Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разрушение и химическая реакция

    Постепенному разрушению, химические реакции — к деструкции (распаду полимерных молекул и выделению образующихся при этом продуктов). При наличии других компонентов, например пластификаторов, в результате химического взаимодействия со средой, последние могут выделяться (вымываться) из материала при этом уменьшается пластичность полимера и происходит растрескивание и механическое разрушение. [c.72]


    Химическая коррозия металлов представляет собой такой вид коррозии, в основе которого лежат законы обычных гетерогенных химических реакций. Разрушение металлов под действием агрессивных газов при высоких температурах, исключающих конденсацию влаги на поверхности металла, а также, по-видимому, их растворение в условиях контакта с органическими средами, не проводящими тока, относятся к процессам химической коррозии. [c.486]

    Суть химических реакций заключается в разрушении и образовании химических связей, в результате чего происходит перегруппировка атомов и образование новых соединений. Свойства этих новых соединений отличаются от свойств исходных веществ. Причем отличаются не только их физические свойства, но и те химические реакции, в которые они вступают. Другими словами, химические свойства этих новых соединений отличаются от химических свойств исходных веществ. [c.40]

    При выполнении этой работы вы познакомитесь с химической реакцией взаимодействия азотной кислоты НЫОз с медью (Си). Такая реакция называется коррозией. Этот термин используется для любых реакций, во время которых происходит разрушение какого-либо вещества. Многие металлы корродируют под воздействием кислот. Осторожно Кожа тоже разрушается под действием кислот. [c.109]

    В химических реакциях не происходит образования или разрушения атомов (закон сохранения массы). [c.64]

    Влияние защитной оксидной пленки на внутренней поверхности труб. Особое значение для предотвращения науглероживания жаростойких сталей имеет защитная оксидная пленка, образующаяся на поверхности труб в результате химической реакции на границе раздела фаз газ — металл. К защитным пленкам относят тугоплавкие оксиды металлов. Оксиды железа, например, имеют низкую температуру спекания, характеризуются высокой способностью к самодиффузии и диффузии элементов через них поэтому такие оксиды плохо защищают металл от разрушения. Оксиды же хрома и кремния, наоборот, обладают очень высокими температурами плавления и спекания, а также малой диффузионной способностью, вследствие чего хорошо защищают металл. [c.170]

    Рост окисной пленки во времени по законам (ИЗ) и (116) имеет место при соизмеримости торможений химической реакции окисления металла и диффузионных процессов в окисной пленке (окисление железа в водяном паре и углекислом газе, окисление чистой поверхности кобальта в кислороде, окисление меди в кислороде при низком давлении и др.), а также при окислении ряда металлов при высоких температурах, которое сопровождается частичным разрушением заш,итной окисной пленки. [c.65]


    Скорость гетерогенной химической реакции определяется скоростью образования или разрушения адсорбционного комплекса. [c.159]

    Отличительной особенностью газовых лазеров является то, что в них вещество имеет малую плотность, поэтому возможность его разрушения исключена. Возбуждение газов происходит в результате упругих и неупругих столкновений, ионизации и рекомбинации, диссоциации, химических реакций и других процессов. Это приводит к разнообразным методам создания инверсной заселенности (электрический разряд, оптическая накачка, химические реакции и др.). [c.99]

    Прохождение энергетического барьера обязано нер(н тройке электронной структуры молекулы, участвующей в реакции, кото])ая сводится к разрушению химической свяаи ВС и образованию новой связи АВ. Приближенно такая перестройка описывается суперпозицией двух волновых функций 1 а.вс и Фав.с, первая пз которых отвечает взаимодействию атома А с молекулой ВС, а вторая — атома С с молекулой АВ [c.66]

    Взрыв - это внезапное высвобождение энергии, сопровождающееся образованием волны сжатия и громким шумом. Взрыв несет потенциальную опасность поражения людей и обладает разрушающей способностью. Взрыв может быть физическим или химическим. В первую категорию - физические взрывы -попадают ядерные взрывы (в этой книге они подробно не рассматриваются), а также такие события, как разрушение сосудов, содержащих сжатые или сжиженные газы. Химический взрыв представляет собой либо экзотермическую химическую реакцию в твердом или жидком веществе (взрыв конденсированного ВВ), либо газофазную реакцию, когда происходит [c.241]

    Сильное разрушение операторного здания, вызванное детонацией конденсированного ВВ, маловероятно. Такое разрушение может произойти в результате детонации органических пероксидов (перекисей), которые обладают относительно низким ТНТ-эквивалентом (около 20%). Дальнейшим продолжением аварии могут стать неконтролируемые химические реакции или физические взрывы, которые могут произойти при разрушении сосудов, находящихся под давлением (камеры высокого давления). [c.535]

