического. Процесс протекает с отклонениями от оптимальной температуры до 25 °С Поступающая в реактор смесь имеет температуру 630 °С. Реакционный газ выходит с температурой 580— [c.89]


    I — предварительный подогреватель 2 — реактор о катализатором 3 — компрессор 4 — абсорбер 5 — испаритель. Линии I — и-бутан II — тощее масло III — На -Ь наиболее легкие углеводороды IV — к-бутан 4- н-бутен (циркуляция) V—бутадиен VI — жирное масло. [c.90]

    Многие мономеры, например хлористый винил и бутадиен, при обычных давлениях являются газами, поэтому полимеризацию их необходимо проводить под давлением. Имеются обширные описания промышленных и лабораторных методов эмульсионной и пенной полимеризации при атмосферном и повышенных давлениях [35, 127]. Кроме периодических процессов, некоторый успех достигнут и в процессах непрерывной полимеризации, осуществляемых в проточных системах и в батарее последовательно расположенных реакторов с мешалками [82]. [c.120]

    Предложено получать бутадиен и изопрен дегидрированием бутана и изопентана в двухслойном реакторе на двух катализаторах при атмосферном давлении без промежуточного разделения продуктов реакции. По предварительной оценке предложенные катализаторы обеспечивают высокие выходы. По экономическим показателям этот процесс находится на уровне вакуумного одностадийного дегидрирования. Данные лабораторных исследований процесса при разных температурах приведены ниже  [c.661]

    На описываемом заводе метан подвергают окислительному пиролизу при температуре 1700° кислородом, получаемым путем разделения воздуха на установках Линде. Продукты окислительного пиролиза после компримирования и охлаждения поступают на выделение ацетилена, который направляется далее на переработку в ацетальдегид. Ацетальдегид получают из ацетилена в реакторах, содержащих катализатор — водный раствор сульфата ртути, сульфата железа и металлическую ртуть. Образовавшийся ацетальдегид подвергают неполному гидрированию, продуктом которого является этиловый спирт. Конденсацией спирта с ацетальдегидом получают бутадиен. Гидрогенизация и конденсация проводится в трубках, обогреваемых циркулирующим горячим жидким теплоносителем, нагреваемым в отдельной топке. Бутадиен выделяют из полученной смеси дистилляцией и ректификацией. [c.162]

    Исследовали окислительное дегидрирование бутенов в бутадиен в реакторе диаметром 100 мм. Сложную кинетику реакции, представленную в оригинальной работе, можно, по-видимому, привести к простой схеме "8 А (где А — бутены В — бутадиен С — продукты разло- [c.220]

    Гипотеза, обоснованная в работе была затем подтверждена экспериментально, В продуктах превращения тиофена на хромовом и алюмокобальтмолибденовом катализаторах в импульсном микро-реакторе не были обнаружены ни тиациклопентан, ни меркаптаны Единственными продуктами были бутан и бутены, а на хромовом катализаторе — также и бутадиен. Было показано что тиациклопентан не только превращается в бутены и бутан, но дегидрируется в тиофен распад тиациклопентана идет через бутантиол, т. е. по иному пути, чем распад тиофена. Кинетические исследования гакже подтвердили прямое образование бутадиена, а затем бутенов и бутана из тиофена. Бутадиен был обнаружен и в продуктах деструкции тиофена на окислах и сульфидах кобальта и молибдена. [c.285]


    Дегидрирование бутенов в бутадиен проводят в системе из двух реакторов со стационарным слоем катализатора. Один аппарат работает в режиме дегидрирования, второй-в режиме регенерации катализатора (рис. 5.7) [5]. Регенерацию катализатора осуществляют паровоздушной смесью при температуре 620-650 С. Концентрация кислорода в газовой смеси находится в пределах 1-2% (об.). Длительность всего цикла (дегидрирование + регенерация) составляет примерно 30 мин. Операция перехода с фазы дегидрирования на фазу регенерации заключается в замене бутена в парогазовой смеси определенным количеством воздуха [c.108]

    Подобная система реактор — регенератор применяется также при дегидрогенизации бутана в бутадиен. [c.315]

