Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны фазовые переходы

    Режим функционирования мембраны сильно зависит от микровязкости липидного бислоя и подвижности фосфолипидных молекул в мембране, фазового состояния мембранных липидов. Отклонения биофизических характеристик липидного бислоя от нормы связано с разного рода патологиями. Важную роль в физиологии клетки играют фазовые переходы в биологических мембранах. [c.16]


    Фазовый переход из кристаллического в жидкокристаллическое состояние является эндотермическим процессом количество тепла, необходимое для плавления цепей жирных кнслот, можно определить в калориметре (рис. 3.5). Если липпдный бислой состоит только из одного липида, то фазовый переход пропсходит в узком интервале температур. Так как биологические мембраны обычно состоят из большого количества разных липидов, они не имеют четко выраженного фазового перехода и при физиологических температурах являются жидкокристаллическими. Однако очевидно, что текучесть биологических мембран может быть весьма различной как в разных органах, так даже и в разных частях мембраны одной клетки. На это указывает различный липидный состав разных мембран или их доменов. Хотя еще не установлена общая зависимость между текучестью мембран и их биологической функцией, некоторые факторы, влияющие на текучесть, были выявлены в экспериментах на искусственных липидных мембранах. Накапливаются данные, свидетельствующие о том, что те же факторы действуют и в биомембранах. Температура фазового перехода зависит от природы боковых цепей жирных кислот. [c.71]

    Текучесть мембраны обеспечивается сложным распределением остатков жирных кислот между молекулами различных фосфолипидов и основана на том, что все липидные бислои представляют собой лиотропные жидкие кристаллы. При температуре, характеристической для отдельных фосфолипидов, совершается фазовый переход жесткий гель — текучее жидкокристаллическое состояние. Более детально текучесть и фазовые переходы рассмотрены в разд. 25.3.3.1, [c.110]

    Фазовые переходы мембранных липидов могут быть вызваны изменением температуры среды. Значение температуры, при котором наблюдается фазовый переход, называется критической температурой фазового перехода, или разделения фаз, если различные участки мембраны вследствие гетерогенности липидного состава по-разному отвечают на изменения температуры. Ионы Са , изменение числа ненасыщенных жирнокислотных цепей мембранных фосфолипидов и некоторые другие факторы также могут индуцировать фазовые переходы в бислое. Обычно критическая температура фазовых переходов приближена к температуре тела гомойотермных животных (или к температуре среды обитания пойкилотермных животных). Таким образом, достаточно незначительного изменения условий, чтобы изменить упаковку мембраны. [c.302]


    Специфич. взаимод. между отдельными белками приводят к тому, что в М. б. образуются белковые ассоциаты, или ансамбли, к-рые по составу и св-вам отличаются от окружающих участков мембраны и часто окружены липидами определенного типа. Иногда липопротеиновые участки М. б., содержащие характерный набор белков и липидов, удается выделить при фрагментации мембран. Образование ассоциатов белков может происходить также в результате их специфич. связывания на пов-сти М. б. с нек-рыми водорастворимыми белками (напр., с антителами, лектинами) или при фазовом переходе липидов в мембране (обычно белки скапливаются там, где липиды продолжают оставаться в жидкокристаллич. состоянии). [c.30]

    Все изложенное показывает, что имеются основания трактовать изменения состояния возбудимой мембраны как фазовые переходы (см. 15.5). [c.528]

