Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Проводимость пассивная

    Имеется много фактов, подтверждающих развиваемую модель растворения пассивного титана. Действительно, одинаковый структурный состав барьерных слоев, образующихся при различных потенциалах, не позволяет объяснить значительное снижение анодных токов (почти на 2 порядка), наблюдаемое при повышении потенциала от 0,14 до 1,4 В (рис. 8), изменением скорости растворения этих слоев. На это указывает также и относительно незначительное увеличение химической стойкости пассивных пленок, сформированных при различных потенциалах, что оценивается по времени их самоактивации (см. выше). Основной причиной снижения стационарных анодных токов является уменьшение ионной проводимости пассивных пленок вследствие снижения их дефектности. Можно полагать, что дефектность пленок уменьшается с ростом потенциала до некоторого значения (ф = 1,4 В), после чего меняется несущественно. Перегиб кривой (рис. 8) происходит вблизи равновесного потенциала кислородного электрода. Очевидно, по мере приближения потенциала титана к равновесному кислородному, количество адсорбированного кислорода (в виде ионов 0Н или О") возрастает. Это, по-видимому, и является причиной уменьшения дефектности пленок, и, как следствие, снижения тока растворения титана. [c.29]


    Однако механизм влияния легирующих компонентов на характер изменения дефектности ионной проводимости пассивных пленок на титане остается еще не вполне ясным. Во всяком случае, объяснение полученных экспериментальных результатов не укладывается в простое их толкование на основании теории индукции валентности Вервея, Вагнера, Хауффе [84]. По этой теории входящие в пленку с электронным типом проводимости ионы Сг + должны были бы увеличивать ионный ток, а ионы ЫЬ + снижать его, т. е. влиять обратно тому, что было установлено в экспериментах. Принятие для ТЮг дырочного типа проводимости, как это было сделано в работе [85], устранило бы это несоответствие, однако такое допущение маловероятно кроме того, в этом случае осталось бы необъясненным наблюдаемое различие в изменении ионной проводимости ТЮг от присадок некоторых элементов с одинаковой валентностью, например 80 + и 2г + или АР+ и Сг +. Следует отметить, что и при газовом окислении сплавов титана применимость идеализированной теории Вагнера — Хауффе о дефектности окисных соединений, образующих окалину, оказалась очень ограниченной. Как известно, из многих двойных систем титана в отношении газового окисления поведение только двух из них (Т1 — КЬ и Т1 — Та) достаточно хорошо объясняется с помощью этой теории [86]. [c.32]

    Какие виды активности требуют энергии Мы видели, что ионы движутся через мембранные каналы проводимости пассивно, однако градиенты концентраций поддерживаются метаболическим насосом, который требует энергии. Гигантский аксон кальмара может часами генерировать потенциалы действия после подавления метаболизма ядом, поскольку пассивные ионные потоки малы по сравнению с имеющимся в наличии количеством ионов. Однако эти пропорции возрастают в более тонких аксонах, так как у них больше отношение площади поверхности к объему в самых тонких немиелинизированных волокнах импульсная активность непосредственно зависит от метаболического- насоса. Аналогичные факторы действуют и в синапсах сами по себе ионные токи пассивны, но восстановление и поддержание ионных концентраций требует энергии, равно как и синтез медиатора и циклические перестройки мембраны. Кроме того, повышенных скоростей накачивания ионов можно ожидать и в местах, где потенциал покоя мембраны относительно низок из-за повышенной проницаемости для N3+ (как в перехватах Ранвье и рецепторах сетчатки). Обилие митохондрий в мелких ветвях аксонов и дендритов в значительной степени [c.231]


    По мнению ряда исследователей, пассивные пленки — тонкие защитные беспористые пленки типа поверхностных соединений с хорошей электронной, но очень плохой ионной проводимостью, которые избирательно тормозят процесс анодного растворения металла, не очень препятствуя протеканию анодного процесса выделения кислорода. [c.308]