    При применении в качестве сырья бутан-бутеновой фракции смесь бутенов хлорируют в газовой фазе при температуре около 400 С с образованием дихлорбутенов (смесь 1-хлор-2-бутена и З-хлор-1-бутена) и дихлорбутанов. Полученную смесь разделяют, моно.хлорбутены подвергают термическому дегидрохлорированию в трубчатом реакторе при температуре около 600 °С с образованием бутадиена и хлористого водорода бутадиен возвращают в хлоратор. Смесь дихлорбутенов подвергают изомеризации и далее обрабатывают так же, как в процессе на основе бутадиена. [c.422]

    Рассмотрим конструкторские расчеты отдельного адиабатического реактора с неподвижным слоем катализатора. Такой реактор, в частности, используется для реакции дегидрирования бутилена в бутадиен (см. 8.3.2), поэтому полезно привести расчеты его, выполненные в [3, с. 244]. Кроме того, по гидродинамическим условиям реактор дегидрирования близок к аппарату идеального вытеснения. Катализатор может быть размещен одним слоем или несколькими (например, тремя) слоями в последнем случае осуществляется дробная подача (между этими слоями) водяного пара. [c.111]

    С увеличением конверсии (т. е. по ходу реактора) оптимальное давление уменьшается. В качестве примера на рис. 24 представлены оптимальные давления для реакции дегидрирования бутилена в бутадиен при 570 °С [25, с. 492]. [c.116]

    На одной установке фракция С4, выделенная в секции газофракционирования, поступает в колонну, в которой в качестве остатка получают поток, состояш ий из и-бутена-2 и к-бутана. Бутадиен, некоторое количество к-бутана и остальные бутены отгоняются с верха колонны и направляются в колонну экстракции фурфуролом. Здесь экстрагируется бутадиен экстрактная фаза направляется на дальнейшее разделение для получения бутадиена, отвечающего требованиям стандарта. Рафинат из фурфурольной колонны (главным образом бутен-1 и непрореагировавший к-бутан) вместе с остатком из первой фракционирующей колонны можно использовать как сырье для производства алкилата. Рафинат или остаток из первой колонны можно также полностью или частично возвращать как рециркулирующий поток в реакторы дегидрирования для повышения общего выхода бутадиена. Бутан, содержащийся в сырье, направляемом на алкилационную установку, в последующем возвращается как рециркулирующий поток в секцию дегидрирования. [c.289]

    Вторая глава посвящена изучению и исследованию протекания в электродинамических реакторах под действием СВЧ-излучения процессов дегидрирования бутенов в бутадиен и разложения известняка, созданию математической модели процесса получения извести, разработке методики настроечных параметров адаптивного управления процессами. [c.8]

    В промышленных условиях дегидрирование олефинов (алкенов) фракций С4, т. е. бутиленов, в бутадиен осуществляется в адиабатических реакторах на неподвижных катализаторах [c.28]

    Основным аппаратом для дегидрирования -бутиленов в бутадиен является реактор с неподвижным слоем катализатора. [c.43]

    График работы батареи из шести реакторов при одностадийном дегидрировании путана в 1,3-бутадиен под вакуумом. [c.50]

    Впервые аппарат подобного типа был предложен в 1933 г. в СССР Грум-Гржимайло для контактного разложения этилового спирта на бутадиен. Реактор (рис. III. 19) состоял из двух камер — реакционной 1 и регенерационной 2. Катализатор, нагретый до температуры реакции, поступал сверху в реакционную камеру, где навстречу ему двигались пары спирта. Науглероженный катализатор пересыпался в регенерационную камеру, где продувался воздухом и за счет теплоты сгорания угля разогревался. Из регенерационной камеры он передавался в реакционную. Такой аппарат был построен, однако пустить его из-за ряда технических трудностей так и не удалось. В дальнейшем этот принцип был использован нефтеперерабатывающей промышленностью главным образом для проведения процессов каталитического крекинга, а затем и в промышленности ООС и СК для проведения разнообразных реакций. [c.95]

