Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия ультрафиолетовая электронная

    Спектроскопия ультрафиолетовых фотоэлектронов дифракция медленных электронов спектроскопия Оже-электро-нов спектроскопия ионной нейтрализации спектроскопия начального потенциала ионного источника [c.151]

    Известны три принципиально различных метода определения ионизационных потенциалов ультрафиолетовая спектроскопия (УФС), электронный удар (ЭУ) и фотоионизация (ФИ). Полосы УФ-спектров органических соединений обусловлены электронными переходами из основного [c.9]


    Как и инфракрасную спектроскопию, ультрафиолетовую спектроскопию можно использовать, чтобы различить физическую адсорбцию и хемосорбцию. Если в системе протекает физическая адсорбция, электронный спектр адсорбированной молекулы очень похож на спектр свободной молекулы [291]. [c.118]

    Подобное же уравнение (с поправкой на характеристику прибора) служит для расчета ионизационных потенциалов молекул, определяемых с помощью фотоэлектронной спектроскопии. Ультрафиолетовое излучение вызывает испускание электронов, принадлежащих валентным оболочкам молекул, и может быть использовано при определении их ионизационных потенциалов. Обычно применяется излучение, достаточное для отрыва электронов с энергией связи не более 21,21 эВ. [c.261]

    Книга представляет собой обзор данных по абсорбционной спектроскопии, включая электронную (вакуумную, ультрафиолетовую и видимую), различных классов органических соединений. [c.96]

    Ультрафиолетовая электронная спектроскопия [c.73]

    Спектры электромагнитного излучения, испускаемого, поглощаемого и рассеиваемого веществом, изучает раздел физики — спектроскопия. Квант поглощаемой или испускаемой веществом энергии соответствует изменению энергии при каком-либо единичном акте атомного или молекулярного процесса (табл. 11). Наиболее коротковолновое излучение (у-излучение) соответствует ядерным процессам. Квантовые переходы внутренних электронов атомов и молекул сопровождаются рентгеновским излучением. Электромагнитное излучение ультрафиолетовой и видимой области спектра отвечает квантовым переходам внешних (валентных) электронов. Колебанию атомов в молекулах отвечает инфракрасное излучение, вращению молекул — дальнее инфракрасное излучение, спиновому переходу элект-1)онов и ядер — радиоизлучение. [c.140]

    Спектроскопия видимого и ультрафиолетового излучения. Изучение электронных переходов производится с помощью видимого и ультрафиолетового излучения. Это дает возможность определить [c.145]

    Молекулы имеют электронные энергетические уровни, колебательные энергетические уровни и вращательные энергетические уровни. Переходы между вращательными уровнями попадают в микроволновую область спектра переходы между колебательными уровнями-в инфракрасную область, а переходы между электронными уровнями-в видимую и ультрафиолетовую области спектра. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния используются для наблюдения внутримолекулярных колебательных переходов. Поглощение света молекулами в видимой и ультрафиолетовой частях спектра обусловлено электронными переходами. График зависимости интенсивности этого поглощения от длины волны света называется спектром поглощения. [c.596]


    Можно ли применить подобные рассуждения к молекулам Да, можно, причем двояко. Во-первых, из спектроскопии известно, что характеристические частоты электронов в молекулярных системах лежат в видимой и ультрафиолетовой областях спектра, тогда как частоты колебаний ядер — в инфракрасной области, так что (oj / u ) 100 и критерий адиабатичности для молекул выполняется (правда, как мы увидим далее, — не всегда). Во-вторых, слоистое строение электронных оболочек атомов и молекул позволяет разделить электроны на группы в зависимости от скорости их движения, так как периоды движения оптических (валентных) электронов и электронов остова существенно различаются. В настоящее время адиабатическое разделение быстрых и медленных электронов применяется главным образом в теории атомов, и мы о нем в дальнейшем говорить не будем, сосредоточив внимание на адиабатическом разделении электронных и ядерных движений. [c.109]

    Спектроскопия в видимой и ультрафиолетовой области — ценнейший источник сведений об электронных состояниях, энергетике и структурных свойствах молекул. [c.151]

    Электронные спектры поглощения ароматических соединений широко используются в изучении углеводородной части нефтей, нефтепродуктов и других природных горючих ископаемых. Когда перешли к исследованию состава неуглеводородной части тех же продуктов, в частности соединений, содержащих серу и азот, наряду со всеми другими методами анализа стали привлекать и спектроскопию в ультрафиолетовой области. Возникла необходимость сбора и систематизации спектров поглощения нужных соединений, т. к. они были разбросаны по отдельным статьям и зарубежным каталогам, в которых, из-за отсутствия удобной системы, их было нелегко разыскать, не легче было добыть и сами каталоги. Это вызвало появление справочных книг [1, 2], которые в той или иной мере помогали идентифицировать выделенные из исследуемых продуктов типы соединений. [c.158]

