Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Буферные растворы активность ионов

    Часто при расчетах нейтрализации имеются данные по содержанию в сточных водах кислот или щелочей в мг/л или в мг-экв/л, но отсутствуют соответствующие значения pH. Учитывая возможную буферность растворов, активность ионов и другие факторы, произвести точный расчет величины pH той или иной сточной воды исходя из данных по ее кислотности или щелочности не представляется возможным. Однако для практических целей ориентировочный расчет может быть выполнен с применением следующих формул  [c.138]


    Для разбавленного буферного раствора концентрация ионов водорода будет именно такой. Однако, поскольку активности ионов зависят от присутствия других ионов, заметное отклонение от расчетных значений наблюдается в растворах солей, концентрация которых уже приближается к 0,1 М. Именно этим фактом и объясняются небольшие расхождения между значениями pH, рассчитанными по константам равновесия, и значениями, приводимыми в таблицах буферных растворов. [c.347]

    Однако следует отметить, что в буферных растворах с ионами металлов время появления отклика остается в линейной зависимости от активности ионов до значительно более низких значений концентрации М) при условии, что аналитическая [c.273]

    При НИЗКИХ концентрациях проблема получения устойчивых стандартов становится серьезной. Так, буферные растворы с ионами металлов готовят [26], связывая металл в комплекс с помощью лиганда и регулируя pH. Условные константы равновесия являются функцией pH, и активность ионов металла может изменяться в широком интервале низких активностей в зависимости от устойчивости образуемых комплексов. Систематическую разработку и исследование возможностей применения таких стандартов следует всячески поощрять. [c.278]

    Следовательно, если исследуемый раствор и один из буферных имеют одинаковую окраску, то pH их равны при условии, что коэффициенты активности в исследуемом и буферном растворах для ионов 1п одинаковы, что приблизительно наблюдается при равенстве ионных еил обоих растворов. По этому [c.85]

    На рис. 2.18 представлена полярографическая волна. При низких значениях потенциала (участок А), величина которого не достаточна для того, чтобы на рабочем микроэлектроде происходила электрохимическая реакция, через ячейку проходит очень незначительный остаточный ток, обусловленный, прежде всего, током заряжения двойного электрического слоя и присутствием в растворе электрохимически более активных, чем анализируемое вещество, примесей. При увеличении потенциала электрохимически активное вещество (называемое деполяризатором) вступает в электрохимическую реакцию на электроде и ток в результате этого резко возрастает (участок В). Это так называемый фарадеевский ток. С ростом потенциала ток возрастает до некоторого предельного значения, оставаясь затем постоянным (участок С). Предельный ток обусловлен тем, что в данной области потенциалов практически весь деполяризатор из приэлектродного слоя исчерпан в результате электрохимической реакции, а обедненный слой обогащается за счет диффузии деполяризатора из объема раствора. Скорость диффузии в этих условиях контролирует скорость электрохимического процесса в целом. Такой ток называют предельным диффузионным. Для того чтобы исключить электростатическое перемещение деполяризатора (миграцию) в поле электродов и понизить сопротивление в ячейке, измерения проводят в присутствии большого избытка сильного электролита, называемого фоном. Являясь электрохимически индифферентным, вещество фонового раствора может вступать в химические реакции (часто это реакции комплексообразования) с определяемым веществом. Иногда фоновый электролит одновременно играет роль буферного раствора. Например, при полярографическом определении ионов 0(1 +, Си +, N +1 o + в качестве фона используют аммиачный буфер- [c.139]


    В реакциях (I) и (1а) могут участвовать не только ионы Н3О+, но и другие доноры протонов, например молекулы органических кислот и т. п. Вещество В, которое образуется на стадии (И1), или остается в адсорбированном состоянии, или десорбируется в раствор. В стадии разряда (И) участвует частица ВН дс. Эта частица должна восстанавливаться с более высокой скоростью, чем ионы гидроксония, так как, во-первых, она является поверхностно-активной (go>0), а во-вторых, энергия адсорбции продукта реакции ВН д или В больше, чем энергия адсорбции атомов водорода на поверхности ртути. Оба эти фактора согласно теории замедленного разряда приводят к ускорению реакции. В некоторых случаях перенос электрона на частицу ВН дс происходит настолько быстро, что скорость каталитического выделения водорода лимитируется стадией (I). Уравнение полярографической волны в условиях медленной протонизации в буферных растворах имеет вид [c.379]

