Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы получение малорастворимых

    Опыт 10. Получение малорастворимых соединений калия и натрия. (Качественные реакции на ионы щелочных металлов.) [c.109]

    Получение малорастворимых солей тория (IV). В три пробирки внесите по 2—3 капли соли тория. В первую пробирку добавьте раствор гидрофосфата натрия, во вторую — раствор фторида щелочного металла или аммония. Наблюдайте образование малорастворимых солей тория (IV). Напишите уравнения реакций в ионной форме. [c.244]


    Опыт 2. Получение малорастворимых селенидов и теллуридов металлов [c.133]

    Представляет интерес сравнить способность фторидов различных элементов присоединять ионы фтора в растворах фтористоводородной кислоты. Материал для такого сравнения дают результаты исследований систем типа НР — МеР —Н2О методом изотермической растворимости. Из данных И. В. Тананаева [1, 2, 3], полученных при изучении систем НР — Мер — Н2О, следует, что все щелочные элементы первой группы образуют комплексные фториды состава Ме[НРг], где Ме = Ы, N3, К, № и Сз. В этих соединениях центром координации выступает протон, который предоставляет свои орбиты электронным парам ионов фтора. Для элементов второй группы (щелочноземельные металлы) характерны малорастворимые фториды типа СаРг, не присоединяющие дополнительно ионов фтора при контакте с фтористым водородом. [c.85]

    Задача первого этапа гравиметрического анализа заключается в получении малорастворимого осадка. Затем осадок нужно очистить, высушить, перевести в какую-нибудь устойчивую форму и взвесить (определить массу). Взвешиваемый продукт должен иметь определенный химический состав желательно, чтобы он был негигроскопичен. Условия высушивания и прокаливания осадков лучше всего оценивать по термогравиметрическим кривым (см. гл. 4, раздел И). В некоторых случаях нагревание до 105 °С приводит к полному удалению воды. В других случаях для разрушения фильтровальной бумаги и других органических веществ нужно нагревать осадок до 500 °С иногда для осуществления необходимых химических превращений необходима температура до 1000 °С. При работе с осадками, полученными при помощи органических реагентов, необходимо применять дополнительные меры предосторожности. Многие соединения с органическими реагентами малополярны, многие из них при сравнительно низкой температуре летучи без разложения. Это может приводить к большим потерям, если прокаливание осадка проводится до получения соответствующих окислов металлов. [c.380]

    Опыт 3. Получение малорастворимых сульфидов металлов [c.145]

    Определенный интерес представляют методы получения малорастворимых оксидов при воздействии озона в растворе на катионы тяжелых металлов (А. Ф. Чудное) и использование реакции фазового обмена амальгамы одного металла с раствором соли более электроположительного металла (С. П. Бухман). Последним методом получены, в частности, концентрированные растворы перхлората, сульфата и нитрата 5п (П)..  [c.188]


    Примеси, содержащиеся в исследуемых солях, предварительно концентрируют на сульфидно-угольном коллекторе в виде малорастворимых сульфидов и диэтилдитио-карбаматов металлов . Полученный концентрат, смешанный с хлористым натрием, анализируют в дуге постоянного тока. [c.71]

    Способы получения ТПС можно разделить на две основные группы образование ТПС в результате реакции химического осаждения из раствора, содержащего ионы осаждаемого металла и сульфидирующий агент сорбционные способы, основанные на сорбции поверхностным слоем диэлектрика малорастворимых веществ, например гидрооксидов электроотрицательных металлов, и преобразовании их в сульфиды металлов на поверхности диэлектрика. [c.99]

    Рафинированию подвергают аноды из чернового золота, полученные из шлама после переработки серебра, рудного золота и золотого лома. Используются для рафинирования солянокислые растворы трехвалептного золота, так как многие другие соединения золота сравнительно малорастворимы либо из таких растворов, например цианистых, затруднено получение чистого катодного металла. [c.272]