    Спектроскопия видимого и ультрафиолетового излучения. Изучение электронных переходов производится с помощью видимого н ультрафиолетового излучений. Это дает возможность определить энергетические характеристики молекул — энергию возбуждения, энергию ионизации и энергию химической связи. Последнюю определяют при действии излучения, вызывающего диссоциацию молекул. [c.175]

    Для многих веществ, например для большинства комплексных соединений, электронные переходы можно исследовать методами абсорбционной спектроскопии в растворах соответствующих веществ в видимом и ультрафиолетовом свете. Метод основан на законах поглощения света. Согласно закону Ламберта, понижение интенсивности / световой волны в абсорбирующей (поглощающей) среде обусловлено толщиной слоя ds  [c.67]

    Спектроскопия в видимой и ультрафиолетовой областях (электронные спектры)............................................271 [c.318]

    Практическое использование электронных спектров поглощения осуществляется в интервале длин волн 2,Ы0 —7,5-10- м (видимая и ближняя ультрафиолетовая области). Особенность этой области заключается в большом сходстве спектров поглощения у многих различных по составу и природе соединений. Поэтому возможности электронной молекулярной спектроскопии для идентификации соединений путем сравнения спектров ограничены. В тех [c.163]

    Очень важное значение для изучения химических свойств элементов, исследования структуры внешних электронных слоев атомов имеют излучения, отражаюш,ие изменения энергии валентных электронов. Им соответствуют длины волн в основном видимого (500 нм) и ультрафиолетового диапазона (100 нм). Спектральные исследования в этой области длин волн электромагнитного излучения получили название оптической электронной спектроскопии. Оптические спектры атомов могут быть получены, когда возбужденные тем или иным методом (электронного удара, поглощения кванта света, в результате столкновения при нагревании с другим атомом и т. п.) внешние (валентные) электроны атомов переходят из состояний с большей энергией в состояния с меньшей энергией. При этом излучается квант света, частота которого (см. 3.3) определяется соотношением —Е1=к и характеризует линию спектра. [c.67]

    Электронная спектроскопия для химического анализа (ЭСХА) Рентгеновская фотоэлектронная спектроскопия в вакуумной ультрафиолетовой области Оже-спектроскопия при возбуждении фото- [c.110]

    Для энергетических уровней, соответствующих электронно-возбужденным состояниям многоатомных частиц, никаких простых количественных соотношений не существует. Некоторые качественные положения будут рассмотрены в 10.2, посвященном спектроскопии в видимой и ультрафиолетовой области спектра. [c.98]

    Исходя из предыдущего примера, можно ожидать, что в спектре смеси будет три сигнала, отвечающих протонам СООН-группы, воды и СНз-группы. Фактически в наблюдаемом спектре имеется только два пика. Положение пика СНд-группы не изменилось, но вместо сигнала протонов воды и карбоксильной группы наблюдается один пик в промежутке между ними — пик, отвечающий смеси. Почему для смеси наблюдается меньше линий, чем для суммы компонентов Почему в одних случаях смесь дает уменьшение числа пиков, а в других — нет Причина состоит в том, что в случае уксусной кислоты происходит реакция, которую мы обычно не замечаем, и не пишем ее уравнение. Она заключается в переходе протона воды в состав карбоксильной группы и, наоборот, легко диссоциирующий протон уксусной кислоты переходит в молекулу воды. Происходит так называемый протонный обмен. Протонный обмен является примером простейшей химической реакции. Его можно заметить и предсказать во всех деталях количественно с помощью ПМР-спектроскопии. По электронным и колебательным спектрам, т. е. в ультрафиолетовой и инфракрасной областях, это сделать не удается. Земетим, что спектр ПМР смеси уксусной кислоты и воды не является простой суммой ПМР спектров компонентов. [c.116]


    При изучении физической структуры полимеров (формы макромолекул и конформационных превращений, водородных связей, надмолекулярной структуры), а также и химического строения применяются разнообразные физические методы исследования микроскопия (световая, ультрафиолетовая, электронная) рентгеносчруктурный анализ электронография спектроскопия (ультрафиолетовая, инфракрасная, ядерного магнитного резонанса и др.) оптические методы (метод двойного лучепреломления) и др. [c.143]

