Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы травление поверхности с применением

    Увеличение устойчивости 2п, А], Mg с повышением чистоты металла амальгамирование поверхности технического цинка или введение в него кадмия введение в технический магний марганца введение Ав, В1, 8Ь при травлении железа в кислотах понижение концентрации О2 в растворе уменьшение скорости перемешивания катодная поляризация внешним током применение анодных протекторов [c.11]


    Качество очистки поверхности после химической и электрохимической подготовки (обезжиривания, травления, полирования, активации) оценивается при внешнем осмотре изделия. Поверхность должна быть чистой и равномерно смачиваться водой. Если детали очищены и обезжирены недостаточно тщательно, вода будет собираться в капли. Это самый быстрый, простой, по достаточно эффективный способ оценки качества подготовки. Применение физико-химических методов контроля затруднительно, так как после операций травления поверхность металла очень активна и быстро взаимодействует с растворами и газами, находящимися в воздухе. [c.142]

    И с большим катодом изображена на рис. 56. Кривая типична для многих подобных систем. В области ЛВ наблюдается обычное растворение с травлением поверхности. При увеличении напряжения на ячейке скорость растворения всегда возрастает (применение большого катода и растворов с малым сопротивлением обеспечивает почти точное совпадение напряжения, подаваемого на ячейку, и анодного потенциала, измеренного в соот-ветствуюшей шкале). В области ВС происходит растворение и полировка анодной поверхности (качество полирования зависит от потенциала) скорость растворения практически не зависит от потенциала анода. В области СО выделяется кислород и продолжается растворение металла с хорошим или частичным полированием. [c.345]

    Катодное травление осуш,ествляют обычно в растворе серной кислоты. На катоде яри прохождении через него тока происходит разряд ионов водорода. При катодном травлении исключается опасность растравливания поверхности металла, как часто наблюдается при анодном травлении. Однако применение катодного травления ограничивается заметным наводороживанием поверхностных слоев металла, что особенно недопустимо для тонкостенных стальных изделий. Кроме того, неравномерно травятся различно удаленные от анода участки поверхности. [c.101]

    Атомы водорода, реагируя с окислами металла на катоде, восстанавливают их, а газообразный водород оказывает механическое воздействие на пленку окислов, разрыхляя ее и удаляя с поверхности катода. Таким образом, при катодном травлении исключается опасность растравливания поверхности металла, как это зачастую наблюдается при анодном травлении. Однако применение катодного травления ограничивает заметное наводороживание поверхностных слоев металла, что особенно недопустимо для тонкостенных стальных изделий. Кроме того, в случае изделий сложной гео.метрической формы происходит неравномерное травление различно удаленных от анода участков поверхности. [c.136]


    С начала 50-х годов широкое применение в промышленности приобрел метод контурного размерного травления (химического фрезерования), заключающийся в вытравливании металла с поверхности на определенную глубину по заданному контуру. Этим методом можно заменить механическую обработку деталей самых разнообразных форм и габаритов, а также получить точность обработки 0,05 мм. [c.140]

    Цинковые металлизационные покрытия превосходно защищают сталь сами по себе и не нуждаются в окраске, но поверхность таких покрытий очень реакционно способна и поэтому выглядит неприглядно из-за образования продуктов коррозии. Оцинкованная сталь имеет гладкую поверхность и поэтому не является идеальной основой для окращивания. Поэтому обычно для создания необходимой адгезии применяют травящий грунт. Травящий грунт обычно состоит из поливинилбутираля и свободной фосфорной кислоты. Этот грунт, взаимодействуя с поверхностью цинкового покрытия, образует на ней тонкую защитную пленку. Очевидно, что в сильном травлении поверхности напыленного покрытия нет необходимости, поэтому недавно доктор Жордан предложил на /4 снизить концентрацию свободной фосфорной кислоты и поддерживать ее на уровне 3,5—4%. Этот грунт в настоящее время обычно наносят на оцинкованные материалы перед отправкой конструкции на место сборки. В настоящее время еще нет однозначно определенных правил, касающихся выбора оптимальной системы лакокрасочного покрытия, наносимого после грунтования. Исследования в этой области продолжаются. Большинство лакокрасочных систем дают хорошие результаты при защите цинковых напыленных покрытий, но следует избегать применения некоторых масляных связующих, которые реагируют с металлом. [c.385]