    Первые два члена правой части уравнения представляют химическую составляющую фреттинг-коррозии. Эта величина уменьшается с повышением частоты /, так как при этом сокращается время протекания химической реакции (или адсорбции) за один цикл. Последний член уравнения представляет механический фактор, не зависящий от частоты, но пропорциональный смещению и нагрузке. В зависимости от условий эксперимента, разрушение может в большей степени быть обусловлено как первым, так и вторым фактором. В атмосфере азота действует только механический фактор, в результате остается порошок металлического железа и не зависит от частоты /. [c.168]

    Нагревание также используют для разрушения эмульсий. Многие эмульсии можно разделить на составляющие их компоненты простым нагреванием до высокой температуры с последующим отстаиванием. Вероятно, нагревание ускоряет химические реакции, которые могут протекать в эмульсиях, изменяет природу поверхностного слоя, уменьшает вязкость. Таким образом, возникают условия, благоприятные для протекания процесса распада эмульсии. [c.70]

    Как уже указывалось, низкокипящие углеводороды обладают определенной токсичностью, а некоторые олефиновые углеводороды способны к химическим реакциям с другими загрязнениями, содержащимися в атмосфере. При больших концентрациях олефиновых углеводородов с участием углеродистых частиц, оксидов азота и других загрязнений под действием солнечного света происходит фотохимическая реакция образования так называемого фотохимического смога. При появлении смога снижается прозрачность атмосферы, возникает неприятный запах, появляются ощущение удушья, раздражение глаз. Смог не только воздействует на человека, он вызывает разрушение резиновых и текстильных изделий, некоторых красок, быструю порчу продуктов и гибель растений. [c.143]

    Химической коррозией называют процесс самопроизвольного разрушения металлов при их взаимодействии с сухими газами или жидкими неэлектролитами, происходящий по законам химических реакций. При взаимодействии металла с сухими газами (воздухом, газообразными продуктами горения топлива) при высоких температурах происходит газовая химическая коррозия. Газовая коррозия возможна и при низких температурах, если при этом на поверхности металла не конденсируется жидкость, проводящая электрический ток. При взаимодействии металла с жидкостями, не проводящими электрический ток (нефть, нефтепродукты, расплавленная сера и т. п.), происходит химическая коррозия в неэлектролитах. [c.20]


    Химические процессы протекают с выделением или поглощением тепла, которое называется теплотой реакции. Всякая химическая реакция сводится к разрушению определенного числа химических связей между атомами в молекуле и образованию новых связей. Если энергия, выделяющаяся при образовании новых связей, больше энергии, затрачиваемой на разрушение связей в исходных молекулах, то реакция сопровождается выделением тепла (экзотермический процесс) если же энергия, выделившаяся при образовании новых связей, меньше энергии разрыва связей, то реакция сопровождается поглощением тепла из окружающей среды (эндотермический процесс). Поэтому при химических превращениях изменяется внутренняя энергия реагирующих молекул. [c.5]

    Эта книга могла бы также иметь название Кинетическая теория разрушения полимеров . Однако термин кинетическая теория нуждается в определении или по крайней мере некотором пояснении. В кинетической теории детально рассматривается влияние дискретности материи, движения и физических свойств молекул на макроскопическое поведение ансамбля в газообразном или другом состоянии вещества. В кинетической теории прочности приходится дополнительно учитывать упругие и неупругие деформации, химические реакции и физические процессы, типы различных этапов разрушения и их последовательность. [c.7]

    Химическая коррозия - самопроизвольное разрушение твердых материалов вследствие химического взаимодействия их с внешней средой. Химическая коррозия металлов протекает при их взаимодействии с сухими газами или жидкими неэлектролитами по законам химических реакций. [c.17]

    Мы считаем, что продукты коррозии накапливаются только в порах с большим капиллярным потенциалом. Если размер поры меньше, чем размер образующегося продукта коррозии, то условий для осаждения продуктов коррозии нет. Для каждого вида продукта коррозии существует определенная зона размеров пор, в которых накапливаются нерастворимые компоненты реакции, приводящие к возникновению внутренних растягивающих напряжений в этих порах и, как следствие, к разрушению камня. Косвенным доказательством данной гипотезы служат результаты исследований, показавших, что в химическую реакцию, приводящую к объемному разрушению камня, вступает незначительная (3-10%) часть продуктов твердения. [c.53]

