Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температурные стеклования

    Были выявлены закономерности связей между важнейшими элементами молекулярной структуры эластомеров и их физическими и вязкоэластическими свойствами в широком интервале температур. При этом были установлены количественные корреляции между температурой стеклования и микроструктурой каучуков данного химического строения, изучен характер влияния молекулярно-массового распределения на температурный коэффициент эластичности для ряда каучуков, а также исследованы кристаллизационные процессы в эластомерах и пути их регулирования (см. гл. 2, 4). [c.15]


    Так как переход полимеров в стеклообразное состояние связан с резким изменением их свойств, то температура стеклования представляет собой в большинстве случаев нижний температурный предел использования эластомерных материалов. В зависимости от химической природы и структуры мономерных звеньев значения температуры стеклования различных эластомеров охватывают широкий интервал температур (от —130 до 0°С). [c.45]

    В отличие от стеклования, которое в пределах доступного для наблюдения времени не является фазовым переходом, кристаллизация представляет собой фазовый переход I рода, признаками которого являются скачкообразные изменения удельного объема, энтальпии и энтропии системы. Термодинамической константой этого перехода является равновесная температура плавления кристаллов Гпл. Она представляет собой верхний температурный предел. выше которого существование кристаллической фазы невозможно. Кристаллизация развивается при Т <Тпл и состоит из двух элементарных процессов — образования зародышей, а также роста и формирования кристаллитов. Первичными кристаллическими образованиями в нерастянутых полимерах являются ламели, представляющие сложенные на себя молекулярные цепи. Из них затем формируются вторичные поликристаллические образования — сферолиты, дендриты и др. [c.46]

    Благодаря высокой температуре стеклования блоков поли-а-метилстирола термоэластопласты на основе а-метилстирола выгодно отличаются от термоэластопластов на основе стирола более широким температурным интервалом, в котором сохраняются прочность и эластические свойства материала, при этом с увеличением содержания а-метилстирола температуростойкость полимера повышается. По-видимому, это объясняется уменьшением влияния эластичной фазы на текучесть термоэластопласта в связи с понижением ее доли в полимере, а также повышением молекулярной массы поли-а-метилстирольных блоков. [c.289]

    Оценивая роль концентрации эффективных цепей и природы диизоцианата в повышении физико-механических свойств, можно отметить одну характерную особенность. Если сравнивать для эластомеров различного строения сопротивление разрыву и относительное удлинение в эквивалентном температурном интервале выше температуры стеклования, то они практически одинаковы [c.536]

    Из данных спектров релаксации было установлено, что молекулярно-массовое распределение сегментов не сказывается на температурном переходе, обусловленном локальным движением метиленовых групп эластичного сегмента, температура стеклования которого определяется содержанием жесткого блока, а не молекулярно-массовым распределением. Но при идентичных составах полимеры с узким молекулярно-массовым распределением характеризуются более высокой температурой стеклования, что, вероятно, объясняется лучшим разделением фаз и кристаллизацией. [c.541]


    В связи с этим температурный интервал между температурами текучести и стеклования (Утек—7 ст), В котором вещество находится в высокоэластичном состоянии, сильно зависит от степени полимеризации Р. [c.571]

    Для линейных полимеров стеклообразное состояние и высокоэластичное состояние являются нормальными состояниями, относящимися только к различным температурным условиям. Температура, при которой охлаждаемый полимер переходит из высокоэластичного состояния в твердое (температура стеклования),является важной характеристикой полимера. Каучуки, например, отличаются тем, что их температуры стеклования ниже комнатной. Полимер 11 же с более высокой температурой стеклования находятся при обычных условиях в стеклообразном состоянии, но могут переходить в высокоэластичное состояние при достаточном повышении температуры, если она ниже температуры деструкции данного полимера. [c.583]

    Зависимость температуры сте- стирола М = 200 ООО) от температуры клевания от скорости охлаждения можно видеть, сопоставляя температурную зависимость изменения объема полимера при различных скоростях охлаждения. На рис. 209 представлена эта зависимость для полистирола. Коэффициент термического расширения данного полимера неодинаков для твердого и высокоэластичного состояний. Поэтому на кривых, выражающих зависимость объема полимера от температуры, обнаруживается четкий излом, отвечающий температуре стеклования. Ломаная линия А B D отвечает результатам, наблюдаемым при резком охлаждении полимера, а линия A B D — результатам, полученным при охлаждении его со скоростью 0,2° в минуту. Легко видеть, что температура стеклования (излом кривых) в последнем случае ниже, чем в первом. Это объясняется тем, что при быстром охлаждении не успевает достигаться равновесное распределение частиц. [c.583]