    Возможности кислот, обладающих окислительными свойствами. Удивительно, что простое погружение в кислоту, обладающую окислительными свойствами, которое вызывает травление поверхности, без введения в металл водорода, не имеет широкого применения для предотвращения вредного влияния водорода при этом методе травления нет необходимости в использовании внешней э. д. с. и отсутствует опасность, могущая возник- [c.374]

    Очистка образцов перед испытаниями. Нужно обратить внимание на предварительную подготовку поверхности образцов. Для удаления окислов,, первоначально покрывающих металл, часто применяется шлифовка, при которой в некоторой степени окислы вдавливаются в металл. Механическая обработка, примененная Бенгоу (см. ниже), не имеет этого недостатка. При травлении, которое часто применяется, может быть поглощение водорода, при употреблении ингибитированной кислоты на поверхности образца может остаться пленка органического вещества. Обдувка песком делает образец пригодным для испытания на коррозию (стр. 89), но в нем могут остаться вдавленные песчинки. [c.722]

    Межкристаллитную коррозию нержавеющих сталей можно также выявить электрохимическим путем — анодным травлением в течение 5 мин при плотности тока 0,65 а/см и 20 Ю С в 60%-ном растворе серной кислоты с 0,5% уротропина или другого замедлителя коррозии. Метод анодного травления, заключающийся в анодной поляризации исследуемого участка поверхности стали, обладает тем достоинством, что позволяет быстро (1,5—5 мин) определять склонность стали к межкристаллитной коррозии непосредственно на полуфабрикатах и готовых сварных изделиях. Применение этого метода дает возможность производить межоперационную проверку склонности металла к межкристаллитной коррозии и соответствующей термической обработкой устранять эту склонность. [c.345]

    Осмотр сварных швов производится по всей их протяженности с двух сторон невооруженным глазом или с применением лупы с увеличением до 10 раз. Перед контролем сварной шов и прилегающая к нему поверхность основного металла на ширину не меннее 20 мм по обе стороны шва должны быть очищены от шлака и других загрязнений, затрудняющих осмотр. Определение границ выявленных трещин производится путем шлифовки дефектного участка наждачной бумагой и травлением. [c.130]

    Электрохимическая металлизация диэлектриков. Особенности первичной подготовки поверхности диэлектрика перед нанесением токопроводящего слоя (обезжиривание, травление), как и в случае химической металлизации, зависят от природы покрываемых изделий. Создание электропроводящего слоя перед электрохимической металлизацией осуществляют, как правило, без применения драгоценных металлов. Для этого на диэлектрик наносят окунанием или из пульверизатора органический растворитель или эпоксидную смолу, содержащие в качестве наполнителя высокодисперсные порошки металлов, т. е. [c.98]

    Ингибитором называется вещество, при добавлении которого в среду, где находится металл, значительно уменьшается скорость коррозии металла. Ингибиторы применяют главным образом в системах, работающих с постоянным или мало обновляемым объемом раствора, например в некоторых химических аппаратах, системах охлаждения, парогенераторах и т. п. Особенно большое применение находят замедлители в процессах травления металлов для удаления с поверхности окалины или ржавчины. [c.222]


    Применение ингибиторов (травильных присадок) коррозии дает возможность улучшить процесс травления. Использование ингибиторов позволяет уменьшить расход кислоты и потери металла при травлении, предохранить металл от водородной хрупкости и улучшить условия труда. Защита металлов ингибиторами обусловливается их адсорбцией на поверхности металла, в результате чего повышается перенапряжение для водорода и затрудняется его выделение. С повышением температуры защитное действие ингибиторов падает. [c.166]