    В ТОМ случае, если известна концентрация ионов водорода в стандартном растворе, так как значение коаффициента активности отдельного иона определить невозможно. В связи с этим невозможно определить и точное значение РаН стандартного раствора конечной концентрации на основании термодинамических данных, не прибегая к каким-либо допущениям при вычислении коэффициентов активности ионов водорода. Избавиться от погрешности при определении р Н стандарта можно лишь в том случае, если в качестве стандартного выбран настолько разбавленный раствор сильной кислоты, что в нем коаффициенты активности равны единице. Но такой раствор не обладает всеми свойствами стандарта, так как он имеет ничтожную буферную емкость. Кроме того, при измерении pH с помощью такого раствора ошибки за счет диффузионных потенциалов будут тем больше, чем меньше концентрация стандарта. [c.405]

    Частым случаем химического растворения является кислотное разложение минералов. Здесь скорость растворения зависит от концентрации кислоты и пропорциональна активности действующего раствора, т. е. концентрации в нем ионов водорода. В тех случаях, когда в результате кислотного разложения минерала образуется соль, придающая раствору буферные свойства, скорость растворения резко замедляется. Это объясняется тем, что активность буферного раствора уменьшается в процессе растворения не столько вследствие расходования кислоты на разложение минерала, сколько из-за роста отношения концентрации образующейся соли к концентрации кислоты. В связи с этим раствор, в котором еще имеется кислота, может оказаться непригодным для дальнейшего растворения минерала, пока из этого раствора не будет удалена хотя бы некоторая часть содержащейся в нем соли. [c.220]

    На основании закона действия масс можно вычислить активность, например, водородных ионов в буферном растворе заданного состава  [c.58]

    Оценку коэффициента активности. хлорид-иона обычно делают по уравнению Дебая — Хюккеля или приравнивают среднему ионному коэффициенту активности НС1 в водном растворе кислоты с такой же ионной силой, какую имеет буферный раствор. При небольшом значении ионной силы (/s O,l) оба эти подхода дают совпадающие до 0,01 единицы значения pH. [c.179]

    Как было показано, ион-селективные электроды реагируют на изменение активности ионов. Однако их можно использовать и при определении концентрации ионов в растворах, применяя методы титрования, стандартных добавок, введения буферной среды с высокой ионной силой. [c.35]

    Степень удерживания образца снижается с увеличением ионной силы подвижной фазы и увеличивается с увеличением ионообменной емкости сорбента. Ионная сила подвижной фазы возрастает при возрастании концентрации буфера и сохранении неизменным pH или при добавлении соли. Важна также концентрация буферных растворов, так как в растворе наблюдается конкуренция между ионами образца и буфера. Уменьшение концентрации буферного раствора увеличивает сродство смолы к образцу, что приводит к увеличению времени удерживания. Концентрация буферного раствора колеблется от 0,001 до 6 моль/л, причем верхняя граница определяется растворимостью соли, используемой в качестве буфера, а нижняя — самой буферной силой, так как в слабом буферном растворе нельзя контролировать уровень pH. Сильных буферных растворов также следует избегать, так как возможно выпадение осадка и забивание колонок. Сила растворителя зависит от типа противоиона, причем степень удерживания образца увеличивается в ряду, обратном ряду активности ионов, приведенному выше. [c.36]

    Одним из затруднений, наиболее часто встречающихся в ион-парной хроматографии, является нестабильность колонок, особенно в обращенно-фазном режиме. В колонках с обычной фазой наблюдается постепенный унос противоиона из неподвижной фазы, однако этого можно избежать, получая ионные пары до введения образца в хроматограф. Большим недостатком ион-парной хроматографии является образование хвостов. Причиной этого является либо диссоциация ионных пар, которая уменьшается при повышении концентрации противоиона, либо неправильная концентрация буферного раствора. Иногда удается уменьшить затягивание зон и увеличить эффективность разделения, перейдя от обычной ион-парной хроматографии к хроматографии с использованием поверхностно-активных веществ. [c.80]


