Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий фтористый, в качестве катализатора

    Образова.ние сложных эфиров. Сложные алкилэфиры иногда присутствуют как примеси в продукте алкилирования. Их образование связано с реакцией второй ступени цепного механизма алкилирования. Они могут также образоваться в результате присоединения катализатора (фтористый водород, серная кислота) или активатора катализатора (хлористый водород при применении хлористого алюминия в качестве катализатора) к олефину или к полимеру. В неблагоприятных условиях для водородного обмена с изопарафиновым углеводородом эфиры получаются как таковые. [c.320]


    При получении второго типа алкилбензола для алкилирования используют синтетический олефин — тетрамер пропилена, прибавляя последний к избытку бензола при 30—60° в присутствии хлористого алюминия. В качестве катализатора можно брать также фтористый водород. Серная кислота непригодна для этой цели, так как вызывает образование побочных продуктов. Продукты реакции нейтрализуют и очищают перегонкой, возвращая избыточный бензол обратно в реакцию. Додецилбензол, получаемый с выходом более 80%, кипит при 280—320° и содержит не менее 99% алкилбензолов [53]. Тетрамер пропилена был выбран на том основании, что он, по-видимому, дает наиболее однородно изомеризованную боковую цепь с 12 атомами углерода. Другие С г-олефины изостроения, например триизобутилен, имеют склонность к деструктивным изменениям в условиях процесса, образуя низшие алкилбензолы. [c.266]

    При действии хлористых алкилов или олефинов на ароматические углеводороды или фенолы легко протекает реакция с образованием алкили-рованных соединений. Реакция алкилирования должна проводиться в присутствии различных катализаторов, к числу наиболее широко применяемых относятся хлористый алюминий, безводная фтористоводородная кислота, фтористый бор и серная кислота. При работе с -хлористым алкилом как алки-лирующим компонентом в качестве катализатора применяется хлористый алюминий и в некоторых случаях безводное хромное железо (реакция Фриделя-Крафтса). [c.226]

    В качестве катализаторов в производстве этилбензола могут применяться серная кислота, фосфорная кислота, нанесенная на кизельгур, фосфат алюминия, фтористый бор в виде гидрата или молекулярного соединения с фосфорной кислотой, хлористый алюминий и различные алюмогели. [c.229]

    Каталитическое действие галоидных солей алюминия и фтористых соединений, а также механизм изомерных превращений гомологов ароматических углеводородов g подробно рассмотрены в монографиях [3, 4]. Галоидные соли алюминия в промышленных установках изомеризации применения не нашли. Это объясняется их высокой коррозионной агрессивностью в присутствии влаги и сложностью регенерации. Применение в качестве катализатора фтористого водорода в смеси с трехфтористым бором позволило разработать эффективный процесс изомеризации. Однако наибольшее распространение в промышленной практике получили катализаторы на основе окиси алюминия и алюмосиликатов. [c.152]


    В качестве катализаторов изомеризации триметилбензолов предложены платина на окиси алюминия, трехфтористый бор на окиси алюминия и смесь фтористого водорода и трехфтористого бора. Условия и результаты изомеризации на хлорированном алюмоплатиновом катализаторе технического псевдокумола приведены ниже [19]  [c.219]

    Изменяя состав исходного сырья, можно регулировать соотношение выпускаемого бензола и ксилолов, что значительно увеличивает гибкость установки диспропорционирования. В качестве катализаторов процесса диспропорционирования f 0 изучались хлористый алюминий, фтористый водород и трехфтористый бор, окись алюминия, а также аморф- ные и кристаллические алюмосили- = каты. В промышленности нашли применение только гетерогенные катализаторы. Процесс диспропорционирования можно проводить при атмосферном давлении и под давлением водорода. [c.279]

    В качестве катализаторов реакции алкилирования применя ют серную и фосфорную кислоты, бензолсульфокислоту, хлористый алюминий, фтористый бор, алюмосиликат и др. [c.30]

    Синтез алкилбензолсульфоната на основе тетрамеров пропилена впервые был разработан в Германии [9]. При алкилировании использовался в качестве катализатора фтористый водород [10, И]. В США для этой цели применяется хлористый алюминий [6, 8, 12, 13] и только одна из крупных фирм, производящих алкилбензолсульфонаты, использует фтористый водород [10 21], а другая серную кислоту [10]. [c.396]