    Жидкие растворы играют громадную роль в жизнедеятельности организмов. Они находят самое различное применение в практике в технологии получения полупроводников и полупроводниковых приборов, в очистке веществ, в гальванических процессах получения и очистки металлов, в работе химических источников тока, в процессах травления металлов и полупроводников и т. д. Для нас особое значение будут иметь водные растворы электролитов. Но и неводные растворы играют большую роль в теории и практике. Неводные растворители применяют для обезжиривания и для удаления всяких органических загрязнений с поверхности полупроводников и металлов перед их травлением, перед осаждением покрытий и т. д. Такими растворителями являются спирты, ацетон, трихлорэтилен и др. В природе, в лабораториях, в заводской практике постоянно приходится иметь дело с растворами. Чистые вещества встречаются гораздо реже. Громадное число реакций протекает в жидких растворах. [c.148]

    Применение электролиза в технике. Электролиз используют в технике в таких процессах, как гальваностегия, гальванопластика, электрохимическая обработка металлов, электромеханическая заточка и шлифование. Всем этим процессам предшествует специальная обработка поверхностей — очистка от жировых пленок (масло), оксидных слоев (травление), необходимая для дальнейших операций. При этом применяются два основных вида процессов — катодные и анод[1ые. [c.293]

    Травление металлов, особенно при повышенной температуре и концентрации кислоты, сопровождается растравлением поверхности потерей металла и кислоты, ухудшением механических свойств металла и качества его поверхности. Для повышения качества протравливания металла и для снижения потерь металла и кислоты применяются ингибиторы кислотной коррозии в сочетании с пенообразователями, что уменьшает загрязненность атмосферы. Применение ингибиторов особенно необходимо при интенсификации процесса травления металла за счет повышения температуры травильных растворов, а также при работе на НТА. [c.61]

    КИ-1 получил применение при травлении черных металлов в растворах серной кислоты в ваннах периодического действия и на НТА. Ингибитор эффективен при сернокислотном травлении низколегированных, высоколегированных и электротехнических сталей при температурах до 100° С. Однако КИ-1 имеет и недостатки он нарушает работу регенерационных установок, загрязняет кристаллы железного купороса, наблюдаются случаи загрязнения поверхности металла. [c.65]

    На металлургических заводах, оборудованных НТА, ингибиторы практически не применялись в связи с отсутствием таких ингибиторов, которые удовлетворяли бы требованиям, предъявляемым при работе на НТА. Применение И-1-В, И-2-В оказалось невозможным, так как эти ингибиторы тормозят растворение окалины и на 25—35% снижают скорость травления. Кроме того, наблюдается загрязнение поверхности металла. Плохие результаты получены также при [c.71]

    Важным преимуществом многих ингибиторов второго типа является их низкая стоимость и доступность сырья. Поэтому для крупно-тоннажного травления сталей ингибиторы второго типа нашли наибольшее применение. По эффективности и технологичности они уступают синтетическим ингибиторам и обладают рядом недостатков,, которые в меньшей степени присущи ингибиторам первого типа. К ним относятся непостоянство состава, из-за чего их защитное действие колеблется в широких пределах, что осложняет их практическое использование способность в процессе применения подвер -гаться нежелательным химическим превращениям (разложению, осмолению и т. п.), снижающим эффективность защиты особенно при повышенных температурах. При использовании ингибиторов второго типа существует возможность осаждения отдельных составных частей ингибитора по мере изменения состава коррозионной среды,, например при накоплении солей железа и снижении концентрации кислоты в процессе травления металлов, а также возможность загрязнения протравленной поверхности металла, что препятствует дальнейшим технологическим операциям (холодной деформации,, нанесению металлических и лакокрасочных покрытий). [c.81]

    Первой отраслью народного хозяйства, где стали широко использоваться ингибиторы коррозии, была металлургия, точнее, прокатное производство. Как известно, при горячей прокатке на поверхности профилей образуется окалина, которая во многих случаях мешает дальнейшему применению проката. Поэтому окалину удаляют путем травления в ингибированной кислоте, т. е. в смеси кислоты с ингибитором. Благодаря наличию ингибитора кислота становится умной — реагирует с окалиной и почти не взаимодействует с самим металлом. [c.63]