    Так как фосфолипиды содержат фосфатные группы, с помощью ЯМР Р можно наблюдать фосфорсодержащие липосомы. Выше температуры фазового перехода при благоприятных условиях в искусственных мембранных везикулах можно наблюдать сигналы от различных фосфолипидов (рис.3.47). В малых везикулах удается различить линии, соответствующие фосфолипидам, находящимся на внутренней и внешней сторонах мембраны (химические сдвиги отличаются на несколько Гц), Для более надежного отнесения соответствующих резонансных линий фосфолипидов на внутреннюю или внешнюю поверхность мембраны, необходимо добавить парамагнитное вещество, для которого проницаемость мембраны невелика, и в основном будет наблюдаться связывание этого вещества с фосфолипидом, находящимся на одной из сторон поверхности. Резонансные линии липидов, связанных с парамагнитным веществом, в этом случае сильно уширяются и практически не наблюдаются в спектре. Спектры ЯМР Р липосом также являются подтверждением сделанного ранее вывода о том, что увеличение напряженности магнитного поля далеко не всегда обеспечивает более высокое разрешение, так как для ядер фосфора вклад в релаксацию за счет анизотропии химического сдвига будет значительным. В этом случае скорость релаксации возрастает как квадрат напряженности магнитного поля (см. формулу (1.38)),а разность значений химических сдвигов увеличивается с ростом поля линейно, поэтому уширение линий может компенсировать воз- [c.157]

    У некоторых микроорганизмов биологические мембраны находятся при температурах, лишь на немного превышающих температуру фазовых переходов липидов. Мембрана содержит десятки разных липидов, которым соответствуют разные температуры фазового перехода, в том числе близкие к физиологическим. При понижении температуры в мембране происходят фазовые превращения в липидном бислое. [c.27]

Рис. 3.5. Фазовые переходы в фос-фолипидной мембране. При определенной температуре мембрана переходит из кристаллического в жидкокристаллическое состояние это — эндотермический процесс, который можно измерить калориметрически. Прибавление холестерина размывает температуру перехода (нижняя кривая), а при содержании холестерина >50% фазовый переход не обнаруживается. При физиологических условиях биологическая мембрана всегда находится прн температуре выше температуры фазового перехода, т. е, является жидкокристаллической. Рис. 3.5. <a href="/info/3371">Фазовые переходы</a> в фос-фолипидной мембране. При определенной <a href="/info/104095">температуре мембрана переходит</a> из кристаллического в <a href="/info/3700">жидкокристаллическое состояние</a> это — <a href="/info/15667">эндотермический процесс</a>, который можно измерить калориметрически. Прибавление холестерина размывает <a href="/info/104095">температуру перехода</a> (<a href="/info/130984">нижняя кривая</a>), а при <a href="/info/101387">содержании холестерина</a> >50% <a href="/info/3371">фазовый переход</a> не обнаруживается. При <a href="/info/1241826">физиологических условиях</a> <a href="/info/4414">биологическая мембрана</a> всегда находится прн <a href="/info/503359">температуре выше температуры</a> <a href="/info/3371">фазового перехода</a>, т. е, является жидкокристаллической.
    Включение холестерина между цепями жирных кислот мембран нарушает их расположение и раздвигает их [6]. В кристаллической фазе это приводит к увеличению текучести, тогда как в жидкокристаллической фазе мембрана становится более жесткой, т. е. холестерин уменьшает подвижность цепей жирных кислот. Из-за ингибирования кристаллизации и увеличения текучести мембраны, содержащие >20% холестерина (такие, как миелин), практически не имеют фазового перехода. Они существуют в промежуточном полукристаллическом состоянии. Биологическое значение этого явления может заключаться в том, что подавляя взаимодействие между другими липидными молекулами, холестерин может блокировать перенос информации в мембране. [c.73]

    Другой интересный момент состоит в том, что число стационарных состояний открытой системы может сильно возрастать вдали от равновесия (гл. 16). Такое расширение возможностей имеет важное значение в биологических приложениях. В качестве иллюстрации изучается модель возбуждения мембраны, предложенная Блюменталем, Шанже и Лефевером [10], в которой кооперативное поведение вместе с необратимыми процессами вдали от равновесия приводит к новому типу диссипативного фазового перехода. [c.15]