    Наряду с температурой стеклования практически важной температурной характеристикой полимеров является также температура хрупкости (Т р). Так условно называют температуру, ниже которой полимер проявляет хрупкость (см. р. 589). Температура хрупкости, если ее определять ири действии на полимер в статических условиях, несколько ниже температуры стеклования. [c.587]

    Подобные температурные интервалы перехода от стеклообразного состояния к высокоэластическому и от высокоэластического к вязкотекучему получили названия, соответственно, температуры стеклования (Тс) и температуры текучести (Гт). [c.374]

    Вопрос. Температурные области стеклования полиакрилонитрила и поливинилового спирта близки и соответствуют 110-120 °С. Объясните, почему при [c.133]

    Температурная область, в которой полимерные цепи имеют возможность интенсивного сегментального движения, называется температурной областью стеклования (при охлаждении полимера) или расстекловывания (при нафевании полимера) и характеризуется температурой стеклования В этой температурной области Ёвэ становится основной составной частью об- [c.136]

    Эндрюс и др. [124, 126] также изучали набухание ПММА в равновесных условиях в различных спиртах и связывали его с наблюдаемыми изменениями предела вынужденной эластичности Ор, температуры стеклования Тс и сопротивления материала распространению трещины Я. Они сообщают об интересном явлении отсутствия температурной зависимости Я выше некоторой критической температуры Тк. При определенных условиях набухания ПММА Т соответствовала Тс в пределах ошибки эксперимента. Эндрюс и др. предложили выражение для Я, содержащее поверхностную энергию зародышевых [c.387]

    От молекулярной массы зависят такие ва/кные характеристики полимеров, как температуры текучести, стеклования и хрупкости, определяющие температурные интервалы переработки и эксплуатации полимерных материалов. В зависимости от различных внешних условий (температуры, наличия пластифицирующих сред, величины и скорости приложения нагрузки и т. п.) [c.48]

    Качественно о влиянии температуры на коэффициент трения можно судить по выражению (4.3-2). Повышение температуры должно сопровождаться снижением сдвиговой прочности и увеличением поверхности контакта. Поскольку сила трения определяется произведением этих величин, фактическое значение коэффициента трения при росте температуры может как увеличиваться, так и уменьшаться. Ряд исследователей сообщает о существовании минимума на температурной зависимости коэффициента трения при температурах, существенно меньших температуры плавления (рис. 4.4) [11 — 15]. Наблюдающееся резкое увеличение коэффициента трения вблизи температуры плавления (или стеклования) связано с возникновением на поверхности трения тонкой пленки расплава, в котором развивается обычное вязкое течение [15]. [c.86]

    Коэффициент теплопроводности полимеров зависит от температуры. У аморфных полимеров в стеклообразном состоянии к растет с повышением температуры, достигает максимума, а затем либо колеблется (натуральный каучук, ПВХ, полиизобутилен), либо остается постоянным. На рис. 5.10 показана температурная зависимость к для непластифицированного и пластифицированного ПВХ. Пластификатор смещает температуру стеклования, поэтому в зависимости от области температур, в которой измеряется к, его значение либо ниже, либо выше значения к для непластифицированного ПВХ. [c.121]


    Структурное стеклование обнаруживается по изменению температурного хода статических физических свойств вещества (теплового расширения, теплоемкости, удельного объема и т. п.) в отсутствие частотных и других механических воздействий. Но прежде всего оно обнаруживается по возникновению твердости, регистрируемой любыми методами. [c.87]

    Все физические свойства [39, с. 173 40, с. 23] при стекловании изменяются с температурой по кривым двух типов (рис. 11.6) в зависимости от того, положительным или отрицательным температурным коэффициентом характеризуется исследуемая величина. Температурные зависимости типа / дают различные функции состояния, которые в дальнейшем будут обозначаться 2. Это могут быть объем V, внутренняя энергия [c.87]

    Если во всех экспериментах применяется один и тот же режим охлаждения (непрерывный или с остановками), то положение области стеклования на температурной шкале для всех свойств совпадает и не зависит от частоты механических или ультразвуковых колебаний. Вообще механические, электрические и другие виды силовых воздействий из-за самой природы структурного стеклования не влияют на Тс, если эти внешние воздействия достаточно малы. При оценке многих механических воздействий, например при измерении модулей упругости, необходимо считаться с тем, что только малые напряжения и деформации практически не влияют на структуру полимеров и, следовательно, на температуру стеклования. [c.87]