    Эффективность применения бензоатов зависит от природы катиона и pH электролита. При низком pH защита хуже, при более высоких pH она достигается меньшими добавками ингибитора при pH 7—5-10", при pH 5,5—1-10" моль/л. Эффективность защиты стали в воде бензоатом натрия, в отличие от других ингибиторов, зависит от характера предварительной подготовки поверхности. Если поверхность ингибируется после травления азотной кислотой, то требуется небольшое количество ингибитора (10" моль/л), так как азотная кислота сама пассивирует поверхность. Если применяется дробеструйная обработка, то поверхность металла сильно увеличивается и для ее ингибирования требуется большое количество ингибитора (10" моль/л) для ингибирования шлифованных образцов необходимо 10 моль/л [c.89]

    Характерные особенности имеет применение ингибиторов для сернокислотного травления на НТА. Это связано прежде всего с неравномерным распределением окалины по поверхности листового металла, что приводит к неравномерности ее удаления в процессе травления, растравливанию поверхности, наводороживанию. Для устранения этих недостатков необходимо применение ингибиторов. Однако установлено [167], что применение ингибиторов на НТА сопровождается загрязнением поверхности металла, вызывает ухудшение сцепления наносимых покрытий (цинковых, лакокрасочных), замедляет удаление окалины, ингибиторы ухудшают работу купоросных установок (забивают отверстия центрифуг, вызывают вспенивание растворов, загрязняют кристаллы железного купороса). Поэтому к ингибиторам, используемым в НТА, предъявляются особые требования высокая эффективность при 95—100 °С, хорошая растворимость в кислоте, устойчивость к солям железа, ингибитор не должен тормозить растворение окалины, затруднять процесс регенерации травильного раствора, загрязнять поверхность металла [167]. [c.104]

    По масштабам производства и применения соляная кислота занимает третье место после серной и азотной кислот. Соляная кислота применяется для получения хлоридов металлов, хлорида аммония, в гидролитических процессах (гидролиз целлюлозы и др.), для очистки поверхности металлов (травление). Для снижения коррозионной активности в соляную кислоту вводят ингибиторы, заш иш аюш ие металл, но не препятствуюш ие растворению оксидной пленки. [c.350]

    Применение. Пероксид водорода применяется для обработки и травления поверхностей металлов, для производства неорганических и органических пероксидов, для получения глицерина HgOH HOH HgOH из акролеина СН2=СН—СНО, для обеззараживания сточных вод, в медицине и косметике (в виде 3% -го раствора). Но основная масса пероксида водорода (в европейских странах до 90%) расходуется в процессах отбеливания естественных и искусственных волокон, ваты, меха, бумажной массы, для осветления мыл, синтеза веществ, входящих в состав стиральных порошков и синтетических моющих средств. В сельском хозяйстве HgOg используют для протравливания семян в пиш евой промышленности — для удаления из некоторых продуктов солей сернистой кислоты (десульфитация) окислением им 80 -ионов в 80 -ионы с последующим связыванием последних в малорастворимый aSOi. [c.316]

    В присутствии 0,2—0,7 г/л ТДА скорость растворення стали находится в пределах 50—77 г/(м -ч) за 1 мин травления ("г=42—65 %), что достаточно для НТА. С увеличением времени травления за 30 мин скорость растворения составляет 39—59 г/(м -ч), т. е. защитное действие ингибитора повышается до 85—91 %, что предотвращает перетрав металла при остановке НТА. При концентрации 0,2 г/л ингибитор обеспечивает хорошее качество травления поверхности. Поверхность металла чистая, без шлама, растрава. Использование ТДА исключает применение пенообразователей, так как в его состав входят поверхностно-активные вещества, дающие на поверхности травильного раствора высокую, устойчивую пену. Ингибитор в концентрации 0,5 г/л на 4—13 % увеличивает время стравливания технологической окалины, что практически не влияет на режим работы НТА, ие снижает его производительности. ТДА улучшает пластические свойства углеродистых сталей в процессе травления. Так, травление СтЗ ири 75 °С в 12°/о-ной НС с 0,2 г/л ТДА увеличило пластичность на 21 % по сравнению с травлением в кислоте без ингибитора [227]. [c.157]