    Температура фазового перехода зависит от длины углеводородных цепей, наличия и положения цис-этиленовой связи, введения метильных групп в углеводородные связи цепи липидных молекул. Существенно влияют на температуру фазового перехода также различия в строении полярных головок, а именно, степень ионизации полярных групп, присутствие в водной среде двухвалентных катионов (особенно Са +).Особое влияние на текучесть мембраны оказывает жесткое четырехчленное кольцо холестерола, погруженное в липидный бислой. У эукариотических клеток при температуре 37 С холестерол ограничивает текучесть мембраны, а при более низких температурах он, наоборот, способствует поддержанию их текучести, препятствуя слипанию углеводородных цепей. [c.37]


    Зависимость экспериментально определенных скоростей релаксации Тг и Гг от обратной температуры указывает на то, что, по-видимому, существует распределение по временам корреляции, а следовательно, и по диамагнитному окружению молекул адсорбированной воды. Явление замерзания наблюдается только при относительной влажности 100% для образца с наибольшим размером пор (189 А). Другими словами, медленный переход от подвижного к неподвижному состоянию происходит ниже 0°С. Это можно объяснить переохлаждением и медленным замерзанием или эффектом кажущегося фазового перехода. (В зависимости от справедливости и применимости модели это различие в поведении при замораживании может быть использовано как быстрое диагностическое средство для определения пригодности данной мембраны в процессах обессоливания.) При малых степенях покрытия (два слоя) вода ведет себя сходным образом- на обоих образцах применявшихся пори- [c.332]

    Установлено, что многие лекарственные вещества влияют на конформации мембран и мембранных липидов. Шанжё и соавторы рассматривали мембрану как упорядоченную кооперативную систему, построенную из взаимодействующих субъединиц. В этих работах триггерные свойства мембраны трактуются на основе теории, аналогичной теории косвенной кооперативности ферментов, развитой Моно, Уайменом и Шанжё (см. 6.7). Каждая субъединица имеет рецепторный центр для данного специфического лиганда, сродство к которому меняется при изменении ее конформации. В упорядоченной решетке мембраны субъединицы (протомеры) взаимодействуют со своими соседями, чем и определяются кооперативные свойства. В зависимости от активности лиганда и энергии взаимодействия протомеров ответ мембраны на присоединение лиганда может быть постепенным или S-образным, становясь в пределе переходом все или ничего — фазовым переходом. Формальная модель описывает действие колицинов, дает качественное объяснение ряду фактов, в частности, тому, что различные родственные лекарственные вещества вызывают различные максимальные ответы мембраны. Первичное действие многих лекарств локализовано в мембранах и имеет кооперативный характер. Многие лекарства действуют в очень малых концентрациях (вплоть до 10 М) и обладают высокой специфичностью. Воздействие лекарства иа мембранный рецептор определяется молекулярным узнаванием, но о природе этих рецепторов мы еще мало знаем (см. 11.7). [c.340]

    Стабильность липидного бислоя определяется критическим радиусом поры (рис. XV.11). Большему критическому радиусу поры соответствует большая величина энергетического барьера. Дестабилизация мембраны в результате фазового перехода липидов или электрического пробоя сопровождается снижением барьера. В этом случае снижение критического радиуса может привести к тому, что существующие поры окажутся на нисходящей ветви кривой (рис. XV.11), что приведет к неограниченному росту поры и в конечном счете к разрыву мембраны. Большую роль в стабилизации мембран играет величина линейного натяжения периметра поры. Рост линейного натяжения поры (от 5 10 Н до 6 10 Н) [c.35]