    Температурные зависимости функций состояния (см. рис. II. 6) дают излом, а, следовательно, их температурные коэффициенты (коэффициент объемного расширения, теплоемкость и др.) дают скачок при переходе через температуру стеклования (рис. 11.7), что послужило поводом к отождествлению процесса стеклования с переходом второго рода. [c.87]

    Что касается изложенной релаксационной концепции, рационально объясняющей видимость перехода второго рода при его действительном отсутствии, то она позволяет с удобством использовать изменение физических свойств при стекловании для прямого измерения Гс- При этом принято считать, что температура структурного стеклования есть температура, при которой физические свойства вещества изменяются в аномальном интервале наиболее резко. На кривых свойство — температура (см. рис. П. 6) Тс приблизительно соответствует точке перелома. На кривых температурных коэффициентов (см. рис. П. 7), образующих в области стеклования перегиб, температура стеклования соответствует точке перегиба. При таком определении температура стеклования Гс в принципе не зависит от чувствительности прибора и точности измерения физических свойств. Часто Гс определяется как точка пересечения экстраполированных зависимостей, наблюдаемых вне области стеклования (см. рис. П. 6). Предпочтение отдается тем свойствам, температурные зависимости которых в структурно-жидком и стеклообразном состоянии мало отличаются от линейных. В связи с этим наиболее распространенным методом определения температуры структурного стеклования (или размягчения) является метод теплового линейного расширения Температура стеклования (размягчения) определяется пересечением прямолинейных участков кривой расширения (рис. П. 8). [c.91]

    Разумеется, 0°С является, довольно условной — даже для гибкоцепных полимеров — границей доминирования того или иного типа потерь. Реальной границей является температурная область структурного стеклования. — Прим. ред. [c.245]

    Из анализа соотношения (2.10) следует, что существует узкий температурный интервал, включающий температуру стеклования Гс и ограниченный снизу и сверху соответственно температурами Т и Гг, при этом  [c.39]

    Из кинетической теории следует, что в интервале стеклования структура вещества при охлаждении сначала запаздывает в нарастающем темпе, затем темп запаздывания замедляется и структура замораживается. В интервале размягчения также наблюдается запаздывание перестройки структуры, но несколько иначе, чем при охлаждении. В результате в температурном ходе изменения структуры (а следовательно, и физических свойств) должен иметь место гистерезис даже при одинаковых скоростях охлаждения и нагревания, что и наблюдалось экспериментально. Однако рассмотренная теория не может претендовать на количественное согласие с реальным процессом стеклования из-за грубости принятой модели вещества, неучета группового механизма релаксации и конкретной структуры различных жидкостей. [c.40]

    Для разных эластомеров на температурной зависимости механических потерь наблюдаются максимумы, соответствующие у-, р-, а- и Л-процессам релаксации. Установить природу Я-процессов, обычно проявляющихся на дискретных релаксационных спектрах (см. рис. 5.1, 5.5 и 5.6), можно лишь использовав независимые методы и в первую очередь метод внутреннего трения. Тщательные исследования температурно-частотных зависимостей механических потерь эластомеров показали, что на температурной зависимости фактора их механических потерь при Т>Тс наблюдается несколько. максимумов, меньших по высоте, чем а-максимум, проявляющийся в области механического стеклования при Тм- При этом проявляются три максимума, температурное положение которых (значения Т ) может быть рассчитано, напрпмер, для каждого Я-процесса из уравнения (5.6) с учетом формулы (5.2), и для каждого времени т,-методами релаксационной спектрометрии могут быть определены величины и В . Расчет значений Г, из спектров дает хорошее согласие с экспериментально наблюдаемыми при исследованиях методом внутреннего трения температурами релаксационных переходов [7]. [c.135]

    Изучение температурной зависимости эластичности по отскоку и термомеханических свойств рассматриваемых ТЭП показало присутствие двух раздельных фаз, температуры стеклования которых соответствуют температурам стеклования индивидуальных эластомерного и полиуретанового блоков (табл. 11). При этом наблюдается полное совпадение температур стеклования для неполярных эластичных сегментов и определенное увеличение температур стеклования для полярных эластичных сегментов, причем Тс — Та, возрастает с увеличением полярности сегмента. Одновременно для термоэластопластов на основе полярных полимердио-лов наблюдается симбатное уменьшение температуры стеклования уретанового сегмента (см. табл. 11). [c.450]