    Процесс протекает следующим образом. к-Бутаи и к-бутеи из газов циркуляции проходят над катализатором, дегидрирующим к-бутап в / -бутен, а к-бутен в бутадиен (рис. 42). После быстрого охлаждения газ компримируется и, как обычно, путем абсорбции освобождается от водорода и низко-молекулярных продуктов крекинга. Выделенная из абсорбента фракция С4 для извлечения 8—12% бутадиена обрабатывается на экстракциошюй установке аммиачно-ацетатным раствором меди. Отделяющаяся смесь к-бутана и к-бутена (газ циркуляции) вместе со свежим к-бутаном возвращается в реактор для дегидрирования. [c.87]


    В процессе Джорси [39, 52, 72] сырье, содержащие около 70% нормальных бутонов при температуро 593° С, смешивается с 10—20 объемами водяного пара, нагретого до 704° С и смесь пропускается через слой катализатора толщиной от 120 до 185 см в реакторе диаметром 490 см. Скорость подачи сырья — от 200 до 800 объемов на объем катализатора в час (при стандартных температуре и давлении) после охлаждения продуктов реакции паром или водой бутадиен отделяется экстракцией аммиачным раствором ацетата меди, а пенрореагировавшие бутены возвращаются на переработку. [c.201]

    Если тепловой эффект реакции не слишком велик, то, регулируя температуру входа, можно удовлетвориться адиабатическим протеканием процесса. К этому типу принадлежали первоначальные установки каталитического крекинга Гудри. Хотя они состояли из нескольких реакторов, но работали аппараты попеременно по десятиминутному циклу, состоящему из собственно крекинга и регенерации. Дегидрирование бутана в бутен и бутадиен выполняется теперь по той же схеме. [c.371]

    Бутадиен и стирол на заводе будут подвергаться сополимери-зации в водной эмульсии, стабилизируемой мылами, в результате чего получится синтетический каучук. Полимеризация протекает в присутствии катализаторов в реакторах, охлаждаемых аммиаком. После отпарки из полученного латекса стирола и бутадиена под вакуумом он коагулируется, очищается от примесей и поступает на прессование. Продукт полимеризации будет выпускаться под маркой Эвропен . [c.163]

    Схема окислительного дегидрирования н-бутнлена изображена на рис. 144. Пар и воздух смешивают и перегревают в трубчатой печи 7 до 500 °С. Непосредственно перед реактором 2 в эту смесь вводят бутиленовую фракцию. Процесс осуществляют на стационарном катализаторе в адиабатических условиях при 400—500°С и 0,6 МПа. Тепло горячих реакционных газов используют в котле-утилизаторе 5 для получения пара (преимущество работы при повьшкнном давлении — для получения пара можно использовать тепло, выделяющееся при конденсации пара — разбавителя реакционных газов, в отличие от работы при атмосферном давлении при дегидрировании этилбензола и н-бутиленов). Затем газ охлаждают водой в скруббере 4 с холодильником 5 и промывают минеральным маслом в абсорбере 6. Там поглощаются углеводороды С4, а продукты крекинга, азот и остатки кислорода выводят с верха абсорбера и используют в качестве топливного газа в трубчатой печи /. Насыщенное масло из абсорбера б направляют в отпарную колонну 5, где регенерируется поглотительное масло, возвращаемое после охлаждения на абсорбцию. Фракция С4 с верха отпарной колонны 5 содержит 70% бутадиена. Из нее уже известными методами выделяют чистый бутадиен, а непревращенные н-бутилены возвращают на окислительное дегидрирование. [c.489]

    Очевидно, что протеканию реакции благоприятствует низкое давление, поскольку она идет с увеличением объема. Поэтому давление поддерживают на таком низком уровне, который лишь обеспечивает достаточную скорость потока газов. Как отмечалось ранее, давление желательно понижать, но в большинстве случаев этого не делают и реакцию проводят при 5—25 фунт/ /дюйм . Как и во всех процессах, в которых имеется возможность протекания обратной реакции, газы, выходящие из реактора, быстро охлаждают и стараются не допускать их контакта с катализаторами гидрирования. Эта реакция не является селективной, так как наряду с метаном и этиленом образуются пропилен, ацетилен, водород, бутадиен, бутан и жидкий продукт, называемый дриполеном. [c.145]