    Таким образом, в природе идет вечное рождение, превращение и распад ядер атомов Бытующее сегодня мнение о разовом акте происхождения химических элементов, по мень-ш й мере, некорректно. В действительности, атомы вечно (и постоянно ) рождаются, вечно (и постоянно ) умирают, и их набор в природе остается неизменным. "В природе нет приоритета возникновению или разрушению — одно возникает, другое — разрушается" [2, с. 110]. Выражаясь фигурально "Природа — улица с двусторонним движением". Прогрессив-нс<е развитие и регрессивное изменение одинаково закономерны и равноправны. Они протекают одновременно (даже в одном объекте) и находятся в подвижном равновесии, зависящем от внешних условий. Думается, принцип Ле-Шателье имеет более широкое применение, чем только для равновесных химических реакций. Он может претендовать на статус "всеобщего закона природы". [c.86]

    Привести конкретные примеры использования в фотометрическом анализе для получения окрашенных веществ следующих типов химических реакций а) комплексообразования б) образования малорастворимых соединений в) окисления — восстановления г) синтеза и разрушения органических соединений. [c.137]

    Перешедшие в раствор ионы остаются связанными с молекулами воды и образуют гидраты ионов. Иначе говоря, в результате диссоциации образуются не свободные ионы, а соединения ионов с молекулами растворителя. В общем случае любого растворителя эти соединения называются сольватами ионов. Но в уравнениях диссоциации обычно пишут формулы ионов, а не их гидратов или сольватов, тем более что число молекул растворителя, связанных с ионами, изменяется в зависимости от концентрации раствора и других условий. Однако, поскольку всегда образуется моногидрат иона водорода — ион гидроксония Н3О+, рекомендуется все же указывать его формулу, а не изолированного иона водорода. Тем более, что с образованием и разрушением иона гидроксония связана исключительно высокая подвижность иона водорода в водных средах, а значит, и его влияние на разнообразные химические реакции. Как нам известно из главы 4, для воды характерен некоторый дальний порядок в жидком состоянии за счет наличия между ее молекулами водородных связей. Ион гидроксония из-за своего более поляризованного, чем в молекуле воды, атома водорода участвует в образовании водородной связи, присоединяясь к одной из молекул воды  [c.235]

    Электродный процесс состоит из ряда стадий. Основными являются стадии диффузии реагентов к поверхности электрода или от нее, переход электронов или ионов через поверхность раздела фаз (электрохимическая стадия, разряд или ионизация), фазовые превращения (выделение пузырьков газа, кристаллизация или разрушение кристаллической решетки), химические реакции, предшествующие электрохимической стадии или следующие за ней. [c.327]

    В технике, а также повседневной жизни иногда не менее важно замедлить протекание нежелательных химических реакций, например реакций коррозии металлов, разрушения под воздействием света и кислорода воздуха резины и других материалов. Существуют вещества, добавки которых сильно уменьшают скорости реакций. Такие вещества называются ингибиторами (замедлителями). В настоящее время находят широкое применение ингибиторы коррозии металлов. [c.121]

    Хшшческие методы. Разрушение нефтяных эмульсий в этом случае достигается применением поверхностно-активных веществ (ПАВ), действующих как деэмульгаторы. Разрушение нефтяных эмульсий может быть результатом а) адсорбционного вытеснения действующего эмульгатора веществом с большей поверхностной активностью и меньшей прочностью адсорбционной пленки б) образования эмульсий противоположного типа (инверсия фаз) и в) растворения (разрушения) адсорбционной пленки в результате ее химической реакции с вводимым в систему деэмульгатором. [c.181]

    Разрушение металлических аппаратов, конструкций, трубопроводов и других металлических изделий может быть вызвано различными причинами. Однако основной причиной, вызывающей коррозионное разрушение мета.члов и сплавов, является протекание на их поверхности электрохимических или химических реакции вследствие воздействия внешней среды. В зависимости от характера этих реакций коррозионные процессы происходят по двум механизмам — электрохимическому и химическому. [c.5]

    В публикациях организаций, проводивших расследования, используется термин "детонация" он появляется и в более поздней работе "Разрушения в Порт-Хадсоне несомненно вызваны детонацией". В работе [Gugan,1979] автор выражает сомнения по этому поводу и предпочитает интерпретировать происшествие как дефлаграционный взрыв. Аналогичные сомнения выражены и в публикации [АСМН,1979]. Возможно, в начале 70-х годов понятие детонации трактовалось менее определенно, чем сейчас. В [WPN,1984] дано следующее определение "Детонация - это взрыв, обусловленный чрезвычайно быстрым развитием химической реакции вещества, в котором фронт реакции продвигается в сторону части вещества, не участвующей в реакции, со скоростью, большей, чем скорость звука".  [c.322]