    Коррозия в щелях подчиняется тем же закономерностям, что и питтинговая коррозия. Чем выше электрическая проводимость электролита и больше площадь катодной поверхности вне щели, тем выше скорость растворения в щели, которая является анодом. Инициация щелевой коррозии, однако, не связана с достижением критического потенциала питтингообразования. Она зависит только от факторов, влияющих на нарушение пассивности внутри щели. Депассивация может произойти, например, из-за уменьшения концентрации в щели растворенного кислорода вследствие протекания незначительной общей коррозии сплава. Тогда образуется элемент дифференциальной аэрации, и в щели накапливаются кислые продукты коррозии (в результате анодной реакции). Такие изменения в составе электролита существенно способствуют [c.314]

    Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции Т + + 2ё Л составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов Т " [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует ТЮ . Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Т , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение (Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией. [c.372]

    В. Оствальд считал, что катализатор является смазкой , уничтожающей химическое трение (сопротивление) реагирующей системы, будучи совершенно пассивным и инертным. Эти идеалистические представления сейчас опровергнуты. Катализаторы, которые в результате реакции не изменяются химически, часто изменяются физически в результате набухания, диспергирования и других изменений. Довольно часто катализаторы теряют в весе, образуют налеты на трубках или реакторах, что является прямым доказательством активного участия их в каталитических реакциях. Внимательный анализ каталитических реакций заставил ученых, еще в середине XIX в., признать, что катализаторы являются действенными компонентами проводимых ими реакций, облегчая протекание [c.23]

    Образование фазовых окисных слоев в стационарном пассивном состоянии не обязательно может служить причиной пассивации. Такой механизм вполне вероятен для металлов, окисные пленки которых обладают ничтожной электронной проводимостью. Для них процесс миграции ионов металла через окисную пленку требует меньших потенциалов, чем, например, разложение воды с выделением кислорода по реакции [c.202]

    Изучая химическую стойкость окисных пленок по отношению к агрессивных растворам, Эванс обнаружил, что, вопреки существовавшему мнению, снятая с железа высокотемпературная окалина практически не растворяется даже в очень сильных кислотах. Очень медленно растворяются кислотой и прозрачные чешуйки пленок, снятые с железа, окислившегося при комнатной температуре. Следовательно, сплошная окисная пленка в принципе вполне может защитить металл не только от химического окисления, но и от электрохимического растворения на аноде. В то же время многие окислы металлов, особенно в тонких слоях, обладают достаточной элект-тронной проводимостью для того, чтобы на покрытой ими поверхности могли протекать любые анодные процессы, связанные с разрядом молекул или ионов, т. е. с передачей электронов от компонентов раствора к металлу. А это, как уже отмечалось, характерно для пассивных металлов, выполняющих роль нерастворимых анодов. [c.434]

    Практически у всех обычно употребляемых металлов в результате коррозии на поверхности образуются поверхностные слои из твердых продуктов коррозии (см. поле II на рис. 2.2). Для обеспечения защиты от коррозии этими слоями существенно, чтобы они были бы достаточно плотными и равномерными на всей поверхности и поэтому предотвращали бы перенос продуктов реакции между металлом и коррозионной средой. У материалов на основе железа (черных металлов) и у многих других металлов эти поверхностные слои имеют гораздо лучшую электронную проводимость, чем ионную. Поэтому катодная окислительно-восстановительная реакция по уравнению (2.9) затормаживается в гораздо меньшей степени, чем переход ионов металла через двойной электрический слой. Местом развития катодной частичной реакции в таком случае становится не только поверхность раздела металл — среда, но и поверхность раздела поверхностный слой — среда, причем продукт реакции — ион гидроксила ОН- — образуется на поверхностном слое и повышает здесь величину pH. У большинства металлов благодаря этому уменьшается растворимость поверхностного слоя, т. е обеспечивается стабилизация пассивного состояния. [c.132]


    В случае пассивности железа, хрома, никеля и кобальта в растворах окислителей типа азотной кислоты или в растворах серной кислоты и сульфатов при анодной поляризации на металлах существуют уже сформировавшиеся защитные плотные пленки, толщина которых соответствует одному или нескольким слоям кислорода. Наличие на поверхности тонкой пленки с высокой электронной, но низкой ионной проводимостью обусловливает избирательное торможение процесса анодного растворения кислорода. [c.15]