    Регенерация катализаторов вакуумного дегидрирования н-бутана н де-гнарнрования бутенов в бутадиен. Алюмохромовый катализатор вакуумного дегидрирования н-бутана регенерируют непосредственно в контактном аппарате по схеме, представленной на рис. 5.6 [5]. Реакторный блок компонуют, как правило, из восьми аппаратов, работающих со смещенным во времени циклом, что создает общую непрерывность процесса. Аппарат после цикла дегидрирования продувают и подают в него воздух. Вьгжиг кокса проводят при 600-650 °С. Цикл регенерации составляет около 8 мин. После регенерации газы удаляют эжектором 3, а катализатор восстанавливают, подавая в аппарат углеводородный газ из реактора, работающего в цикле дегидрирования. [c.107]

    Для производства тетрагидрофталевого ангидрида используется бутадиен 98%-ной чистоты с содержанием перекисей менее 0,001% и малеиновый ангидрид 99,5%-ной чистоты, содержащий менее 0,09% малеиновой кислоты. Для предотвращения полимеризации бутадиена в сьфье вводится ингибитор (чаще всего пирокатехин) в количестве 0,008—0,012%. Малеиновый ангидрид растворяется в бензолё, затем в реактор постепенно поступает при нагревании до 100 °С бутадиен. Полученный аддукт кристаллизуется и отделяется от бензола. Выход тетрагидрофталевого ангидрида практически полный по обоим компонентам сырья. [c.348]

    Принципиальная схема производства хлоропрена хлорированием бутадиена представлена на рис. 12.19. Бутадиен и хлор тщательно освобождаются от влаги в осушителе 1 и поступают в реактор 3. Хлорирование бутадиена идет непрерывно в газовой фазе при температуре около 300 С. Процесс можно регулировать таким образом, чтобы получить смесь, состоящую из 3,4-дихлор-1-бутена и 1,4-дихлор-2-бутена в соотношении 60 40 и содержащую небольшие количества изомерных тетрахлсрбутанов и других побочных продуктов. [c.420]

    Алюмохромовые катализаторы, дегидрируюише бутан до бутилена, используются и в реакциях дегидрирования бутиленов до бутадиенов. Отделяя водород от продуктов реакции и возвращая в цикл образовавшуюся смесь бутана и бутиленов, можно получить смесь, содержащую бутан, бутадиен и бутилены. После отделения бутадиена непрореагировавшие бутан и бутилены вновь вводятся в реакцию вместе с подаваемым в реактор бутаном. Процесс рекомендуется проводить над ката- лизаторами, содержащими 18-20% r Q на активной у- или 7/М О при температурах 550-650°С, абсолютном давлении в системе 15-20 см рт.ст, при продолжительности рабочего периода 7-15 мин /5,15,18/. [c.74]

    Образующиеся технологические газы, выходящие из печи, охлаждаются с большой скоростью. Необходимость в скоростной закалке связана с тем, что при температурах значительно ниже реакционной (около 800 °С) олефиновые продукты парового крекинга менее стабильны, чем материнские насыщенные углеводороды (см. гл. 2). Для предотвращения дальнейшего пиролиза до углерода и смолистых веществ олефиновые продукты должны охлаждаться очень быстро. Однако даже при соблюдении этого условия во всех реакторах парового крекинга образуется пиролизное нефтяное топливо, количество которого возрастает с увеличением молярной массы сырья. Высококипящие нефтеобразные полупродукты сепарируются при фракцинации, а основной поток газов компримируется перед очисткой от примесей кислых газов и воды. Вслед за этим олефиновые продукты проходят стадии низкотемпературной фракционной разгонки сначала Сг извлекается из водорода и топливного технологического метана, затем Са — из Сз (в деэтанизаторе, устанавливаемом после отгонной колонки, где этилен сепарируется из донного этана), а Сз — из С4 (в депропанизаторе, стоящем после специальной колонки, где пропилен сепарируется из донного пропана) и, наконец, смесь непрореагировавших бутанов, бутадиенов и бутены — из дистиллята парового крекинга, состоящего из богатой смеси бензола, толуола и некоторых ксилолов (в дебутанизаторе). В эту слож- [c.257]