    На практике встречается много примеров разрушения конструкций или их элементов, вызванного водородной хрупкостью высокопрочные углеродистые стали разрушаются за несколько недель и даже дней при контакте с природным газом, содержащим сероводород стальные пружины иногда растрескиваются при травлении в серной кислоте или после нанесения гальванического покрытия. Во всех этих случаях растрескивание вызвано внедрением в металл атомов водорода, выделяющегося в результате химических реакций (например, при травлении в кислотах). Наводороживание не всегда кончается разрушением металла. Присутствпе водорода в кристаллической решетке ведет к потере им пластичности (т. е. к хрупкости), но только достаточно большие растягивающие нагрузки или значительные внутренние напряжения могут привести к его растрескиванию, которое обычно протекает как транскристаллитный процесс. [c.454]

    Физико-химические ироцессы при облагораживании кокса завершаются в камере. Обессеривание в камере может быть интенсифицировано подачей в нее нагретых газов с высокой скоростью (ударный механизм разрушения сернистых соединений). Желательно процесс в камере проводить в изотермическом режиме, поэтому ее иногда называют нзотермической камерой выдержки кокса. Обычно при прокаливании в связи с близостью скоростей теплообмена и химических реакций топочный агрегат и камера выдержки выполняются заодно. Однако ири обессернвании кокса зоны нагрева и иротекания реакций рекомендуется отделять друг от друга, поэтому камеру выдержки выполняют в виде отдельного агрегата. [c.232]

    Слово катализ, вероятно, было впервые введено химиком XVI в. А. Либавиусом в его учебнике Алхимия . Оно произошло от греческого слова /.ата/.из и обозначало разложение или разрушение. В начале XIX в. этот термин был узаконен И. Берцелиусом для реакций, протекаюш,их в присутствии посторонних соединений, которые сами как будто в реакции не участвуют. По современным представлениям каталитическими называют такие реакции, протеканию которых способствуют специфические веш,ества—катализаторы, оказывающие существенное влияние на направление и скорость химических реакций. [c.12]

    Не всегда очевидно соответствие определенных пиков компонент спектра определенным видам свободных радикалов иногда идентификация связана с интуитивными приемами и предполагает знание комбинированных спектров и спектров химических реакций [64, 67]. Основные трудности, которые необходимо преодолеть, обусловлены большой шириной резонансных линий в образцах твердых тел и высокой скоростью многих реакций радикалов. Ясно, что большая ширина линии часто мешает эффективлому разрешению сверхтонкой ядерной структуры. Так называемый спектр из 5 + 4 компонент , соответствующий механическому разрушению метакриловых полимеров [4], служит иллюстрацией подобного вида спектра, который был идентифицирован лишь после сравнения со спектром из 16 компонент водного раствора полимеризационного радикала метакриловой кислоты. Таким путем было установлено, что предыдущий спектр из 5 + 4 компонент является неразрешенной формой последнего и должен быть приписан тому же самому радикалу [40]. [c.161]

    С ЧИСТО термодинамической точки зрения интенсивность протекания такого вида реакций зависит от химической активности металлов по отношению к кислороду. Например, алюминий по отношению к кислороду проявляет такую большую химическую активность, что отбирает его даже у воды, разлагая ее (2а1 + бИдО - 2а1(ОН)з + 3Hjt), если каким-нибудь способом разрушать образующуюся на поверхности алюминия окисную пленку. Как правило, в ходе данных химических реакций на поверхности металла образуются окисные пленки, затормаживающие химический процесс. Если образующаяся пленка получается рыхлой или порошкообразной, то в дальнейшем окисляются все новые и новые слои металла и сооружение (изделие) быстро разрушается. Если же на поверхности образуется сплошная плотная пленка, через которую не может проникнуть кислород, то химический процесс окисления прекращается сам собой. В зтом случае пленка защищает металл от дальнейшего разрушения, т.е. пассивирует его. Так, например, происходит у алюминия - химический процесс сам себя тормозит. [c.21]