    Коррозионная агрессивность почвы определяется содерн жанием в ней О2, влажностью, электрич. проводимостью, pH (см. Подземная коррози.н). В кислых почвах куски извести вблизи зарытого в почву металла могут долго создавать pH, достаточный для поддержания металла в пассивном состоянии. [c.165]

    Кроме того, уровень стратегии, проводимой предприятием, можно оценить по наиболее простой двухуровневой шкале пассивная стратегия, активная стратегия. Под пассивной стратегией понимают либо ее отсутствие, либо несистематизированные попытки проведения отдельных мероприятий. Активная стратегия предпо- [c.63]

    Если на пассивную пленку химически не воздействует среда и не происходит ее механическое разрушение в результате рекристаллизации, то скорость ее роста быстро замедляется, приближаясь к нулевому значению. Чем меньше ионная проводимость, тем быстрее наступает полная пассивность и прекращается рост барьерной пленки. При химическом взаимодействии пленки с электролитом через определенное время может устанавливаться равновесие между [c.28]

    Возникающие на поверхности стали пассивирующие пленки не являются электрическими изоляторами. Такие пленки обладают некоторой электронной проводимостью, и поэтому в них может устанавливаться малая (порядка 1 В) разность потенциалов. Если к стали прикладывать более высокие анодные потенциалы, то на обращенной в сторону электролита стороне пленки начнутся анодные реакции, свойственные более благородным металлам. При этом произойдет значительное снижение потенциала пассивации, и пленка станет утолщаться — возникнет эффект анодирования. В этом случае оксид пассивного металла или сплава будет иметь постоянную толщину. [c.72]

    Закономерности поведения металла в пассивном состоянии во многом определяются свойствами пассивирующих пленок. Так, если пленка медленно взаимодействует с электролитом, имеет полупроводниковую проводимость, то практически вся приложенная разность потенциалов падает внутри пленки, и тогда область пассивации может наблюдаться до очень высоких значений потенциала. При этом практически весь протекающий через систему ток будет расходоваться на прирост толщины оксидной пленки. Подобный вид зависимости наблюдается на титане, тантале, ниобии. [c.115]

    Возможен случай, когда при довольно положительном потенциале окислительно-восстановительный процесс протекает практически без омической поляризации, благодаря высокой электронной проводимости слоя. Напротив, для процесса Ме -> 2е при том же ходе потенциала от металла через слой до электролита, благодаря сильному полю в слое, может наблюдаться большая омическая поляризация. Следовательно, одно и то же распределение потенциала может вызывать для различных одновременно протекающих процессов и большую и исчезающе малую омическую поляризации. В гл. 6, посвященной пассивности металлов, эти соотношения разбираются подробно. [c.416]

    По мере увеличения концентрации хромата потенциал стали все больше смещается в положительную сторону, а поляризуемость электрода возрастает. При концентрации хромата, равной половине концентрации агрессивного иопа (0,5 н.), ток в области пассивного состояния электрода падает до 10 мкА/см что примерно на порядок ниже тока пассивации в фоновом электролите. Все это указывает на то, что возникшая на поверхности стали защитная пленка отличается меньшей ионной проводимостью, чем пленка, возникающая в фоновом электролите. В ингибированных средах активация поверхности наступает при более отрицательных потенциалах, чем в фоновом электролите. Это, очевидно, связано с тем, что напряженность электрического поля на тех участках, где пленка по каким-либо причинам менее совершенна, достигает большого значения, вследствие чего наступает пробой. [c.162]

    Нет сомнений в том, что наличие на поверхности тонкой пленки с хорошей электронной проводимостью, но очень плохой ионной проводимостью будет избирательно тормозить процесс анодного растворения металла, не препятствуя заметно протеканию анодного процесса выделения кислорода. Интересно, что даже очень тонкие пленки из полимерных материалов, как было установлено в наших работах совместно с Ю. Н. Михайловским и В. В. Леоновым [48], нанесенные на металлический электрод, также имеют заметную электронную проводимость при весьма малой ионной проводимости и приводят, с электрохимической точки зрения, к явлению, аналогичному пассивности, т. е. к смещению потенциала в положительную сторону и преимущественному торможению [c.17]