    Травление поверхности пластмасс органическими растворителями проводится в том случае, когда в изделия впрессованы металлические детали травильные растворы неорганических веществ корродируют металл. Травление пластмасс может найти значительно более широкое применение (вместо гравирования) в производстве различных щитков, этикеток, надписей, украшений, рельефных рисунков и т. п. Свел епротравленную поверхность пластмассы можно окрасить в разные цвета, посыпав ее мелким порошковым пигментом. Мелкие поры, имеющиеся в [c.33]

    Нами для исследования степени загрязнения щелочными металлами поверхности кремниевых пластин, а также структур 3102—31 и 31п/к —ВЮз—31 был применен метод пламенной фотометрии, позволяющий определять натрий и калий с пределом обнаружения 2 10 ° и 10 г соответственно. Исследования проводили на спектрофотометре фирмы Регк1п-Е1тег (мод. 403) с использованием пламени пропан—бутан—воздух. Травление поверхности 31 проводили смесью плавиковой и азотной кислот, поверхность ЗЮд — 5%-ный НР. При поиске оптимальных условий анализа применяли математическое планирование эксперимента методом Бокса—Уилсона. Параметром оптимизации выбрана интенсивность излучения линий натрия и калия. При выборе условий возбуждения изучали влияние следующих факторов давление воздуха (давление пропан—бутана), размер щели спектрофотометра, скорость распыления раствора, расстояние края горелки от оптической оси. Была состав. ена матрица полного факторного эксперимента тина 2. Однородность дисперсии параметра оптимизации проверяли по критерию Кохрена, адекватность модели по / -критерию Фишера. После подсчета коэффициентов регресии коэффициент первого фактора оказался незначимым. Математическая обработка результатов опытов (подсчет коэффициентов регрессии, движение по градиенту) позволила получить наилучшие значения размера щели, расстояния края горелки от оптической оги, расхода раствора. [c.233]

    Прогрессивным направлением в развитиии термической обработки яв" ля ются широкое распространение безокислительного нагрева металла, а также применение химико-термической обработки в печах с контролируемой атмосферой. Сохранение светлой необезуглероженной поверхности деталей в процессе их термообработки предупреждает потери металла в результате его окисления или обезуглероживания и позволяет избежать или сократить операции последующей очистки — травления, дробеструйной или механической обработки. Применение контролируемой атмосферы дает возможность снизить припуски и уменьшить затраты труда на последу- [c.29]

    Выбор катодов должен быть тщательно продуман. Для нена-углероживаемых металлов наилучшим материалом является графит высшей очистки. Применение металлических катодов создает возможность перехода примесей на осаждаемый металл. При съеме осадка нужно очищать поверхность соприкосновения либо абразивом, либо травлением (например, осадок хрома на алюминий). Для осаждения кадмия, олова, индия может быть рекомендован чистый графит. Лучше всего металлы высокой чистоты осаждать на основы, изготовленные из того же металла. [c.581]

    Недостатком ингибитора И-1-В является высокая температура застывания, что делает его неудобным в применении, кроме того И-1-В при хранении загустевает. Для устранения этих недостатков в ингибитор введены добавки, понижающие температуру застьшания и увеличивающие стабильность. Такая модификация ингибитора И-1-В получила название И-2-В, его технические свойства и назначение такие же, как и И-1-В. Оба ингибитора применяются в настоящее время при сернокислотном травлении малоуглеродистых сталей [80 115 118 131 132 170]. Но они не обладают пенообразующими свойствами, имеют в своем составе большое количество веществ, которые загрязняют поверхность металла, а также железный купорос. Кроме того, эти ингибиторы малоэффективны при травлении среднеуглеродистых и высокоуглеродистых сталей, предполагается в ближайшее время заменить их другими, более эффективными [153]. [c.64]