    Большая часть ортофосфатов металлов, как указано в табл. 7, была приготовлена преимущественно тремя методами осаждением малорастворимых ортофосфатов, кристаллизацией из равновесных растворов и высокотемпературными реакциями в твердой фазе. Высокотемпературные реакции обычно пригодны только для получения трехзамещенных фосфатов, не содержащих гидратной или связанной воды. Для получения соединений этими методами синтез нужно проводить при температурах ниже температур плавления и стеклования. Методами осаждения не всегда получают термодинамически устойчивые твердые фазы, и состав осадков может изменяться в зависимости от условий осаждения. Иногда трудно воспроизвести получение ортофосфатов методом осаждения, если условия реакции описаны недостаточно подробно. Методы кристаллизации позволяют получить соединения определенного состава, соответствующие фазовой диаграмме, если кристаллизация производится не слишком быстро. Для надежности методы кристаллизации указаны в таблице только в тех случаях, когда имеются данные о фазовом равновесии. [c.215]

    При получении особо чистых тиосульфатов рубидия и цезия необходимо учитывать склонность малорастворимых тиосульфатов тяжелых металлов к образованию с ионами [ЗгОз] хорошо растворимых комплексных солей. [c.119]

    В водных растворах ионы висмута обладают большой склонностью к ассоциации как с гидроксил-ионами (гидролиз), так и другими лигандами (комплексообразова-ние). Такие реакции широко используются в технологии и аналитической химии висмута. На использовании реакций гидролиза с образованием малорастворимых основных соединений висмута основана его очистка от примесных металлов (свинца, железа, меди, цинка, серебра и др.) при переработке азотно- и солянокислых растворов с получением соединений В1 [1, 2]. [c.23]

    Таким образом, способность соединений висмута к гидролизу с образованием малорастворимых основных солей позволяет широко использовать гидролитические процессы для извлечения висмута из растворов выщелачивания и его очистки от примесных металлов. Количественное (>98 %) извлечение висмута из азотно-, серно-и солянокислых растворов выщелачивания осуществляется цементацией В1 на железе, цинке или свинце, а также добавлением воды или щелочных реагентов к растворам выщелачивания, что способствует эффективной очистке висмута от примесных металлов с получением соединений высокой чистоты. [c.64]

    Обменная реакция фторсульфоната с солью или основанием другого металла. Обычно в качестве исходного вещества служит NHiSOgF- Первая реакция может быть применена для получения малорастворимых фторсульфонатов (например, KSO3F), вторая — заканчивается выпариванием раствора в высоком вакууме [93] для удаления аммиака и выкристаллизовывания полученной соли. Возможность образования при этом соли сульфаминовой кислоты как побочного продукта не освещена в литературе. [c.180]

    Недавно в литературе появилось сообщение [1396] о получении хорошо растворимых фторселенатов Си, Ni, d и Zn выпариванием фторидов металлов с HF и избытком селеновой кислоты кроме того, получен малорастворимый в воде КЗеОзР. [c.185]

    Описание способов получения ряда гексафтороантимонатов было дано [97 ] в 1935 г. Количественные данные о растворимости их приведены в 10. Очень мала растворимость соли малахитовой зелени и, особенно, метиленовой голубой лутеосоль хорошо растворима. При попытках получения солей металлов, образующих малорастворимые фториды, происходит полное разложение гексафтороантимонатов. [c.277]


    В воде ЭО2 малорастворимы, они подвергаются сильному гидролизу и разлагаются даже слабыми кислотами, образуя соль металла и Н2О2. Для получения Н2О2 раньше использовали реакцию  [c.315]

    К гетерогенным мембранным электродам относятся так называемые осадочные и мембраны на основе ионообменников. Впервые стабильные в работе осадочные электроды на основе солей серебра получены венгерским исследователем Пунгором. Матрицей служил силиконовый каучук. Осадочные мембраны изготовляются из малорастворимых солей металлов и некоторых хелатных соединений. Так, Са " -селективный электрод может быть получен, если в качестве активного вещества взять окса-лат или стеарат кальция, Ва2+- или 50/ -селективные элект  [c.54]