    Наличие пассивных пленок, образующихся в атмосфере иа поверхности таких металлов, как алюминий, титан, хром, никель, значительно повышает их коррозионную стойкость. Защитная способность этих пленок зависит от их сплошности и электронной проводимости. Пассивные пленки наносят искусственно на такие металлы, как алюминий, железо ( воронение железа), медь, магний. Такие искусственно созданные пленки по сравнению с пленками, образующимися в естественных условиях, имеют значительно большую толщину и обладают большей механической и противокоррозионной стойкостью. При нарушении сплошности пассивных пленок, обладающих электронной проводимостью, в их поры (трещины) может попасть влага. В результате образуется мккрогальвано-элемент металл —пленка (рис. 89). Пленка играет роль катода, ускоряя коррозию. Поэтому после формирования пленок металл обрабатывают в специальных средах. Например, оксидированное ( вороненое ) железо обрабатывают в минеральном [c.374]

    Объясняя причины сглаживания шероховатой поверхностн в области значительного повышения потенциалов ВС, П. В. Щиголев и Н. Д. Томашов [56] исходят из того, что выступы и углубления пассивируются не в одинаковой степени. Кроме того, окисная пассивная пленка обладает ионной проводимостью, поэтому [c.458]

    Отрицательным электродом ЛЭ служит металлический литий. Электролит состоит из апротонного органического (пропилен-карбанат, у-бутнролактои, диметоксиметан и др.) или неорганического (тионилхлорид) растворителя, в котором растворена соль лития (перхлорат, фторборат, гексафторфосфат, гекса-фторарсенат лития). Для улучшения характеристик элементов исиользуют также смесь растворителей, обеспечивающих высокую электрическую проводимость электролита. Оптимальная концентрация растворенной соли составляет, как правило, 1 моль/дм". Устойчивость лития в таких растворителях обусловлена существованием на металле пассивной пленки, препятствующей его самопроизвольному растворению. [c.242]

    В определенных условиях на пассивирующихся металлах наблюдаются периодические колебания потенциала в гальваностатических условиях или колебания тока при Я=соп51. Это объясняется наличием падающей характеристики на поляризационной кривой пассивирующихся металлов, т. е. области с (д1 /дЕ)<С.О, и с закономерным переходом электрода из активного состояния в пассивное и обратно. Существует аналогия между периодическими электродными процессами и явлениями нервной проводимости. Например, активация определенного участка железной проволоки в азотной кислоте приводит к возникновению активационных волн, закон распространения которых вдоль проволоки имеет сходство с законом распространения нервного импульса (модель нервов Оствальда — Лилли). Поэтому периодические процессы при пассивации используются для моделирования механизма действия нервных клеток — нейронов. [c.371]

    Рост пленок, обладаюш их низкой электронной проводимостью, но относительно хорошо растворяюш ихся в электролите, протека.ет при значительно более низких напряжениях. Примером такого процесса может слуншть оксидирование алюминия в серной, хромовой или щавелевой кислотах. При оксидировании на поверхности алюминия вначале образуется тонкая пассивная пленка AI2O3 — барьерный слой. Образовавшийся в начальный момент барьерный слой начинает растворяться на отдельных участках. В результате сплошная пленка превращается в пористую. Плотная часть пленки непрерывно [)астет, причем рост происходит с ее внутренней стороны. Под воздействием электролита пленка с наружной поверхности и отчасти в порах (с боковой их поверхности) непрерывно растворяется, что в итоге ограничивает ее рост в TOJUUHHy. [c.369]