    Как показали испытания [116 138], ингибитор ХОСП-Ю особенно эффективен при высокотемпературном (80—95° С) травлении в растворах серной кислоты углеродистых сталей. Он защищает СтО, сталь 70 в 20%-ной серной кислоте на 93—99,4% при его концентрации в растворе 0,025—0,03%. Для травления легированной стали ШХ-15 и инструментальной У10А, а также низколегированных сталей в серной кислоте рекомендуется совместно с ХОСП-10 добавлять 0,5% Na l. Ингибитор не увеличивает наводороживание низко- и среднеуглеродистых сталей, улучшает состояние поверхности сталей. Одноразового введения ингибитора ХОСП-Ю достаточно для эффективной защиты металла от коррозии на протяжении всего цикла работы травильной ванны, т. е. при выработке травильного раствора от 20 до 1—2% серной кислоты. Ингибитор ХОСП-Ю обладает пенообразующими свойствами, поэтому для защиты открытых ванн от выделения паров кислоты не требуется применение специальных пенообразователей, которые необходимы при работе с ингибиторами И-1-В, ЧМ. [c.66]

    Травление металлов в фосфорной кислоте проводят значительно реже, чем в серной и соляной, из-за ее меньшей активности и более высокой стоимости. Фосфорную кислоту используют для удаления ржавчины при небольших степенях загрязнения металла. В этом случае пригодны разбавленные (1— 2%-ные) растворы Н3РО4, которые наряду с растворением оксидов вызывают пассивирование металла — образование на поверхности нерастворимых фосфатов железа. Преимуществом применения фосфорной кислоты является также то, что после обработки этой кислотой не требуется столь тщательная промывка металла, как при использовании серной и соляной кислот. [c.213]

    Соляная кислота (асс1с1ит Ыс1гос1ог1сит). Соляная кислота нужна прежде всего для приготовления хлористого цинка, применяемого при пайке металлов (гл. 5, 2), Кроме того, ее используют для травления, т. е. очистки поверхности меди и латуни от окислов и загрязнения (гл. 17, 4). Наконец, кислота нужна для получения углекислого газа в аппаратах Киппа (гл. 18, 1). Во всех этих случаях возможно применение технической (неочищенной) соляной кислоты. Однако более желательно пользоваться для этих целей очищенной кислотой, тем более, что она стоит лишь немного дороже технической. Соляная кислота нейтрализуется раствором аммиака (нашатырным спиртом) или соды (в крайнем случае — порошком мела). [c.412]

    Использование кислых технологических сред, а также применение кислот для различного рода технологических операций приводят к интенсивной коррозии металлического оборудования, трубопроводов, емкостей, машин, агрегатов, арматуры и т. п. Так, например, интенсивной коррозии подвергается оборудование нефтеперерабатывающих заводов, где в ходе технологического процесса переработки нефти образуются соляная, сероводородная, уксусная, нафтерювая кислоты. В нефтегазодобывающей промышленности коррозии подвержены оборудование скважин, насосно-компрессорные трубы, установки сбора и перегонки нефти и газа из-за наличия сопутствующих кислых газов сероводорода, углекислоты. В химической промышленности коррозионному разрушению подвергаются емкости для хранения кислот, реакторы, перекачивающие насосы (например, крыльчатки насосов, перекачивающих катализат в производстве уксусного альдегида, выходят из строя через 2—3 сут). Химическая обработка металлоизделий, проката, труб, проволоки в кислотах и кислых средах вызывает интенсивное растворение металла и значительные безвозвратные потери его. Считают, что при травлении окалины с поверхности стальных горячекатанных полос в кислотах теряется от 2 до 4 % протравливаемой стали, что при годовом производстве в 150 млн. т составляет 3—6 млн. т металла. Еще более опасны сопутствующие равномерной коррозии процессы локальной коррозии, наводороживания, коррозионного растрескивания, усталостного разрушения сталей. Так, по данным обследования химических заводов Японии, в 1979 г. более 50 % оборудования, разрушенного под воздействием кислых агрессивными сред, приходилось на локальную коррозию, коррозионное растрескивание, коррозионную усталость и лишь 33 % — на общую коррозию. [c.6]