    Следует помнить, что температурный компенсатор предназначен для регулировки угла наклона характеристической кривой, отражающей зависимость потенциала электрода от активности (концентрации) определяемого иона в растворе. Следовательно, его можно использовать для того, чтобы согласовать показания прибора для двух стандартных буферных растворов. [c.106]

    Коэффициент селективности Ks/ n близок к 10 , что свидетельствует о заметном влиянии цианид-ионов только при достаточно больших концентрациях цианида. Особые меры предосторожности требуются при определении сульфид-ионов, так как они склонны к взаимодействию с ионами водорода с образованием HS , что приводит к снижению их активности. Кроме того, они легко окисляются кислородом воздуха, растворенным в исследуемом растворе. Именно поэтому определение S -ионов проводят в щелочной среде с использованием антиокислительных буферных растворов, содержащих аскорбиновую кислоту. [c.196]

    Экспериментально найдено, что потенциал этого стеклянного электрода изменяется с изменением активности водородных ионов таким же образом, как и потенциал водородного электрода, т. е. на 0,0591 В на единицу pH при 25° С. Из-за большого сопротивления стеклянной мембраны электрода для измерения э. д. с. нельзя пользоваться обычным потенциометром, а нужно применять электронный вольтметр. Разработаны электронные схемы и на их основе сконструированы достаточно компактные приборы, которые позволяют измерять значения pH с точностью до 0,01 единицы pH. Прибор рН-метр, как его обычно называют, перед измерением pH неизвестного раствора калибруется по буферным растворам с известными значениями pH. Теория стеклянного электрода и способы его использования подробно описаны Бейтсом [1]. [c.201]

    Электрод, предназначенный для определения активности ионов фтора, представляет собой специальный ионный датчик, используемый совместно с каломельным электродом (электродом сравнения) и рН-метром, который имеет шкалу, проградуированную в милливольтах. Главным элементом фторидного электрода является монокристалл фтористого лантана, на котором благодаря присутствию фтор-ионов возникает потенциал. Кристалл одной своей стороной контактирует с исследуемым раствором, а другой — с контрольным внутренним раствором (раствором сравнения). Предварительно должна быть построена соответствующая калибровочная кривая, устанавливаюнгая соответствие между показаниями рН-метра в милливольтах и концентрацией фторидов. Активность фторидов зависит от общей ионной силы раствора и, кроме того, прибор не регистрирует фториды, находящиеся в связанном состоянии (в виде комплексных ионов). Эти трудности в значительной степени удается преодолеть (если фториды связаны в комплекс с алюминием) добавлением лимонной кислоты и введением буферного раствора высокой ионной силы. [c.36]

    Окислить сульфид в сульфоксид можно также при помощи иода или иодистого калия. Описано получение оптически активного сульфоксида при проведении реакции в буферном растворе, содержащем ионы (4-)-2-метил-2-фенилянтарной кислоты при pH 6,0 окислению был подвергнут бензилметилсульфид [19]. [c.225]

    Отделение клинической химии ИЮПАК совместно с Международной федерацией клинической химии разработало рекомендации по физико-химическим величинам и единицам измерения в клинической химии (в которых особое внимание уделено активностям и коэффициентам активности) [159а]. Предложены [29а] пять стандартных растворов для калибровки ионоселективных электродов, используемых в клинических целях. Для имитации электролитов крови в состав стандартных растворов входят в различных концентрациях Са +, Ма+, К" и С1 и буферные растворы цвиттер-ионов. Предложенные стандарты облегчают решение проблемы постоянства условий калибровки потенциометрических клинических анализаторов. [c.95]