    К числу металлов с низкой электронной проводимостью окислов принадлежат алюминий, титан, цирконий, тантал, известные своей способностью подвергаться оксидированию при высоких анодных потенциалах (см. 6 этой главы). Что касается растворения металла в пассивном состоянии, то оно существенно отличается от перехода в раствор ионов металла на активном участке поляризационной кривой. Это отличие прежде всего количественное. При сохранении постоянного потенциала анодной ток в пассивной области обнаруживает тенденцию к постепенному и очень медленно идущему уменьшению, снижаясь до крайне низких значений порядка Ь "а/см . Такой спад тока растягивается на длительные промежутки времени. Поэтому приводимые значения плотности тока в пассивном состоянии следует рассматривать как довольно условные величины, относящиеся к какой-либо определенной выдержке металла при заданном потенциале. Отличие процесса перехода в раствор ионов металла в пассивной области от активного растворения заключается в том, что такой переход протекает в три последовательные стадии. Одной из них является переход катионов металла в окисную пленку. Далее следует миграция ионов под действием электрического поля катионов — к раствору, а анионов кисло-юда или ионов гидроксила — к границе раздела окисел — металл. Наконец, последняя стадия представляег переход катионов из окисной пленки в раствор, т. е. самый процесс растворения пленки. Скорость каждой из трех этих стадий зависит от потенциала, и на этом основании процесс растворения металла в пассивном состоянии можно рассматривать как электрохимический. В противоположность этому в классической теории пассивности принимается, что ионы пассивного металла поступают в раствор в результате химического растворения материала пассивирующей окисной пленки в окружающем электролите. [c.202]

    По виду аксперимента. проводимого на объекте. Он может быть активным, когда экспериментатор сам изменяет значения входных координат, и пассивным, когда экспериментатор не вмешивается в работу объекта, в просто регистрирует изменения эначений входных и выходшк координат в результате случайных воздействий. В [c.4]

    При выборе материалов токоотводов положительных электродов аккумуляторов важно обеспечить их практическую пассивность (при сохранении электрической проводимости) в условиях заряда (т. е. при анодной поляризации до весьма высоких потенциалов). Для этой цели широко применяются в растворах серной кислоты (в кислотных аккумуляторах) свинец или его сплавы в растворах щелочей (в различного типа аккумуляторах с положительным электродом на основе Ы100Н) — никелированная сталь или спеченный никелевый порошок. [c.58]

    Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам. [c.198]

    Методы контроля склонности материалов в МКК. Определение склонности коррозионно-стойких сталей к МКК производится по ГОСТ 6032-75. Испытания, проводимые в соответствии с этим ГОСТом, дают удовлетворительные результаты. Однако в ряде случаев отмечается, что материалы, не показавшие склонность к МКК при стандартных испытаниях, в производственных условиях подвергаются уЧКК- Это может происходить по различным причинам. В одних случаях в связи с тем, что в металле произошло незначительное обеднение хромом границ зерен. При этом они могут и не утратить способности к пассивированию в контрольной среде, но плотность тока в пассивном состоянии, полол ение и границы области устойчивого пассивного состояния все же изменяются. В этом случае обедненные зоны хоть и будут разрушаться быстрее, чем основной металл, но МКК пойдет медленнее и при испытаниях не проявится, так как для этого могут потребоваться не десятки, а сотни часов. Поэтому, учитывая несовершенство методов оценки результатов испытаний (загиб, изменение звука и др.), часто приходится в сомнительных случаях повторять испытания. Кроме того, получаемый результат может быть неодинаков для разных образцов одного материала, даже в пределах одного образца часто отмечается различие в устойчивости границ зерен. [c.62]

    К числу металлов с низкой электронной проводимостью окис лов принадлежат алюминий, титан, цирконий, тантал, известные своей способностью подвергаться оксидированию при высоких анодных потенциалах (см. 34). Что касается растворения металла в пассивном состоянии, то оно существенно отличается от перехода в раствор ионов металла на активном участке поляризационной кривой. Это отличие прежде всего количественное. При сохранении постоянного потенциала анодный ток в пассивной области обнаруживает тенденцию к постепенному и очень медленно идущему уменьшению, снижаясь до крайне низких значений порядка 10- °а/сл<2. Такой спад тока растягивается на длительные промежутки времени. Поэтому приводимые значения плотности тока в пассивном состоянии - следует рассматривать как довольно условные величины, относящиеся в какой-либо принятой продолжительности выдержки металла при заданном п01 енциале. Отличие процесса перехода в раствор ионов металла в пассивной области от активного растворения заключается в том, что та-118 [c.118]