    Подобные примеры можно было бы продоллсить. Однако следует отметить один из важнейших моментов, связанных с применением ингибиторов, а именно лри использовании того или иного ингибитора следует обращать внимание на -весь комплекс проблем, связанных с защитой металла от коррозии. Ингибиторы должны не только защищать от коррозии, но и сохранять практически важные чгвойства металла, не влиять на дальнейшие технологические операции, которым молсет подвергаться изделие. Так, например, при технологических операциях подготовки изделий из высокопрочных углеродистых сталей под гальванические по-4фытия (травление) ингибитор должен не только способствовать получению хорошей поверхности, но и эффективно препятствовать локальным процессам, приводящим к катастрофическим разрушениям (растрескиванию). При травлении пружинных изделий необходимо, чтобы ингибитор предотвращал водородное охрупчивание. Таким образом, лишь на основе комплексной оценки можно делать вы- вод о целесообразности применения того или иного ингибитора для конкретных коррозионных сред. [c.96]

    В процессе травления низкоуглеродистых сталей с целью удаления с них окалины 5 % кислоты расходуется на собственно растворение окалины и 55 % на растворение стали. Считают, что травлении теряется от 2 до 4 % протравливаемой стали, что при годовом производстве в 150 млн. т составляет 4—6 т. Снижение потерь металла при травлении — важнейший резерв экономии. Поэтому травление сталей в серной и соляной кислотах должно осуществляться обязательно с применением ингибиторов. Но не только это диктует необходимость использования ингибиторов. Дело в том, что процесс травления сопровождается обычно побочными явлениями, такими как неравномерность растворения металла, перетравлнвание его (особенно в серной кислоте), что приводит к увеличению микрошероховатости поверхности и, в конечном счете, к снижению качества стали. Неравномерность травления, растравливание поверхности способствует появлению будущих очагов локальных коррозионных процессов. Поглощение металлом выделяющегося при травлении водорода вызывает изменение физико-механических и физико-химических свойств электропроводности, магнитной восприимчивости, микротвердости, пластических и прочностных свойств и т. п. Все эти нежелательные явления могут быть эффективно предотвращены введением в травильные растворы ингибиторов. Большинство ингибиторов разработаны преимущественно для серной кислоты. [c.101]

    Ингибиторы КИ-1, ХОСП-10, С-5У, ПКУ-М улучшают качества поверхности при травлении, устраняют растравливание, предотвращают наводороживание и улучшают пластические свойства сталей. В целом применение новых ингибиторов травления в серной кислоте (ПКУ-М, ХОСП-10, КИ-1, катапииа) на металлургических предприятиях страны позволило снизить расход серной кислоты в среднем на 2,5—3,0 кг и уменьшить потери металла от перетрава на 1.5—2,0 кг на тонну проката [166 . [c.104]

    Применение регуляторов и ингибиторов для травления труб позволяет снизить потери металла на 1,5—7,5 кг на тонну травимых труб, уменьшить расход КИС.П0ТЫ на побочные процессы, устранить возникновение дефектов поверхности (особенно в зоне термического воздействия для сварных труб), предотвратить наводороживание и локальные коррозонные процессы на поверхности. [c.108]


Смотреть страницы где упоминается термин Металлы травление поверхности с применением: [c.237]    [c.137]    [c.82]    [c.38]    [c.114]    [c.146]    [c.14]   
Перекись водорода (1958) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность металла

Поверхность металла травление

Травление

Шихов, Г, Д. Ч у б. Применение гидридного метода травления для очистки поверхности металлов от термической окалины



© 2025 chem21.info Реклама на сайте