    П. При вулканизации под действием любых факторов меняется химическая структура системы — появляются поперечные связи между цепями и полимер постепенно превращается сначала (при малых степенях вулканизации) в макросетчатый, а потом в микро-сетчатый. При этом происходит нарастающая иммобилизация сегментов, приводящая в области перехода от макро- к микро-сетчатой структуре, к полной потере сегментальной подвижности (возобновлена она теперь может быть лишь в результате обратной химической реакции разрушения поперечных связей). Но это, согласно основному определению, снова означает переход в стеклообразное состояние. Наиболее известный пример — превращение каучука в эскапон или эбонит. [c.82]

    Растворение твердого вещества в растворителе и кристаллизация твердой фазы из раствора являются одними из основных операций препаратив- ой химии, необходимых как в начальных, так и в заключительных стадиях химического синтеза. Особым случаем является разрушение и образование ионного соединения в присутствии полярного растворителя (разд. 33.3). Растворение и кристаллизация твердого вещества в соответствующем растворителе также можно рассматривать как химическую реакцию с переносом вещества. Этим методом можно добиться очистки твердого вещества, а также получать монокристаллы. Процессы образования зародыша, а также особенности его роста рассматриваются в разд. 38.3.4.2. Знание закономерностей процессов кристаллизации позволяет проводить направленную кристал--лизацию. Кинетика растворения металлов рассмотрена в гл. 14. [c.436]

    КАТАЛИЗ (греч. katalysls — разрушение) — изменение скорости химической реакции в присутствии катализатора, сохраняющего свой состав в процессе реакции. К. может быть положительным (когда скорость реакции увеличивается) и отрицательным (когда скорость уменьшается или реакция совсем прекращается). Явление К. используется для ускорения химической реакции и направления ее в сторону образования желаемых продуктов без затраты энергии. Действие катализатора на химическую реакцию заключается в промежуточном взаимодействии его с реагирующими веществами. Например, каталитическое разложение пероксида водорода воль-фрамат-ионами проходит через образование промежуточных соединений по схеме  [c.122]

    ХИМИЧЕСКАЯ СВЯЗЬ — взаимодействие между атомами, обусловлива-ющее образование устойчивой многоатомной системы (молекулы, радикала, молекулярного иона, комплекса, кристалла и др.). Все химические превращения сопровождаются разрушением химической связи. X. с. возникает вследствие кулоновского притяжения между ядрами и электронным зарядом, распределение которого обусловлено динамикой поведения электронов и подлежит квантовомеханическим законам. Электронный заряд многоатомной системы возникает нри обобществлении атомных электронов. Различают ионную (гетерополяр-ную, электровалентную), ковалентную (гомеополярную, атомную) и металлическую X. с. X. с. н зыз 1ЮТионной, если она возникает вследствие практически полного перехода электронов с орбитали одного атома на орбиталь другого. Например, во время реакции натрия с хлором атомы натрия теряют, а атомы хлора присоединяют по одному электрону, превращаясь в ионы Ыа+ и С1 (электронный заряд локализован на атомах). Если ионная связь возникает между ионами и полярными (дипольными) молекулами, то ее называют ионно-ди-10 8-149 [c.273]

    Сравнивая уравнения (11.118) и (11.119) с соответствующими уравнениями (11.105) и (11.108), ха рактеризующими влияние загрязняющего действия материала ректификационной колонны на глубину очистки, можно видеть, что они действительно по форме идентичны. Это объясняется тем, что как в первом, так и во втором случае скорость поступления примеси принималась величиной постоянной, а содержание примеси в разделяемой смеси по сравнению с содержанием основного очищаемого вещества— пренебрежимо малым. Нетрудно видеть, что сюда же следует отнести и важный для практики глубокой очистки веществ случай загрязнения продукта примесью, образующейся вследствие химической коррозии стенок и контактного устройства ректификационной колонны. Правда, понятие коррозии в этом случае приобретает несколько иной смысл, поскольку заметного разрушения материала колонны здесь не наблюдается даже в течение длительного времени ее эксплуатации,что обусловлено микроколичеством образующейся при.меси. Практически здесь даже трудно провести различие между этим случаем и рассмотренным выше случаем вымывания примеси из материала аппаратуры. Однако при установленном факте, что ректификация сопровождается теми или иными химическими превращениями, появляется возможность расчета такого процесса хеморектификации исходя из заданных констант скоростей соответствующих химических реакций. [c.81]


Смотреть страницы где упоминается термин Разрушение и химическая реакция: [c.72]    [c.72]    [c.325]    [c.9]    [c.499]    [c.22]    [c.149]    [c.50]    [c.5]    [c.357]    [c.28]    [c.499]    [c.200]   
Структура и механические свойства полимеров Изд 2 (1972) -- [ c.249 ]




ПОИСК







© 2024 chem21.info Реклама на сайте