    При алкилировании бензола в качестве катализатора применяются главным образом хлористый алюминий [6, 8, 12, 13, 21] и фтористый водород [10, И, 21]. Возможно в принципе использование также серной [c.407]

    Алкилирование бензола пропиленом производят в присутствии катализатора хлористого алюминия при температуре 50° С. В качестве катализаторов использовали также концентрированную серную кислоту, фтористый водород, фтористый бор и др. [c.69]

    Алкилирование парафиновых углеводородов представляет собой реакцию, ири помощи которой парафиновый углеводород соединяется с олефиновым, образованием более высококипящего парафинового углеводорода, являющегося высококачественным компонентом для повышения качества авиационного или автомобильного бензинов. Реакцию проводят как в присутствии катализаторов (серная кислота, фтористый водород, хлористый алюминий, фтористый бор и другие), так и без применения катализаторов при высоких температурах и давлениях. [c.173]

    Реакции алкилирования, кроме того, могут катализироваться сильными кислотами типа фтористого водорода, серной кислоты, сульфоновых и фосфорных кислот, в присутствии этих несомненно кислотных катализаторов протекают многие реакции изомеризации, и поэтому они широко применяются в нефтяной промышленности для проведения перегруппировок. В присутствии хлоридов металлов в качестве катализаторов изомеризация протекает легче с галоидными солями алюминия, чем с галоидными солями железа или галлия, и поэтому последним двум катализаторам отдают предпочтение при исследовании механизма реакции. [c.80]

    Алкилирование также может быть легко проведено при употреблении в качестве катализаторов галогенидов металлов, например хлористого алюминия или фтористого бора и его комплексных соединений однако эти процессы пока не получили широкого промышленного распространения. Сернокислотный процесс вследствие дешевизны катализатора и возможности использования отработанной серной кислоты для других процессов переработка нефти и простоты регенерации эффективен при промышленном применении. [c.695]

    Алкилирование фенолов так же, как и алкилирование бензола, может служить примером возможности успешного введения алкильных групп в ароматические соединения. При использовании в качестве катализатора хлористого алюминия следует иметь в виду его способность образовывать алюминиевые соли фенола. Обычно для алкилирования фенола и его производных применяют фтористый бор, фтористый водород, фосфорную или серную кислоты. Перечень типичных реакций приведен в табл. 39. Интересен случай исполь- [c.197]

    Очень важны реакции алкилирования изопарафинов олефинами. Известно много катализаторов этого процесса, но наиболее активны из них серная и фтористоводородная кислоты, хлорид алюминия, фтористый бор и его соединения. При катализе серной кислотой наряду с алкилированием происходит сульфирование и ряд других побочных процессов. HF побочных процессов не дает, но применение ее в качестве катализатора весьма затруднено из-за большой летучести и токсичности. [c.118]


    Иногда реакция между галоидными соединениями и ароматиче-ски.ми углеводородами протекает и в отсутствие катализатора, но в этих случаях требуются несколько более высокие гемпературы. Например, при кипячении хлористого бензила с дифенилом образуется п-бензилди-феиил. В последнее время при алкилировании ароматических соединений галоидпроизводными жирного ряда вместо хлористого алюминия в качестве катализатора конденсации применяется также фтористый водород. [c.486]