    ЛИТИЯ СОЕДИНЕНИЯ. При непосредственном взаимодействии лнтия с галогенидами образуются солн галогеноводородных кислот. Фторид лития LiF — бесцветные кристаллы, малорастворимые в воде, нерастворимые в органических растворителях применяется в качестве компонента многих флюсов при выплавке металлов, в производстве специального кислотоупорного и проницаемого для УФ-лучей стекла. Хлорид лития Lid — бесцветные кристаллы, хорсшо растворяются в воде и в органически.х растворителях применяется для получения металлического лития электролизом, хорошо растворяет аммиак, используемый для кондиционирования воздуха, изготовления сухих батарей, легких сплавов. Бромид лития LiBr — бесцветные кристаллы, хорошо растворимые в воде применяется для кондиционирования воздуха, производства фотореагентов, в медицине (лечит по,дагру). Иодид лития Lil — бесцветные кристаллы, хорошо растворяются в воде и в органических растворителях вместе с Hg 2 применяется для изготовления так называемых тяжелых жидкостей для разделения минералов, а также в медицине и в производстве фото- [c.149]

    Первая возможность представляет очень удобный метод точного определения количества электричества. На этом принципе основано действие электрогравиметрических, газовых и титрационных кулонометров, в которых определение количества разложившегося вещества проводят соответственно гравиметрическим, газоволюмометрическим или титриметрическим способом [83]. В кулонометрическом анализе в более узком смысле слова используется вторая из указанных возможностей. Поскольку количество электричества определяется величиной кулонометрический анализ сводится к определению силы тока и времени. Кулонометрия имеет более универсальное применение, чем электрогравиметрия, поскольку она не ограничивается только использованием реакций, при которых на инертном электроде выделяются малорастворимые соединения. В методе кулонометрии можно использовать также электродные реакции, связанные с образованием растворимых веществ. При выделении осадков (например, металла) нет необходимости получения осадков, обладающих хорошей сцепляемостью с электродом и способностью к отдаче воды при подсушивании. [c.149]

    Помимо прямого соединения металла с серой и реакции нейтрализации, многие сульфиды (малорастворимые) могут быть получены обменным разложением в растворе солей соответствующего металла с HjS или (NH4)jS. Часто применяемый в лабораториях раствор последней соли готовят обычно, насыщая сероводородом раствор NH4OH (что дает NH4SH) и смешивая затем полученную жидкость с равным объемом NH4OH. [c.324]

    Применение. Пероксид водорода применяется для обработки и травления поверхностей металлов, для производства неорганических и органических пероксидов, для получения глицерина HgOH HOH HgOH из акролеина СН2=СН—СНО, для обеззараживания сточных вод, в медицине и косметике (в виде 3% -го раствора). Но основная масса пероксида водорода (в европейских странах до 90%) расходуется в процессах отбеливания естественных и искусственных волокон, ваты, меха, бумажной массы, для осветления мыл, синтеза веществ, входящих в состав стиральных порошков и синтетических моющих средств. В сельском хозяйстве HgOg используют для протравливания семян в пиш евой промышленности — для удаления из некоторых продуктов солей сернистой кислоты (десульфитация) окислением им 80 -ионов в 80 -ионы с последующим связыванием последних в малорастворимый aSOi. [c.316]

    Крупнокристаллическими называют осадки, частицы которых имеют поперечник около 0,1 мм и больше. Получение более мелких частиц осадка нежелательно, так как они быстро закрывают поры фильтра, что резко замедляет фильтрование. Кроме того, крупнокристаллический осадок более чистый, так как он захватывает из маточного раствора меньше примесей. Студенистые осадки, например, Ре(ОН) ,, А (ОН) ,, Н2810 ,, трудно отфильтровываются и увлекают с собой вследствие сорбции примеси посторонних веществ. При осаждении малорастворимых гидроокисей металлов pH раствора остается постоянным, пока в нем имеется избыток катионов осаждаемого металла, [c.292]