    Реакция проходит при мягких температурных условиях (80+100°С) в трубчатом реакторе со стационарным слоем катализатора, в качестве которого используют ионообменную смолу. Изобутилен для синтеза можно применять в смеси с н-бути-леном, бутаном и бутадиеном при его концентрации 35+50% (фракция газа каталитического крекинга и пиролиза). Выходящий с низа реактора жидкий продукт содержит 98+99% мае. МТБЭ, остальное составляют примеси метанола, н-бутилена, ди- и триизобутилена и даре/и-бутанола. Процесс получения МТБЭ значительно проще по аппаратурному оформлению и дешевле по эксплуатационным расходам по сравнению с традиционными адкилированием изобутана олефинами и изомеризацией и должен найти достаточно широкое применение в отечественной нефтеперерабатывающей промышленности. [c.40]

    Во второй части книги мы уже рассматривали кинетическую модель процесса и моделирование реактора дегидрирования н-бутилена в бутадиен с учетом протекания побочной реакции разложения бутадиена ниже мы проанализируем известные кинетические модели процесса получения изопрена на катализаторах КНФ (каль-ций-хром-никельфосфатный) и ИМ-2206 (алюмохромовый). [c.125]

    Реакторы адиабатического типа, применяемые для дегидрирования этилбензола (рис. 38)по принципу действия сходны с адиабатическими реакторами дегидрирования н-бутиленов в бутадиен и изоамиленов в изопрен. ГРеактор представляет собой аппарат цилиндрической формы с коническим днищем, изготовляемым из углеродистой стали и футерованный изнутри огнеупорным кирпичом. Недостатком адиабатических реакторов является резкий перепад температур по высоте слоя катализатора (до 50 °С), что не позволяет достигать высокой конверсии и заставляет использовать большой избыток перегретого водяного пара. Предложено проводить двухступенчатое дегид]зирование этилбензола в стирол с секционированным введением водя. юго пара перед каждым реактором или с промежуточным подогревом реакционной смеси, это приближает условия работы реакторов к изотермическому режиму (рис. 39) [18]. [c.151]

    Хлорирование бутадиена осуществляется в газовой фазе при атмосферном давлении и температуре 27O—300 °С без применения катализатора. Реакция хлорирования экзотермична, температура процесса регулируется подачей хлора. Во избежание коррозии реактора бутадиен и хлор должны быть тщательно осушены до содержания влаги не более 10 млн . Строго ограничивается также содержание кислорода, являющегося ингибитором реакции хлорирования. В результате присоединения хлора к бутадиену образуются 3,4-дихлорбутен-1 и изомеры 1,4-дихлорбутена-2 Л-Цис-и , i-транс-), побочные продукты хлорирования и хлористый водород, который играет в данной реакции роль разбавителя, ограничивающего образование побочных продуктов. Выход дихлорбу-тенов составляет 80—90 % на прореагировавший бутадиен соотнощение получаемых 3,4-дихлорбутена-1 и 1,4-дихлорбутена-2 составляет примерно 40 60. [c.231]

    Процесс дегидрирования, разработанный фирмой Гудри , позволяет превратить бутан в бутадиен за одну ступень реакции. Он может использоваться и для одновременного получения бутенов и бутадиена в требуемых соотношениях. При помощи этого процесса можно также получать бутадиен из -бутенов. Если процесс используется для производства только бутадиена, бутен и непревращенный бутан возвращаются как циркулирующий поток в реактор и, за исключением газа и кокса, образующихся в результате побочных реакций, единственным продуктом процесса является бутадиен. [c.284]