    Этот цепной механизм легко объясняет значительное различие продуктов, получаемых алкилированием изобутана 1-бутеном и 2-бутеном при применении хлористого алюминия в качестве катализатора, хотя нри сернокислотном и фтористоводородном алкилировании оба эти олефина образуют практически одинаковые продукты. Например, октановые числа бензиновых фракций с концом кипения 125°, получаемых алкилированием пзобутана 1-бутеном И 2-бутеном при 30° в присутствии хлористого алюминия и хлористого водорода, составляют соответственно 74,5 и 83,5 в обоих случаях алкилат содержит только 21—23% октанов [28в]. Если применять модифицированный катализатор на основе хлористого алюминия, а именно монометанолат хлористого алюминия, побочные реакции подавляются, вследствие чего при алкилировании 1-бутеном ири 55° получают жидкий продукт, содержащий 70% октанов октановое число бензиновой фракции с концом кипения 125° в этом случае равно 76 [28в]. Алкилирование 2-бутеном при 28° в присутствии монометано-лата хлористого алюминия дает жидкий продукт, содержащий 69% октанов бензиновая фракция с концом кипения 125° имеет октановое число 94. Основной причиной различия октановых чисел является изомерный состав октановых фракций бензин, полученный алкилированием 1-бутеном, содержит 71% диметилгексанов и 11% триметилиентанов, в то время как бензин, полученный с применением 2-бутена, содержит лишь 4,5% диметилгексанов и 76% триметилиентанов. С другой стороны, продукт, полученный алкилированием пзобутана 1-бутеном в присутствии жидкого фтористого водорода при 19°, аналогичен полученному с применением 2-бутена. При перегонке обоих алкилатов получают бензиновые фракции с концом кипения 150°, имеющие октановые числа соответственно 92,7 и 95,3 [20, 21]. Октановая фракция, полученная с выходом 57% от теоретического при алкилировании 1-бутеном, содержит 18% диметилгексанов и 82% триметилпентанов аналогичная фракция, полученная с выходом 68% при алкилировании 2-бутеном, содержит 9% диметилгексанов и 91% триметилпентанов. Аналогично алкилирование пзобутана в присутствии 97%-ной серной кислоты при 20° дает бензиновую фракцию с концом кипения 185° и октановым числом 92,9 при алкилировании [c.182]

    Интенсивность реакций перераспределения водорода значительно усиливается и эта реакция становится основной, если в качестве алкилирующего. агента вместо соответствующего олефина применять сложный алкильный эфир. Этого и следовало ожидать на основании предложенного механизма,. так как сложный эфир является источником высокой, концентрации карбоний-ионов,. принимающих участие в (обычно) необратимой первой ступени цепной реакции, давая трет-бутильные ионы, претерпевающие реакцию автоалкилирования вследствие исчерпания ресурсов олефинов для стадии 2. Так, в присутствии хлористого алюминия в качестве катализатора взаимодействие изобутана с хлористым изопропилом при 40—70° приводило к образованию пропана (выход 60—90%), наряду с жидким продуктом, содержавшим несколько больше-октанов, чем гептанов [30]. В присутствии фтористого бора реакция изобутана с фтористым изопропилом при —80° ведет к образованию 2,2,4-триметилпен-тана в качестве основного компонента жидкого продукта на 1 моль фтористого-пропила, восстанавливающегося до пропана, расходуются 2 моля изобутана [10]. В присутствии серной кислоты в качестве катализатора реакция изобутана с тре/тг-амиловьш спиртом при 2° давала изопентан с выходом 50%. Аналогично при взаимодействии изопентана с тре/п-бутиловым спиртом при 27° получался изобутан с выходом 111% [22]. Образование продуктов перераспределения водорода при этих катализируемых серной кислотой реакциях сопровождалось расходованием изопарафинового сырья в количестве, превышающем эквимолярное при взаимодействии около 1,8 молей изобутана и около- [c.185]

    При получении второго типа алкилбензола для алкилирования используют синтетический олефин — тетрамер пропилена, прибавляя последний к избытку бензола при 30—60° в присутствии хлористого алюминия. В качестве катализатора можно брать также фтористый водород. Серная кислота непригодна для этой цели, так как вызывает образование побочных продуктов. Продукты реакции нейтрализуют и очищают перегонкой, возвращая избыточный бензол обратно в реакцию. Додецилбензол, получаемый с выходом более 80%, кипит при 280—320° и содержит не менее 99% алкилбензолов [53]. Те трамер пропилена был выбран на том основании, что он, по-видимому, дает наиболее однородно изомеризованную боковую цепь с [c.266]

    Опыты по каталитическому алкилированию предельных углеводородов олефинами были проведены в июне 1932 г. с хлористым алюминием в качестве катализатора, хлористым водородом как промотором и гексаном и этиленом в качестве реагирующих веществ. Эти опыты, давшие пололсительные результаты, были затем повторены, причем было исследовано также алкилирование нафтенов. Количественное исследование алкилирования гексана было распространено и на другие парафины и катализаторы, в частности, на фтористый бор .  [c.123]