    Обычно предпочтительнее все же использовать маскирование мешающих примесей в исследуемом растворе при помощи подходящих химических реакций. Для этой цели раствор маскирующего реагента стараются готовить таким образом, чтобы этот раствор мог бы одновременно служить для установления оптимальных для потенциометрических измерений значений pH и ионной силы. Классическим примером такого реагента является используемый при определении фторид-ионов буферный раствор для установления ионной силы (БРУИС) [41], в состав которого входят ацетатный буферный раствор, нитрат-ион для поддержания постоянной ионной силы и цитрат-ион для маскирования ионов металлов, в частности Ре(И1) и А1(И1), мешающих определению за счет связывания фторид-ионов в комплексы. Маскирующие реагенты часто неблагоприятно влия-ют на работу электрода, в особенности на время отклика и чувствительность, взаимодействуя с электродно-активным компонентом мембраны. По этой причине первоначальный состав БРУИС модифицировался различными исследователями, например путем замены цитрат-иона на граяс-1,2-диаминоциклогексан-тетрауксусную кислоту [53]. Другим примером такого много-функционального реагента является сульфидный противоокис-лительный буферный раствор (СНОБ) [147], применяемый при определении меди в воде. СНОБ, состоящий из ацетатного буферного раствора, фторид-иона и формальдегида, поддерживает постоянную ионную силу раствора, связывает в комплексы мешающие определению металлы (главным образом Ре +) и обладает слабым восстановительным действием. Имеется множество других подобных многофункциональных реагентов, подробно описанных в книге [158]. [c.117]

    Зависимость констант Михаэлиса кз и Км от pH мон ет быть весьма сло кной. Поэтому для исследования зависимости от pH србды требуется использование буферных растворов. При этом нередко оказывается, что между компонентами буферного раствора (особенно НРО ") и ферментом имеется определенное взаимодействие. Кроме того, влияние на активность белка и активность субстрата также оказывает ионная сила раствора, что еще в большей стенени усложняет интерпретацию процесса в буферном растворе. Этот факт не всегда принимался во внимание. Во всех уравнениях, применявшихся в этом разделе, концентрации должны быть заменены на активности. Когда концентрация субстрата меняется в широком диапазоне, то поправка на активность может быть весьма существенной. Например, изучение скорости реакции уреаза — мочевина в диапазоне концентрации мочевины от 0,0003 до 2,0 М показало, что при высоких концентрациях мочевины скорость реакции надает [112]. Это может быть связано с изменением активности, а не механизма реакции. [c.564]

    Буферные растворы обладают тем важным свойством, что разбавление их почти не изменяет концентрации водородных ионов, так как при разбавлении отношение Скисл/у Ссоль onst. Происходит лишь незначительное изменение из-за изменения коэффициента активности соли. [c.157]

    Так как электрод, в котором активность ионов водорода точно равна единице, создать довольно трудно, для измерения практического характера обычно пользуются ацетатным буферным раствором, который, как было показано выше, отличается весьма устойчивым значением pH. Для ацетатного водородного электрода готовят смесь из 50 мл 1-н. НаОН и 100 мл СНзСООН в 500 мл раствора. Таким образом, получают буферную смесь 0,1-н. СНзСООН -Ь 0,1-н. СНзСООЫа, pH которой при 25 °С равен 4,627. Аналогично могут быть приготовлены 0,01-н, и 0,001-н. ацетатные растворы, pH которых при 25 °С соответственно равны 4,67 и 4,78. [c.156]

    Ионное легирование железа никелем с увеличением концентрации никеля резко уменьшает предельную плотность тока пассивации и плотность тока полной пассивахщи, а также смещает потенциалы питтингообразования и перепассивации к более положительным значениям. При обеспечении 25 %-ной концентрации никеля в поверхности ионно-легированного железа область активного растворения практически отсутствует, например, в боратном буферном растворе, содержащем 2400 мг/л хлор-ионов, при pH = 8,5. [c.74]

    И.<адрнн -белый кристаллический порошок, т. пл. 167- -169°, хорошо растворим в воде водные растворы приобретают на свету розовую окраску активность прн этом сущеегвеино не изменяется. Хлор-ион определяют с помощью AgKOy хлорным железом окрашивается в зеленый цвет, переходящий в присутствии карбоната натрня в синий, а затем в красный. Для идентификации препарата его растворяют в двух буферных растворах с pH [c.246]