    Следует отметить, что 8-хинолинол образует малорастворимые комплексы со многими ионами металлов. Эти комплексы могут быть использованы для определения металлов-комплексообразова-телей. Для этого осадки комплексов отфильтровывают, промывают, растворяют в кислоте и в полученном растворе броматометрическн определяют 8-хинолинол. Зная состав комплекса, по количеству 8-хинолинола вычисляют стехиометрическое количество ионов-комплексообразователей. [c.206]

    Используя 3%-иую амальгаму отрафипироваиного цинка в качестве анода, можно получить с хорошим выходом в зависимости от рода электролита самые разнообразные соединения цинка особой чистоты гидроокись (электролит—вода), карбонат (электролит—вода, насыщаемая углекислым газом), ацетат (электролит —уксусная кислота) и т, д. [104]. При анодном растворении амальомы с получением особо чистых соединений необходим стро[ий контроль поте Щиала анода. Послс перехода металла из амальгамы в растнор наблюдается увеличение потенциала анода до значений, необходимых для окисления ртути. В электролите увеличивается содержание примеси ртути и появляется муть из-за обрачования малорастворимых соединений [85, 05]. [c.393]

    XVI в. Жидкое стекло стало доступным для технического использования после работ Фукса (1818). Поэтому раньше его называли фуксовым стеклом. Жидкое стекло изготавливают сплавлением песка с содой с последующим вывариванием полученного и измельченного стекла в воде. Водные растворы жидкого стекла имеют сильно щелочную реакцию. Под действием углекислого газа из них выделяются малорастворимые кремниевые кислоты. Щелочные свойства и способность выделять кремниевую кислоту обусловливают области применения растворимого стекла текстильное и бумажное производство, в мыловарении и лакокрасочном деле. Жидкое стекло придает крепость и лоск штукатурке, цементам и другим материалам, содержащим известь, так как кальций придает стеклу нерастворимость в воде. Жидкое стекло используют для пропитки рыхлых грунтов с целью их упрочнения и закрепления. На основе растворимого стекла при добавлении наполнителей и модификаторов получают силикатный клей, который применяют для склеивания керамики, стекол, асбеста, металлов и других материалов. Конечно, его используют и в канцелярском деле для склеивания бумаги и картона. [c.84]

    Диоксид серы ЗОа является промежуточным продуктом в производстве серной кислоты. Все сульфидные минералы перед получением из них соответствующих металлов подвергают обжигу, при этом сульфидная сера превращается в диоксид серы. В лаборатории 502 получают обработкой твердых сульфитов концентрированной серной кислотой. Растворение диоксида серы сопровождается его гидратацией и последующим протолизом полигидрата. Взаимодействие диоксида серы со щелочами приводит к образованию средних и кислых солей — сульфитов и гидросульфитов. Сульфиты щелочных металлов и аммония хорошо растворимы в воде, сульфиты остальных металлов малорастворимы. Растворы сульфитов имеют pH > 7 вследствие гидролиза, а растворы гидросульфитов — pH < 7 (гидросульфит-ион — амфо-лит с преобладанием кислотных свойств). Диоксид серы и суль-фит-ион обладают ярко выраженными восстановительными свойствами (окисляются хлором, иодом, кислородом воздуха и др.) окислительные свойства 50г и ЗОз проявляются, например, в реакциях конмутации с участием сероводорода, приводящих к выделению серы. Окисление ЗОа до 50з в промышленных условиях ведут в присутствии катализатора (этап технологического процесса получения серной кислоты). [c.141]

    Сплавление с перекисью натрия и смесями на ее основе проводят в корундизовых, железных и никелевых тиглях [388, 938, 1082, 1118, 1135]. Пробу тщательно перемешивают в тигле с названными веществами обычно в соотношении 1 10 и нагревают до 500—600° С в течение 15—30 мии. После охлаждения тигля с расплавом иа воздухе плав выщелачивают вначале холодной водой, а затем нагревают до разложения перекиси водорода, образовавшейся при растворении избытка перекиси натрия. В полученном растворе находятся ионы, не образующие в щелочном растворе малораствориыых осадков, в том числе и перренат-ион, в осадке — гидроокиси металлов, малорастворимые в воде и щелочных растворах. Раствор с осадком фильтруют через бумажный фильтр или центрифугируют. Раствор отделяют и используют для определения рения. [c.235]