    Чаще всего алкилирование арилсульфонатов проводят олефинами в присутствии серной кислоты, безводного хлористого алюминия или фтористого водорода в качестве катализаторов [251] (см. второй том). В 1949 г. производство арилсульфоната на основе бензола составило около 66 000 т в пересчете на 100%-ное активное вещество, а к 1953 г. оно возросло приблизительно до 250 ООО г. [c.249]

    При конденсации т/ ет-бутилхлорида с пропиленом образуются первичный продукт 2-хлор-4,4-диметилпентан и большее или меньшее количество (в зависимости от катализатора и условий) продукта его перегруппировки 2- и 3-хлор-2,3-диметилпентана. Как правило, в качестве побочных продуктов получаются децилхлориды пока еще не установленного строения, вероятно, в результате конденсации трет-гентилхлори-дов с пропиленом. Если вести реакцию в присутствии хлористого алюминия при —30°, то с выходом до 70% образуются гептилхлориды, среди которых около 45% приходится на долю 2-хлор-4,4-диметилпентана, остальную часть составляет З-хлор-2,3-диметилпентан с ничтожными примесями 2-хлор-2,3-диметилпентана. Подобные же смеси с выходами от 20 до 60% получались и при проведении реакции в присутствии хлорного железа (при —15°- —-10°), фтористого бора (при 10°), хлористого висмута, хлористого цинка, хлористого циркония (при комнатной температуре) и хлористого титана (при 50°) [18 . Наиболее высокое содержание 2-хлор-4,4-диметилпентана в продуктах реакции было получено при использовании в качестве катализатора хлористого висмута. [c.229]

    Например, при проведении реакции в присутствии хлористого алюминия при температуре от —20° до —15° была получена с выходом 72% смесь хлор-/и/)ет-бутилциклогексанов, из которых около 85% составлял изомер (III), остальное — изомер (IV) основной побочный продукт — хлорциклогексан — получен с выходом в 5%. С другой стороны, при использовании в качестве катализатора фтористого бора при 0° был получен только изомер (IV) с выходом в 23% вместе с продуктом дегидрохлорирования его 1-/га/)е7и-бутил-1-циклогексеном (выход 12%) и цикло-гексилхлоридом (выход 15%). При применении в качестве катализатора хлористого висмута при 0° или при комнатной температуре был получен конденсат хлорбутилциклогексанов (с выходом 5% и 21—25% соответственно), подобный тому, который был получен ири использовании хлористого алюминия при —25°- --15°  [c.230]

    Некоторое время в качестве катализатора полимеризации бутиленов использовали серную кислоту. Полимеризующее действие оказывают также фтористоводородная кислота, фтористый бор, алюмосиликаты, хлористый алюминий. Установлено, что реакции полимеризации на кислотных катализаторах протекают по карбо-ний-ионному механизму . Так, в результате присоединения одного протона к молекуле пропилена образуетс 1 карбоний-ион он присоединяет новую молекулу пропилена с образованием карбоний-иона гексена, который затем стабилизируется в соответствующий олефиновый углеводород. [c.321]

    В качестве катализаторов помимо фосфорной кислоты для полимеризации олефиновых углеводородов применяют сернистую кислоту, хлористый алюминий, фтористый бор, пирофосфат меди, металлорганические соединения и др. Наряду с этим продолжаются совершенствование фосфорнокислотного катализатора, а также разработка новых катализаторов, в том числе и цеолитсодержащих. Так, механическую прочность и активность ортофосфорной кислоты на кизельгуре повышают добавлением 5% цеолита. Последний вначале смешивают с кизельгуром, а затем к смеси добавляют ортофосфорную кислоту и далее приготавливают катализатор обычным образом. Эффективность такого катализатора следующая в продукте, полученном на обычном катализаторе, содержится 85,2% моноолефиновых углеводородов, в том числе 36,5% тетрамера С12Н24, а на катализаторе, содержащем 5% цеолита NaX, — соответственно 96,9 и 83,4%- [c.311]

    При алкилировании бензола этиленом в реакторах с неподвижным слоем в качестве твердых катализаторов, вьшускаемых промышленностью, используется система окись алюминия - фтористый бор /5 /. Фирма Universal Oil Produ ts o. [c.147]