    Обсудим вопрос О метастабильных состояниях мембраны более детально, учитывая свойство соединенной с липидным слоем механической подсистемы. Схематически такая ситуация изображена на рис. 7.6. Механический каркас, соединенный с липидным слоем, сдерживает переход и способствует образованию метастабильного состояния (при увеличении концентрации активных липидов рост объема липидного слоя сдерживается каркасом). В слое возникает давление, растягивающее каркас (рис. 7.6, а). При высоком давлении фазовый переход в жидкое состояние не происходит до тех пор, пока сила растяжения не превысит предела прочности каркаса. В этот момент каркас ломается, давление падает и весь липидный слой сразу переходит в жидкое состояние (рис. 7.6, б). Величина Si (см. рис. 7.4) является концентрацией активных липидов, при которой внутреннее давление равно пределу прочности каркаса, т. е. Si зависит не только от свойств липидного слоя, но и от прочности и упругости каркаса. После фазового перехода каркас ре-парируется и размеры его увеличиваются. При обратном изменении концентрации активных липидов процесс повторяется с той разницей, что каркас работает на сжатие, а не на растяжение. [c.151]

    Фазовое состояние фосфолипидов зависит от температуры при нафевании наблюдается эндотермический фазовый переход из гелеобразного в жидкокристаллическое состояние. По-видимому, фосфолипиды, имея офаниченное число молекулярных конформаций, самоорганизуются в бислойные мембраны и восполняют разнообразие конформационных состояний за счет фазовых переходов в жидкокристаллических структурах. Эти переходы связаны с возрастанием кон- [c.111]

    Анализ различными физическими методами выделенных из клеток фосфолипидов, клеточных мембран, а также целых клеток показал, что температуры, соответствующие резкому изменению скорости трансмембранного переноса, лежат вблизи температур фазового перехода. кристалл — жидкий кр,металл для соответствующих препаратов фосфолипидов (в основном— фосфатидилэтаноламина) [422]. При температурах, меньщих температуры перехода, мембраны состоят из молекул липидов, упакованных в гексагональную кристаллическую решетку. В такие мембраны утоплены молекулы белков-переносчиков, и транспорт через пих весьма затруднителен. При температуре фазового перехода происходит резкое увеличение подвижности углеводородных цепей, мембрана становится жидкой, трансмембранная диффузия и активный перенос веществ оказываются облегченными (см. в частности [143]). [c.216]

    Для нормального функционирования мембрана должна быть в жидкокристаллическом состоянии. Поэтому в живых системах при продолжительном понижении температуры окружающей среды наблюдается адаптационное изменение химического состава мембран, обеспечивающее понижение температуры фазового перехода. [c.26]

    Строение и подвижность полярных липидов, не относящихся к фосфолипидам, изучены мало, однако выяснено, что они также способны к фазовому переходу типа гель — жидкие кристаллы [8]. Гликолипиды образуют бислои, толщина и площадь которых (в пересчете на молекулу) сходны с таковыми для фосфолипидов. Интересно отметить, что температура фазового перехода экстрагированных из мозга мясного скота цереброзидов составляет около 70 °С из-за преобладания в них 24 0- и 24 1-алкильных цепей физиологическое значение такой высокой температуры фазового перехода не очень понятно. Температуры фазового перехода моно-и дигалактозилглицериноБ из хлоропластов, напротив, лежат ниже 0°С и, следовательно, при физиологической температуре эти липиды находятся в жидкокристаллической фазе. Разнообразие остатков, находящихся в области полярных головок гликолипидов, должно влиять на свойства клеточных поверхностей например, групповая специфичность крови связана с гликопротепнами и гли-колипидами мембраны эритроцитов. [c.118]

    Влияние отдельных липидов на свойства мембраны описать нелегко. В общем можно только сказать, что текучесть биологических мембран определяется тем- пературой фазового перехода от- дельных липидов. Факторы, увели-лщитш Ш в ющие текучесть (см. выше), [c.72]

    ОТ его липофильности, т. е. от коэффициента распределения между мембраной и водой. Модельные эксперименты показали, что анестетики снижают температуру фазового перехода некоторых липидов и, таким образом, увеличивают текучесть мембраны, [9, 10]. Текучесть связана с проницаемостью мембраны для ионов и других низкомолекулярных веществ. В своем классическом эксперименте Бенгхем показал, что липосомы, содержащие радиоактивное вещество, при действии хлороформа или диэтилового эфира становились проницаемыми и выделяли радиоактивную метку в окружающую среду. Концентрация хлороформа, необходимая для этого эффекта, была достаточной для анестезии головастика. Бенгхем предположил, что один и тот же молекулярный механизм отвечает как за проницаемость мембраны, так и за анестезирующий эффект, и подтвердил этот вывод следующим экспериментом. [c.74]