    Описан [1197] косвенный радиометрический метод определения микрограммовых количеств мышьяка, основанный на осаждении его в виде арсената уранила-аммония (NH4UO2ASO4) и измерении а-активности полученного осадка, принадлежаш ей радиоактивным изотопам урана. Метод позволяет определять 1—8 мкг As с ошибкой 5—10%. Вследствие малой селективности метода (мешают фосфаты, а также ионы металлов, образуюш ие малорастворимые арсенаты) и большой продолжительности анализа метод не нашел практического применения. [c.114]

    Осаждение мышьяка в элементном виде часто является удобным способом его отделения, особенно в случае его последующего тит-риметрпческого определения (см. гл. IV). Восстановление проводят обычно в кислой среде, обеспечивающей получение чистых осадков элементного мышьяка, ие загрязненных малорастворимыми гидроокисями металлов, образующимися в нейтральных и щелочных растворах. В качестве восстановителей наиболее часто используют гипофосфит натрия или кальция и хлорид олова(П). Соли хрома(П) предложено использовать для выделения мышьяка из органических соединений [450]. Однако при использовании солей хрома(П) вместе с Аз выделяется также 8Ь. Гипофосфит натрия (кальция) позволяет отделять мышьяк от сурьмы и большинства других металлов. Кроме мышьяка гипофосфит натрия и кальция восстанавливают до элементного состояния 8е, Те, Ag, Hg, Аи, Р1. [c.117]

    К малорастворимым солям, осаждение которых применяется технологии извлечения металлов, относятся фосфаты циркония урана (IV). Осаждение труднорастворимых солей часто провод в сильнокислой среде, что обеспечивает получение качественнь концентратов и возможность повторного использования обезмета. ленных растворов в цикле выщелачивания для снижения расхол кислоты. [c.100]

    В работе [201] проведен анализ возможности осаждения ниобия из органических растворителей. Отмечается, что такие соединения ниобия, как о-оксихинолинаты, купферонаты и роданиды малорастворимы в спиртах, эфире, хлороформе, четыреххлористом углероде и их растворы слабо проводят электрический ток. При электролизе хлоридных растворов ниобия в спиртах металл не выделяется. Благоприятное влияние оказывает добавка хлорида никеля, при этом выделяется никель-ниобиевый сплав (по данным спектрального и химического анализов). Для получения плотных и блестящих никель-ниобиевых покрытий рекомендован следующий состав N1012 — 0,1—0,3 г/л, НЬСЬ —40—100 г/л в этиловом спирте. При плотности тока 0,2 А/дм выход по току 0,5—1%, [c.63]

    Например, ионы алюминия, магния, цинка и других металлов дают с 8-оксихинолином малорастворимые кристаллические соединения—окси-хиноляты (см. Книга I, Качественный анализ). Осадки оксихинолятов отделяют от раствора, промывают и растворяют в хлористоводородной кислоте. К полученному раствору прибавляют раствор бромида и бромата. При этом происходят следующие реакции окисления—восстановления  [c.167]


Смотреть страницы где упоминается термин Металлы получение малорастворимых: [c.294]    [c.295]    [c.144]    [c.149]    [c.334]    [c.425]    [c.237]    [c.145]    [c.616]    [c.75]    [c.198]   
Практикум по общей химии (1948) -- [ c.0 ]

Практикум по общей химии Издание 2 1954 (1954) -- [ c.0 ]

Практикум по общей химии Издание 3 (1957) -- [ c.0 ]

Практикум по общей химии Издание 4 (1960) -- [ c.0 ]

Практикум по общей химии Издание 5 (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы получение



© 2025 chem21.info Реклама на сайте