    Получение каучуков. Для синтеза Б. к. в растворе применяют бутадиен, содержащий > 99% (по массе) основного в-ва и 0,001% влаги. Р-рители - толуол, циклогексан, гексан, гептан, бензин. Мономер полнмеризуют непрерывным способом в батарее последовательно соединенных реакторов, снабженных мешалкой и рубашкой, в к-рой циркулирует хладагент. При 25-30 С продолжительность процесса составляет 4-8 ч, конверсия бутадиена-80-95% в зависимости от типа катализатора (повышение т-ры до 35-40 С, особенно в случае применения титановой каталитич. системы, приводит к заметному увеличению выхода олигомеров, придающих каучуку резкий неприятный запах). Заключительные операции технол. процесса дезактивация катализатора (обычно с использованием соединений, содержащих подвижные атомы водорода) введение антиоксиданта отмывка р-ра полимера от остатков каталитич. комплекса выделение полимера, напр, методом водной дегазации (отгонкой р-рителя и остаточного мономера с водяным паром) отделение крошки каучука от воды сушка каучука, его брикетирование и упаковка. [c.329]

    Технология дегидрирования бутенов в бутадиен на промышленных катализаторах в СВЧ-поле подробно исследовалась P.P. Даминевым, а С.Н. Шулаевым проведено изучение тепломассопередачи и математическое моделирование процесса дегидрирования в электродинамическом реакторе. [c.7]

    Для дегидрирования изоамиленов в изопрен применяются реакторы высотой до 2,2 м с неподвижным слоем катализатора, аналогичные применяемым для дегидрирования н-бутиленов в бутадиен (см. рис. 2.13 и 2.14). [c.92]

    Катализаторы, технологическое оформление и аппаратура процесса такие же, как при дегидрировании н-бутиленов в бутадиен. Принципиальная схема дегидрирования приведена на рис. 2.11, а дегидрирования на катализаторе ИМ-2204 — на рис. 2.12. Перегретые пары изоамиленов (прямых и возвратных) с температурой около 530 °С смешиваются в молярном со-ютношении 1 20 с перегретым до 750—780 °С водяным паром и поочередно подаются в один из реакторов на дегидрирование. После контактирования следует продувка реактора паром, затем регенерация катализатора паровоздушной смесью, после чего снова продувка паром и новый цикл контактирования. Полная продолжительность цикла 30 мин. Массовый выход изопрена составляет 33—38% при селективности 82—87%. [c.94]

    Во избежание коррозии реактора (хлоринатора) хлор и бутадиен должны быть тщательно высушены до массового содержания влаги ие более 10 %. Строго ограничивается также содержание кислорода, являющегося ингибитором реакции. В результате хлорирования бутадиена получают реакционные газы, содержащие 3,4-дихлор-1-бутен, 1,4-дихлор-2-бутен (1,4-i u - и 1,4-транс-формы), хлороводород, а также небольшие количества тетрахлорбутана и других побочных продуктов. Хлороводород ограничивает образование побочных продуктов. Соотношение получаемых 3,4-дихлор-1-бутена и 1,4-дихлор-2-бу-тена составляет примерно 40 60 при общем выходе дихлорбутенов 80—90% от прореагировавшего бутадиена. [c.109]


Смотреть страницы где упоминается термин Бутадиен реактор: [c.101]    [c.67]    [c.488]    [c.329]    [c.185]    [c.268]    [c.224]    [c.210]    [c.58]    [c.105]    [c.7]    [c.184]   
Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.373 , c.374 ]




ПОИСК





Смотрите так же термины и статьи:

Бутадиен-стирольные латексы в реакторе без внешнего обогрева

Бутадиен-стирольные латексы в реакторе с внешним обогревом на неподвижном катализаторе

Оптимизация реактора хлорирования бутадиена

Реакторы получения адипонитрил хлорирования бутадиена

Реакторы синтеза бутадиена

Стожкова, Б. Н. Бобылев, М. И. Фарберов, Н. J1. Прохорова. Изучение, реакции цпклотримсризации бутадиена-1, в лабораторном реакторе полного подобия

Стожкова, Б. Н. Бобылев, М. И. Фарберов, Н. Л. Прохорова. Изучение реакции щгклотримеризашш бутадиена-1, в лабораторном реакторе полного подобия



© 2025 chem21.info Реклама на сайте