    Действие ионов кальция особенно интересно для нейробиологии. Они увеличивают электрическое сопротивление нскусст-г. нных липидных мембран, т. е. стабилизируют их, если присутствуют в одинаковых концентрациях по обе стороны мембраны. Напротив, присутствие ионов кальция только с одной стороны мембраны понижает сопротивление и дестабилизирует мембрану, а при [Са +]>1 мМ мембрана разрушается. Нечто подобное злектрофизиологи наблюдали и в нервной мембране. Они показали, что порог генерации потенциала действия и, следовательно, временного увеличения ионной проницаемости аксональной мембраны понижается при уменьшении концентрации кальция во внешней среде (гл. 6). Ионы кальция влияют на паковку и подвижность липидных молекул в бислое. Они повышают температуру фазового перехода, тем самым стабилизируя кристаллическое состояние. Однако перенесение результатов, полученных на искусственных мембранах, на истинные биологические мембраны означает приложение данных, полученных на простых биофизических системах, к гораздо более сложным биологическим системам. Например, описанные катионные эффекты сильно зависят от анионов, белков и липидной гетерогенности биомембраны. [c.75]

    Области применения мембранных процессов для очистки воды различны. Так, если обратный осмос во избежание применения очень высоких давлений наиболее экономичен в основном для растворов с концентрацией растворенных веществ до 1 г/кг, то электродиалпз используется, как правило, для более концентрированных растворов. По сравнению с другими методами мембранные методы имеют следующие преимущества 1) отсутствуют фазовые переходы при отделении примесей, что позволяет сводить к минимуму расход энергии на проведение процессов 2) разделение можно проводить при низких температурах воды, которые определяются свойствами мембраны 3) если исключить забивание мембраны, процессы имеют непрерывный характер 4) их можно осуществлять без добавок химических реа-98 [c.98]

    Фазовый переход в липидной мембране должен приводить, таким образом, к нэменению сродства между полярной частью мембраны и окружающими ее ионами, растворителяМ И и белками вследствие латерального расширения мембраны. Это должно изменить проницаемость мембраны я для нейтральных молекул, и для ионов. В частности, проницаемость мембраны для нейтральных молекул выражается через диффузионный поток кинков [70]. [c.264]

    Электроизоляционный материал, в технике высоких частот уплотнительиые детали, работающие в агрессивных средах трубы, гибкие шланги, мембраны, вентили, краны и другие. Термопластичный материал совершенно не смачивается водой и не набухает, дугостоек, имеет наиболее высокие диэлектрические свойства из всех известных диэлектриков, особенно при высоких и сверхвысоких частотах эти свойства почти не меняются в интервале температур от —60 до + 00° и практически не зависят от частоты обладает исключительной химической стойкостью, превосходит по стойкости к агрессивным средам золото и платину обладает хладотекучестью под нагрузкой и невысокой твердостью имеет большой коэффициент линейного расширения. Изделия нельзя Нагружать даже при нормальной температуре выше 30 кг см они отличаются большой нагревостойкостью и морозостойкостью. Температура фазового перехода 327°С [c.129]