    В США было сооружено 60 установок алкилирования (главн). образом во время втором мировой войны), причем в 1946 г. на 32 из них в качестве катализатора использовали серную кислоту, на 27 — безводный фтористый водород и на одной — безводный хлористый алюминий [71]. По сравнению с ] аталитической полимеризацией процесс алкилирования имеет много значительных преимуществ. Во-первых, при совместной перергботке олефинов и изопарафинов высокооктановые углеводороды получают с гораздо большим выходом сам алкилат полностью насыщен и не содержит веществ, склонных к смолообразованию. Во-вторых, приемистость по тетраэтилсвинцу алкилата значительно больпие, чем полимеризата [72]. [c.319]

    Бензол реагирует с олефиновыми углеводородами вообще н с этиленом в частности достаточно интенсивно в присутствии катализаторов. В качестве катализаторов алкилирования бензола могут применяться серная кислота, фосфорная кислота, нанесенная на кизельгур, фосфат алюминия, фтористый бор в виде гидрата или йолекулярного соединения с фосфорной кислотой, хлористый алюминий, различные алюмосиликаты, как природные (нанример, гумбрин), так и приготовленные искусственно (синтетический алюмосиликат) и другие. [c.621]

    Алкилирование изопарафиновых углеводородов моноолефинами катализируется протоновыми кислотами (серной кислотой [6, 24] и фтористоводородной кислотой [13, 20]), а также галоидными катализаторами типа катализаторов Фриделя-Крафтса (хлористый алюминий [15, 16, 27], фтористый бор [15], хлористый цирконий [16] и другие). В нефтепереработке практическое значение в качестве катализаторов алкилирования имеют только серная кислОта и фтористый водород вследствие легкости работы с этими жидкими продуктами, высокой избирательности реакции, возможности регулировать активность катализатора и отсутствия коррозии обычных конструкционных материалов. [c.177]

    Кетонокислоты получают взаимодействием глутарового ангидрида или двухосновной жирной кислоты с тиофеном [2, 8, 60, 87, 92]. В качестве катализаторов ацилирования тиофена с успехом применяют хлорное олово, четыреххлористый титан и хлористый алюминий. В отдельных случаях применяли также хлорную ртуть, хлористый цинк, пятиокись фосфора, йод, йодистоводородную кислоту, алюмосиликатные гели и фтористый бор. Ацилтиофены вступают в реакцию Клемменсона (восстановление до алкилтиофенов), реакцию Фицингера с изатиновой кислотой, реакцию Гриньяра, хлорметилирование, реакцию Манниха, окисления гипохлоридом натрия, карбоксиэтилирования и хелатообразования. [c.285]

    Перераспределение метильных групп в системе ж-ксилолбензол над активированным углем, пропитанным хлористым алюминием, при 250—300° дает до 25% толуола [Шуйкип, Прохорова, ЖОХ, 16, 835 (1946)]. Выход толуола при применении. в качестве катализатора фтористого бора может быть увеличен до 5QO/o [Passina, ам, пат. 2396965, С. А., 40, 3594 (1946)]. [c.429]

    Ацетотиенон получают главным образом по реакции Густавсона-Фриделя-Крафтса. Для этой цели используются различные ацилирующие средства уксусная кислота, хлористый ацет ил, уксусный ангидрид, кетен и тетраацетилоксиси-лан [1]. В качестве катализаторов ацилирования применяют хлористый алюминий [2—4], хлорное олово [5], четыреххлористый титан [6], йод и йодистоводородную кислоту [7], эфираты фтористого бора [8], ортофосфорную [9] и хлорную кислоту [10, 11]. Другие некаталитические способы получения тиенил-2-алкнлкетонов [12] существенного интереса не представляют. [c.75]

    Конденсация окиси этилена со спиртами с образованием моноэфиров этиленгликоля протекает в широком интервале температуры и давления в присутствии различных катализаторов. В качестве катализаторов рекомендуются серная кислота, сульфаты никеля, хрома и их смеси, уксуснокислый натрий, вторичные и третичные амины, гидрат окиси алюминия, фтористый бром и алко-голяты, метилэтилсульфаты, бисульфат натрия, бориая кислота, фтористый бор и др. [c.155]