    Иная ситуация имеет место при проведении эксклюзионной хроматографии в водных средах. Из-за специфических особенностей многих разделяемых систем (белки, ферменты, полиэлектролиты и др.) и разнообразия применяемых сорбентов существует очень много вариаций состава подвижной фазы для подавления различных нежелательных эффектов [34, 35]. Общими приемами модификации является добавка различных солей и применение буферных растворов с определенным значением pH. В частности, поддержание рН=<4 дает возможность подавить слабую ионообменную активность силикагелей, обусловленную присутствием на их поверхности кислых силанольных групп. Требуемая ионная сила подвижной фазы достигается при концентрации буферного раствора 0,05-0,6 М оптимальную концентрацию подбирают экспериментально. Для предотвращения ионообменной сорбции катионных соединений наиболее часто используют такой активный модификатор, как тетраметиламмонийфосфат при рН=3. Однако при разделении некоторых белков могут проявляться гидрофобные взаимодействия, в свою очередь осложняющие эксклюзионный механизм разделения. Те же эффекты иногда проявляются и при работе с дезактивированными гидрофильными сорбентами. Для их устранения к растворителю добавляют метанол. Иногда в водную подвижную фазу вводят полярные органические растворители, полигликоли, кислоты, основания и поверхностно-активные вещества. [c.48]

    Возникновение потенциала асимметрии возможно при химических воздействиях на поверхность электрода (протравливание щелочами или плавиковой кислотой), механических повреждениях (стачивание, шлифование), адсорбции жиров, белков и других поверхностно-активных веществ. К наиболее важным причинам возникновения потенциала асимметрии относится изменение сорбционной способности стекла по отношению к воде при термической обработке в процессе изготовления электрода. Некоторый вклад вносит дегидратация набухшего поверхностного слоя (высушивание или выдерживание в дегидратирующем растворе). Возникновению потенциала асимметрии способствует неодинаковое напряжение на двух сторонах стеклянной мембраны. Если пустсЛ-ы кремнийкислородной решетки на одной ее поверхности отличаются по форме от пустот на другой поверхности, то нарушается равновесие переноса ионов между стеклом и раствором и возникает потенциал асимметрии. В общем, любое воздействие, способное изменить состав или ионообменные свойства мембраны, влияет на потенциал асимметрии стеклянного электрода и может привести к ошибкам в измерениях pH. Мешающее действие потенциала асимметрии компенсирзтот при настройке рН-метров по стандартным буферным растворам, имеющим постоянную и точно известную концентрацию ионов водорода. [c.188]

    Применяя фторидный электрод следует учитывать два обстоятельства. Во-первых, фтороводородная кислота является слабой кислотой и в кислой среде активность ионов фтора существенно отличается от их общей концентрации даже в сильно разбавлённых растворах. Во-вторых, при высоких значениях pH на поверхности электрода может образоваться слой Ьа(ОН)з, растворимость которого соизмерима с растворимостью ЬаРз. В результате освобождается дополнительное количество ионов фтора, что приводит к уменьшению электродного потенциала. Поэтому pH растворов поддерживают постоянным с помощью буферных растворов в диапазоне 5,0 - 5,5. [c.194]

    Подвижные фазы. Хроматографические разделения с использованием ионообменников чаще всего проводят в водных растворах, так как вода обладает прекрасными растворяющими и ионизирующшш свойствами. Под действием воды молекулы пробы мгновенно диссоцшфуют на ионы, ионо-генные группы ионообменников гидратируются и также переходят в полностью или частично диссоциированную форму. Эго обеспечивает быстрый обмен противоионов. На элюирующую силу подвижной фазы основное влияние оказывают pH, ионная сипа, природа буферного раствора, содержание органического растворителя или поверхностно-активного вещества (ион-парная хромато1рафия). [c.317]


Смотреть страницы где упоминается термин Буферные растворы активность ионов: [c.284]    [c.175]    [c.101]    [c.146]    [c.164]    [c.4]    [c.405]    [c.113]    [c.535]    [c.535]    [c.68]    [c.59]    [c.60]    [c.85]    [c.212]    [c.119]   
Основы аналитической химии Издание 3 (1971) -- [ c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Активность в буферных раствора

Активность ионная

Активность ионов

Активность раствора

Активные в растворах

Буферная

Буферные иониты

Буферные растворы

Раствор ионный



© 2025 chem21.info Реклама на сайте