    В заключение нам хотелось бы рассмотреть еще один пример субклеточных структур, стабилизируемых слабыми связями или взаимодействиями, — плазматическую мембрану. Основу структуры этой мембраны (стр. 291) составляет двойной слой липидов с сильно гидрофобной внутренней областью и сильно полярными наружными поверхностями. Белки мембраны находятся в ассоциации как с полярной, так и с гидрофобной областями фосфолипидного слоя. При низких температурах (обычно где-то между О и 20°С) мембраны у многих организмов переходят в твердое состояние вследствие кристаллизации алифатических цепей фосфолипидов (стр. 292). В отличие от этого функционирующая мембрана находится в квазижидком ( жидкокристаллическом ) состоянии. Если алифатические цепн мембранных фосфолипидов подвержены фазовым переходам вроде тех, какие наблюдаются in vitro в экспериментах с алифатическими углеводородами, то температура перехода их из жидкого состояния в твердое должна сильно изменяться при изменении давления. [c.327]

    Многие природные мембраны функционируют в условиях, когда к ним приложена высокая (250-300 мВ) разность электрических потенциалов (см. гл. XXIV), что резко сокращает время жизни БЛМ, хотя кратковременное воздействие электрического поля на БЛМ приводит к увеличению фоновой проводимости и появлению флуктуаций проводимости (см. 5 гл. XXI). Это указывает на возможность формирования простейших каналов под действием поля, тем более что их появление на БЛМ удается регистрировать и при других модификациях липидов (фазовые переходы при нагревании, введение продуктов перекисного окисления см. 1-2 гл. XVI). Поэтому механизмы электрического пробоя БЛМ представляют несомненный интерес для понимания их функционирования. [c.30]

    Изучение критического состояния липидного бислоя раскрывает биологический смысл этого явления. Считается, что на начальных этапах эволюции клеточных структур формировались липидные везикулы, мембраны которых, как это следует из рассмотренного выше, способны были обеспечивать такие важные функции клетки, как проницаемость и генерацию мембранных потенциалов ионной природы. Однако чистые липидные пленки хрупки, и их стабильность в сильной степени зависит от внешних условий. Для предотвращения разрушения липидного бислоя в состоянии стресса в клетке и выработалась система стабилизации. Во-первых, жирнокислотные радикалы, входящие в соотав молекулы природного фосфолипида, как правило, различаются по насыщенности один радикал представлен насыщенной жирной кислотой, второй — ненасыщенной. Это обеспечивает жидкостное состояние липидного бислоя во всем диапазоне физиологических температур, поскольку область фазового перехода таких липидов находится ниже О °С. Во-вторых, в большинстве мембран содержится холестерин, который, как известно, резко расширяет температурный диапазон фазового перехода, а при его эквимолярном содержании в количестве по отношению к фосфолипидам — даже исключает такой переход. В-третьих, образованию насыщенных продуктов в результате перекисного окисления препятствует набор мембранных антиоксидантов. И, наконец, специальные ферменты — фосфолипазы — способны полностью изменить фосфолипидный портрет мембраны, модифицируя как жирнокиолотные радикалы (фосфолипаза А), так и полярные головки (фосфолипаза Д). Совершенно очевидно, что нарушение какого-либо из указанных элементов этой системы стабилизации может разрушить биологическую мембрану, что может привести клетку в состояние патологии. [c.36]

    Иную картину можно наблюдать, когда мембраны сформированы целиком из насьщенных липидов, слабо различаюш ихся длиной углеводородных цепей. В таком случае при любом соотношении компонентов равномерное распределение обнаруживается как в твердом , так и в жидком состоянии. Например, в мембранах из ДПФХ (16 углеродных атомов) и ДСФХ регистрируется один фазовый переход, который постепенно смеш ается от 41 до 58° С при изменении доли ДСФХ в смеси от О до 100% соответственно. [c.58]

    Один ИЗ подходов состоит в том, что мембрану охлаждают до температуры ниже точки фазового перехода липида (см. 1 гл. XVI). При этом проводимость БЛМ, индуцированная подвижными переносчиками — валиномицином или нонакти-ном, —значительно уменьшается, а проводимость, индуцированная грамицидином, почти не изменяется. Увеличение вязкости мембраны при понижении температуры препятствует движению подвижных переносчиков, но оказывает относительно слабое влияние на транспорт ионов через канал, пронизываюш ий мембрану насквозь. Другой подход состоит в сравнении проводимости мембран на переменном токе (рис. XX.11). [c.110]