    Механизм торможения анодного процесса лемосорбционной, или барьерной, пленкой, но-видимому, не может быть сведен к механической (кроющей, изолирующей) защите поверхности, а имеет электрохимический и, кроме того, полупроводниковый характер. Если в пассивном слое отсутствует ионная проводимость, а перенос зарядов осуществляется движением электронов, — состояние пассивного слоя и его величина во времени не изменяются. Такие электроды полностью устойчиво пассивны при анодной поляризации (например, платина в большинстве сред или никель в щелочном растворе). Если пассивирующая пленка имеет помимо электронной также и ионную проводимость, образуется менее совершенная пленка. При этом в результате переноса анионов через защитную пленку будет происходить ее утолщение с затормаживающейся скоростью вследствие возрастающего сопротивления пленки. [c.28]

    Если пассивная пленка обладает полупроводниковыми свойствами, то в зависимости от типа ее проводимости электродные процессы, связанные с переносом электронов через пассивный слой, будут тормозиться по-разному. При полупроводниковой пленке г-типа будут тормозиться анодные процессы, при пленке р-тжиа — катодные [87—89]. [c.28]

    Рис. 6. . а — схема нервного волокна с синапсом. Показаны системы транспорта (АТРаза) и три различные системы пассивного транспорта. Справа — хемовозбудимая транспортная система, регулируемая молекулой непроме-диатора, например канал в постсинаптической мембране мышечной концевой пластинки, пропускающий ионы калия и натрия слева — отдельно К а+- и К+-каналы в мембране аксона, управляемые электрическим полем и открываемые при деполяризации бив — проводимость натрия gNг (б) и калня ё к, (в), а также входящий натриевый /ка и выходящий калиевый /к токи после деполяризации (60 мВ). Четко дифференцированная кинетика двух процессов N3 и к подразумевает существование индивидуальных молекулярных структур для пассивного натриевого и калиевого транспорта. [c.131]

    ИМПЕДАНСНЫЙ МЕТОД, используется для изучения электрохим. систем путем их моделирования в виде пассивной вли активной электрич. цепи. Прв наложении на электрохим. систему напряжения, к-рое изменяется по гармо-нич. закону с малой амплитудой, сист. можно считать линейной, если через нее идет ток синусоидальной формы, опережающий питающее напряжение по фазе. Амплитуда тока зависит от проводимости индифферентного (фонового) электролита, конц. электрохимически активного в-ва и значения пост, потенциала рабочего электрода. Такую сист. представляют в виде пассивной электрич. цепи (соединения активных в емкостных сопротивлений). Активным сопротивлением моделируют электрич. сопротивление р-ра, перенос заряда, частично — диффузию электрохимически активных в-в емкостным — емкость двойного электрич. слоя, частично — диффузию и адсорбцию (или десорбцию) присутствующих в сист. ПАВ. Таким п ставлением пользуются, напр., прн изучении электрохим. цепей, ва к-рые налагают перем. напряжения с малой амплитудой, в переменаотоковой полярографии (см. Вааьтамперомет-рия). [c.218]

    Электродный потенциал ед пассивного металла устанавливается либо с помощью внешнего электрического тока, либо (при достаточной электронной проводимости слоя) как смешанный потенциал бсм (см. рис. 358), определяемый окислительно-восстановительным процессом (например, восстановлением HNO3 до HNOj или восстановлением Og). [c.817]


Смотреть страницы где упоминается термин Проводимость пассивная: [c.53]    [c.28]    [c.310]    [c.33]    [c.218]    [c.367]    [c.132]    [c.797]    [c.815]    [c.36]   
Биоэнергетика и линейная термодинамика необратимых процессов (1986) -- [ c.138 , c.157 , c.179 , c.186 , c.254 ]




ПОИСК





Смотрите так же термины и статьи:

Пассивность

Проводимость



© 2024 chem21.info Реклама на сайте