    Таким образом, следует помнить, что приведенные в табл.66 значения температуры стеклования некоторых полимеров для статических условий еще не характеризуют свойств полимеров при действии переменной силы. Переход данного полимера из стеклообразного состояния в высокоэластичное или наоборот нельзя относить к какой-то строго фиксированной температурной точке, так как при повышении температуры высокоэластические свойства полимера начнут появляться у него при разных темпе- t ратурах в зависимости от харак- тера действующей силы, от на- пряженного состояния самого по-лимера и других факторов.  [c.585]

    Обычно полимеры обладают способностью поглощать некоторые жидкости (с которыми совместим данный полимер). При этом происходит процесс набухания полимера, сопровождающийся увеличением его объема. Вследствие проникания молекул жидкости между звеньями цепей полимера увеличиваются расстояния и ослабляются связи между ними. Это и приводит к понижению температуры стеклования, уменьщению вязкости и к другим эффектам, обусловленным ослаблением связей между молеку. лами однако одновременно снижается и температура текучести. В результате температурный интервал, отвечающий области высокоэластичного состояния, смещается в область более низких температур. На рис. 216 показано влияние содержания трибутирина (сложного эфира глицерина и масляной кислоты) в поливинилхлориде на эти температурные параметры, а на рис. 217 представлено влияние пластификатора на термомеханические кривые, подобные рассмотренным ранее (см. рис. 202). При повышении содержания пластификатора (кривые 2 и 3) температуры стеклования и текучести понижаются, при достаточной концентрации пластификатора постепенно сближаются, причем область существования полимера в высокоэластичпом состоянии уменьшается. Эта область должна ы д [c.590]

    Измерить г и 2 для битумов невозможно, и исследователи используют в качестве градуировочной жидкости бензол. Результаты,полученные на серии битумов в области температур от 60 до 225 °С, показали, что поверхностное натяжение по мере снижения температуры линейно возрастает. Ниже определенной температуры (которая зависит от типа битума) температурный коэффициент поверхностного натяжения резко увеличивается, что объясняется автора--ми [571 изменением, происходящем в структуре бнтума. Поскольку поверхностное натяжение зависит от групп, лежащих на поверхности, оно чувствительно к изменению структуры молекул. Однако каких-либо резких изменений в структуре битума не наблюдается, вплоть до температуры стеклования. Такое несоответствие следует в значительной степени приписать вязкостным эффектам, которые затрудняют измерение при помсщи газовых пузырьков. Другие факторы будут обсуждаться ниже. [c.56]

    Для низкомолекулярных аморфных соединений температурь стеклования и текучести тождественны, поскольку такие соеди- 1епия в узком температурном итервале непосредственно переходят из твердого в пластическое состояние. С увеличе- 1 1ем длины цепн мх молекул аморфного вещества температура стеклования возрастает очень медленно и достигает предельного значении при ()1 ределенг ой длине цепи, разной для различных полимеров. [c.43]

    Андерсен [261, который провел обширные исследования влияния давления на термические характеристики полимеров, отмечает, что теплоемкость очень медленно падает с ростом давления в стеклообразном состоянии. То же самое справедливо и для расплавов полимеров. Конечно, если давление вызывает температурные переходы, Ср изменяется заметно падает при застекловывании и сильно возрастает и затем снижается при кристаллизации. Таким образом, при переработке полимеров можно ожидать существенного влияния давления на Ср при температурах среды несколько выше Tg и но не ниже этих температур. Для практических целей можно считать, что Ср от давления не зависит, медленно меняется при температурах ниже и Гт и в расплаве (15—30 % на 100 С), сильно возрастает при плавлении (в 5—10 раз) и скачкообразно возрастает приблизительно на 10 % при переходе через температуру стеклования. В табл. 5.1 для ряда промышленных полимеров приведены значения Ср при комнатной температуре, а также значения плотности, коэффициентов теплопроводности и термический коэффициент линейного расширения. [c.128]