    Другим фактором, влияющим на текучесть мембраны, служит холестерол. Плазматические мембраны эукариот содержат довольно больщое количество холестерола - приблизительно одну молекулу на каждую молекулу фосфолипида. Молекулы холестерола ориентируются в бислое таким образом, чтобы их гидроксильные группы примыкали к полярным головам фосфолипидных) молекул. При этом их жесткие, плоские стероидные кольца частично иммобилизуют участки углеводородных цепей, непосредственно примыкающих к полярным головам. Остальные части углеводородных пеней пе утрачивают своей гибкости (рис. 6-8). Хотя холестерол делает липидный бислой менее текучим, при его высоких концентрациях (что характерно для больщинства плазматических мембран эукариотических клеток), он предотвращает слипапие и кристаллизацию углеводородных цепей. Таким образом, холестерол также ингибирует возможные фазовые переходы. [c.354]

    При разрушении клеток силами сдвига некоторые цитоплазматические мембраны сильно дробятся (вероятно, до небольших, открытых мембранных фрагментов) и их нельзя уже осаждать ультрацентрифугированием. Поэтому первую надосадочную цитоплазматическую фракцию (надосадочная жидкость I на рис. 5.1) инкубируют при 21 °С. При температуре выше температуры фазового перехода мембранных липидов крошечные фрагменты агрегируют, т. е. сливаются в мембранные фрагменты больших размеров, которые можно затем осадить [6]. В некоторых случаях неосаждаемая фракция мембран может составлять до 20—30% цитоплазматических мембран. Она образуется при разрушении клеток не только с помощью пресса Френча, но и при обработке их ультразвуком или даже при быстром лизисе протопластов или сферопластов. [c.159]

    Наиболее распространенным стеролом в мембранах является холестерол, который содержится почти исключительно в плазматической мембране клеток млекопитающих, но в меньщем количестве может присутствовать также в митохондриях, мембранах аппарата Гольджи и ядерных мембранах. Содержание холестерола обычно увеличивается в направлении к наружной стороне плазматической мембраны. Холестерол встраивается между фосфолипидными молекулами, причем его гидроксильная группа контактирует с водной фазой, а остальная часть располагается внутри гидрофобного слоя. При температуре выще температуры фазового перехода (см. описание жидкостно-мозаичной модели) его жесткое сте-рольное кольцо взаимодействует с ацильными группами фосфолипидов, ограничивая их подвижность это приводит к уменьщению текучести мембран. С другой стороны, при температурах, близких к температуре фазового перехода, взаимодействие холестерола с ацильными цепями препятствует их взаимному упорядочиванию. В результате снижается температура, при которой происходит переход жидкость—гель, а это помогает поддерживать текучесть мембраны при более низких температурах. [c.129]

    Именно для липидов свойствен феномен подобного несовпадения термотропных изменений в структуре при постепенном понижении и последующем повышении температуры на этапе нагревания структурные перестройки происходят в более высокотемпературной области, чем на этапе предшествующего охлаждения [392, 513]. Известно также, что мембраны холодочувствительных высших растений, в число которых входит тыква, содержат насыщенные фосфолипиды, которые (прежде всего, по-видимому, фосфатидил-глицерины) претерпевают термотропные фазовые переходы типа жидкий кристалл-квазикристалл при положительных, причем достаточно высоких температурах [528, 584]. [c.70]