    Полимеры простых виниловых эфиров. Процесс полимеризации простых виниловых афиров протекает при температуре, близкой к температуре кипения взятого эфира. В качестве катализатора используют раствор хлорного железа в бутиловом спирте. Могут применяться н катализаторы типа Фриделя-Крафтса хлористый алюминий, хлористый титан, фтористый бор и др. Реакция ироте- [c.285]

    В качестве катализаторов помимо серной и фосфорной кислот в нефтехи111ическом синтезе для полимеризации олефиновых углеводородов применяют хлористый алюминий, фтористый бор, пирофосфат меди и т. д. [c.225]

    Как и при алкилировании изопарафиновых углеводородов, на процесс алкилирования ароматических углеводородов оказывают влияние такие факторы, как температура, давление и катализаторы. В качестве катализаторов для алкилирования ароматических углеводородов используют безводный хлористый алюминий, фосфорную кислоту на носителе, концентрированную серную кислоту, алюмосиликаты, фтористый водород, а также комплексные катализаторы типа Н3РО4 ВРз. В зависимости от того, в какой фазе (жидкой или паровой) протекает процесс алкилирования, применяется тот или иной катализатор. Так, хлористый алюминий и серная кислота применяются при алкилировании в жидкой фазе, а фосфорная кислота на носителе — при парофазном процессе. [c.240]

    Бутадиеновые каучуки могут быть получены полимеризацией бутадиена и сополимеризацней его со стиролом или акри-лонитрилом. Для ускорения полимеризации процесс проводят в присутствии катализаторов. Катализаторами служат преимущественно металлический натрий или его соединения, хлористый алюминий, фтористый бор и др. Качество полимера зависит от температуры и давления. Применяются также инициирующие вещества (перекиси), которые распадаются с образованием свободных радикалов, дающих начало росту цепей полимера. [c.261]

    Изомеризация парафинов. Главное практическое применение реакции изомеризации парафинов получили в нефтяной промышленности для превра-ш.ения нормального бутана в изобутан, а также для изомеризации пентановой и гексановой фракций в продукты с высоким содержанием изомеров с разветвленной цепью. Хотя сами по себе эти практические применения реакций изомеризации не представляют особого интереса для химика-органика, однако с.иедует отметить, что эти реакции протекают обратимо по уравнению первого порядка и в интервале от низких до умеренных температур (20—150°) приводят к образованию более разветвленных и более компактных молекул. Катализирующий эти превращения хлористый алюминий можно наносить на боксит или другие носители. Его можно также применять в виде илистого шлама или в растворе плавленой треххлористой сурьмы для проведения процесса в жидкой фазе. В качестве катализаторов применяют также бромистый алюминий, фтористый бор в сочетании с фтористым водородом [471] и серную кислоту. [c.162]

    Необходимо отметить, что при использовании в качестве катализатора хлористого алюминия преобладает замещение в жета-положение. Замещение в пара-положение возможно при использовании менее активных по сравнению с хлористым алюминием катализаторов, например фтористого бора, серной кислоты и хлорида железа. Возможно, что нормальное алкилирование с образованием 1,2,4-триалкилироизводных сопровождается последующим отщеплением алкильной группы в положении 1, в результате чего происходит образование же/тга-замещенных продуктов. [c.197]

    Эти же авторы исследовали полимеризацию триоксана в процессе суб-лилшции и кристаллизации, а таюке определили активность ряда соединенпй в качество катализаторов полимеризации и нашли, что лучшими катализаторами являются ацетилперхлорат, хлорное железо и хлористый алюминий. Им удалось получить полиформалх дегид с мол. весом 700 000 (11уд/с = 0,29) [376, 377]. Фтористый бор является хорошим катализатором для нолимеризации триоксана [375, 378, 379]. [c.83]

    Хлористый цинк, хлористое железо, так же как хлористый алюминий и фтористый бор, часто предлагаются в качестве катализаторов, иногда в присутствии строго контролируемых количеств воды, которая применяется как нромотор [2, 6, 177, 184]. [c.380]


Смотреть страницы где упоминается термин Алюминий фтористый, в качестве катализатора: [c.311]    [c.567]    [c.486]    [c.319]    [c.8]    [c.17]    [c.38]    [c.175]    [c.409]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.890 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий фтористый

Фтористый бор как катализатор



© 2025 chem21.info Реклама на сайте