    Дисперсная фаза структурированных НДС в ядерной части на определенном этапе представлена газопаровыми пузырьками, капельками изотропной и анизотропной жидкости, кристаллами, ассоциатами и комплексами асфальтосмолистых веществ и других ВМС, кристаллитами углерода. Во многих случаях эти виды ДФ могут находиться в структурированных НДС одновременно. При этом следу ст подчеркнуть, что частицы ДФ данного вида, находящиеся в конденсированном состоянии, могут бьггь представлены органическими соединениями различных классов или относящимися только к одному классу, гомологическому ряду или группе. Так, кристаллическое ядро ДФ может быть образовано парафиновыми, ароматическими или смешанными углеводородами в таких системах как нефть, дистиллятные и остаточные продукты переработки нефти и газа, битумы и пеки, находящиеся при температурах, более низких, чем температура их застывания или стеклования, или сетчатыми ароматическими макромолекулами в графите. Состав, структура, размеры, объемные и поверхностные свойства ядерной части частиц ДФ, конкретный набор и концентрация различных видов ДФ в данной структурированной НДС в процессах получения нефтяного углерода определяются многими факторами природа сырья, температурно-временной режим и давление карбонизации, среда, степень превращения сырья, технологические и аппаратурные особенности процесса, тип и интенсивность внешних энергетических воздействий и т.д. [c.108]

    Процесс стеклования обусловлен изменением сегментальной подвижности цепей в неупорядоченной части полимера. Следующее из принципа температурно-временной зависимости уравнение Вильямса — Лаидела — Ферри [38, с. 251] относится к процессу а-релаксации и учитывает температурную зависимость энергии активации (см. гл. П и V). Процессу а-релаксации соответствует самый высокий максимум потерь (см. рис. 1.19). [c.63]

    Приведенные выше рассуждения соответствуют релаксационной теории структурного стеклования, впервые предложенной Кобеко [39, с. 176]. Эта теория учитывает, однако, йзл 1енение структуры жидкости только в пределах ближнего порядка и поэтому не объясняет всех особенностей процессов стеклования а полимерах. Например, в полимерах выше Тс с изменением темпе ратуры, кроме изменения структуры на уровне ближнего порядка, идут процессы структурообразования, например процессы формирования флуктуационных надмолекулярных структур, процессы обратимого и необратимого структурирования и т. д. Это приводит к более сильной температурной зависимости физических свойств в области стеклования. [c.85]

    Температуры структурного стеклования Тс и механического стеклования Тм. с независимы между собой, так как первая определяется скоростью охлаждения, а вторая — временным режимом механического воздействия (периода действия силы 0, частоты упругих колебаний v). Различие между Тс и Гм.с четко наблюдалось, например, при изучении температурной зависимости динамического модуля сдвига G или модуля одноосного сжатия Е. Характерная зависимость lg от температуры для полимера 11риведена на рис. П. 11. Ниже Гс полимер находится в стеклообразном состоянии и температурная зависимость Igf слабо выражена, как и у любого твердого тела вообще. Выше Гс логарифм модуля упругости изменяется с температурой несколько сильнее в связи С тем, что в структурно-жидком состоянии структура полимера изменяется с изменением температуры. При дальнейшем увеличении температуры, когда время релаксации снижается до величин, сравнимых с периодом колебаний, начинает возникать высокоэла-бтичёская деформация. С дальнейшим увеличением температуры амплитуда деформации полимера возрастает до предельного значения, а модуль упругости падает до весьма низкого значения (модуля высокоэластичности). Для полимеров модуль одноосного (жатия в стеклообразном состоянии Ео примерно в 10 —10 раз больше, чем соответствующий модуль Еж в высокоэластическом состоянии. [c.96]

    При повышении температуры плотность i деполяризационного тока / увеличивается и вблизи тейпературы стеклования (для ПММА 7 с=120°С) проходит через максимум. Наличие этого максимума, находящегося в температурном интервале стеклования, показывает, что термическое разрушение остаточной поляризации, образовавшейся в ПММА, непосредственно связано с сегментальной формой теплового движения в полимере. Известно, [c.260]


Смотреть страницы где упоминается термин Температурные стеклования: [c.319]    [c.378]    [c.196]    [c.216]    [c.49]    [c.38]    [c.54]    [c.84]    [c.88]    [c.88]    [c.94]    [c.166]    [c.255]    [c.262]   
Физико-химические основы производства искусственных и синтетических волокон (1972) -- [ c.22 , c.23 , c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Определение температуры стеклования, и температурного коэффициента линейного расширения

Стеклование температурный интервал

Температурно-временная эквивалентность вязкоупругого поведения аморфных полимеров и уравнение Вильямса — Лэндела — Ферри в области стеклования

Температурные переходы полиэтилентерефталата стеклование

Температурный коэффициент линейного расширения, температура стеклования и внутренние напряжения



© 2024 chem21.info Реклама на сайте