    С учетом того что процесс нелинейной деполяризации возбудимой мембраны начинался в области физиологически умеренных температур и при весьма незначительном охлаждении, круг предполагаемых причин столь резкого уменьшения активности электрогенного насоса мог быть значительно сужен. В частности, в этих условиях не представлялись вероятными существенное лимитирование скорости биохимических реакций, идущих с образованием АТФ 1319], и разупорядочивание, денатурация белковой структуры электрогенного насоса 1116, 1181. В то же время известно, что при 18—20° имеет место структурная перестройка в липидной области плазматических мембран животного происхождения, протекающая, как полагают, по типу обратимого фазового перехода жидкий кристалл—квазикристалл и затрагивающая скорее всего отдельные группы доменов [ИЗ, 315, 311, 445]. [c.165]

    На важную роль метастабильных состояний мембраны в клеточном цикле четко указали Конев и Мажуль [14]. Фазовые переходы из метастабильного состояния в стабильное обязательно носят кооперативный характер, но, кроме того, они обеспечивают усиление сигнала. Действительно, при этом внешнее воздействие может быть слабым, но усиливается благодаря разрядке энергии метастабили. Для осуществления долгоживущих метастабильных состояний также необходима целостность надмембранных структур — это важное свойство является общим во всех упомянутых подходах. [c.151]

    В физиологических условиях (выше температуры фазового перехода), фосфодипидный бислой имеет жидкокристаллическое состояние, т. е. обладает одновременно текучестью и упорядоченным расположением элементов. Результатом этой текучести и достаточно высокого поверхностного натяжения на фанице с водой является самозамыкание бислоя. Фактически плазматические мембраны никогда не возникают заново они вытекают и складываются из предшествующих мембран путем добавления дополнительных составных частей (Браун, Уолкен, 1982), Однако принципы самосборки фосфолипидных сдоев плазматических мембран пока недостаточно выяснены, хотя процесс новообразования мембран эндоплазматического ретикулума de novo детально исследован методом электронной микроскопии (Бирюзова, 1993). Эти мембраны синтезируются методом репликации на внешней поверхности двойной мембраны клеточного ядра, которое на это время принимает форму боба. На его вогнутой поверхности происходит самосборка мембран, а когда ядро расправляется до сферической формы, они соскальзывают и распрямляют рельеф. Этот пример показы- [c.112]

    Для подтверждения правильности предположения об обусловленности температурного режима многоклеточных животных физико-химическими свойствами липопротеидных комплексов их возбудимых мембран можно привести разные факты. Так, в работах В. Б. Ушакова [301] было показано, что при тепловой инактивации мышц лягушки сначала инактивируются компоненты возбудимой системы. Мышечное волокно в целом гибнет до того, как наступают заметные физико-химические изменения сократительных белков. В работе Т. А. Джамусовой [88] показано, что необратимая потеря возбудимости при нагревании мышц травяной лягушки начинается при 36° и происходит с заметной скоростью. Завершается она при 42°. Эти температуры отнюдь не соответствуют температуре среды обитания лягушек, а являются, по-видимому, свидетельством инвариантных свойств возбудимой мембраны, определяемых зоной фазового перехода ее липопроте-идного комплекса. У теплокровных мембраны работают в условиях, максимально способствующих появлению волны конформационных перестроек. [c.214]

    По-видимому, первичный механизм криоповреждений (повреждений при охлаждениях) биологических мембран связан с фазовым переходом в гель-состояние. Поэтому биологические мембраны содержат большое количество холестерина, уменьшающего изменения в мембране, сопровождающие фазовый переход. [c.27]


Смотреть страницы где упоминается термин Мембраны фазовые переходы: [c.475]    [c.79]    [c.193]    [c.121]    [c.333]    [c.294]    [c.193]    [c.204]    [c.134]   
Нейрохимия (1996) -- [ c.104 , c.105 , c.106 , c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние пищи на липидный состав мембран. Экспериментальное изменение температуры фазового перехода

Клеточные мембраны р фазовые переходы

Липиды фазовый переход в мембране

Мембрана биологические температура фазового перехода

Мембраны температура фазового переход

Переходы фазовые

Физическое состояние и фазовые переходы липидов в мембранах



© 2025 chem21.info Реклама на сайте