    Световая волна характеризуется обычно длиной волны, которая изменяется от 120 (далекий ультрафиолет) до 760 нм (ближайшая инфракрасная область). Человеческий глаз видит световые лучи в интервале 400—700 нм. Этот интервал называется видимым светом , а изучающая в этом интервале действия света спектроскопия — видимой . В отличие от нее спектроскопия в лучах с длиной волны X < 400 нм называется ультрафиолетовой спектроскопией (УФ-спектроскопия). Метод электронной абсорбционной (поглощение света) спектроскрпии рассмотрен кратко ранее. Здесь же дано более полное представление о поглощении света веществом (фотофизика молекул) и о химических превращениях, которые происходят под воздействием светового электромагнитного излучения (фотохимия молекул). [c.257]

    Энергетические уровни заполненных молекулярных орбиталей могут быть рассчитаны с помощью фотоэлектронной спектроскопии [28]. Электроны выбрасываются с занятых молекулярных орбиталей при облучении молекул ультрафиолетовым светом высокой энергии в газовой фазе. Энергии этих элостронов непосредственно связаны с потенциалами ионизации, обусловленными удалением электронов с различных молекулярных орбиталей. Анализ спектров включает определение спштральных областей электронных состояний молекулярных ионов и, следовательно, идентифика- [c.31]

    ФЭС — фотоэлектронная спектроскопия ЭСХА — электронная спектроскопия для химического анализа УФЭС — ультрафиолетовая фотоэлектронная спектроскопия РФЭС — рентгеновская фотоэлектронная спектроскопия. [c.223]

    Анализ проводится с помощью методов оже-элсктронной спектроскопии, фотоэлектронной рентгеновской и ультрафиолетовой спектроскопии, растровой электронной микроскопии, рентгеновского микроанализа, спектроскопии характеристических потерь энергии, масс-спсктрометрии вторичных ионов, рамановского микроанализа, оптической микроскопии, профилометрии. [c.187]

    В предьщущем пункте читатель уже проследил пути поглощения и неупругого рассеяния рентгеновского излучения. При этом регистрировались фотоны. В этом пункте внимание будет уделено методам, основанным на регистрации электронов, которые возникают опять же после действия рентгеновского излучения, а также после поглощения ультрафиолетового излучения или электронного пучка. Длина свободного пробега электронов сильно зависит от их энергии, однако она меняется в пределах от 100 до 1 нм при изменении энергии от 1 эВ до 1 кэВ соответственно, проходя через минимум 0,5 нм при 100 эВ [1]. В связи с этим все эти методы эффективны для изучения поверхности, а так же для объектов с наноразмерами. Будут рассмотрены три весьма распространенных и эффективных метода рентгеновская фотоэлектронная спектроскопия (РФЭС), ультрафиолетовая электронная спектроскопия (УФЭС) и электронная Оже-спектроскопия (ЭОС). [c.69]

    Радикалы очень быстро гибнут в результате реком бийации, поэтому концентрация этих интермедиатов редко достигает величины выше примерно 10 М. Это обстоятельство в большинстве случаев исключает использование ультрафиолетовой, инфракрасной и ЯМР спектроскопии для их обнаружения. Однако спектроскопия электронного парамагнитного резонанса, коюряя очень чувствительна к парамагнитным частицам и позволяет регистрировать концентрации радикалов вплоть до 10 Л1, представляет собой чрезвычайно полезный метод обнаружения частиц с неспаренным электроном (молекулы, в которых отсутствуют неспаренные электроны, не регистрируются в этом виде спектроскопии). Сигнал электронного парамагнитного резонанса является убедительным доказательством присутствия в системе свободного радикала, хотя и ничего не говорит об источнике образования радикала (каким путем, в какой реакции он возник). В случае простых органических радикалов однозначное структурное отнесение часто можно провести на осноВе анализа сверхтонкого расщепления или путем сравнения спектра с известным ЭПР-спектром радикала, который был получен другим путем. . [c.94]

    На примере этого ряда комплексов можно показать, как связаны окраска и строение координационных соединений переходных металлов. Фотоны надлежащей энергии способны возбуждать электроны, перенося их с атомов кислородных лигандов на пустые -орбитали иона металла. Этот процесс называется переносом заряда, и именно он в большинстве случаев обусловливает окраску комплексов переходных металлов. Чем выше степень окисления металла, тем легче осуществляют указанный переход электроны и тем ниже энергия, необходимая для их переноса. Поглощение фотонов соответствующей энергии в комплексе УО приходится на ультрафиолетовую часть спектра, поэтому ион УО бесцветен. В комплексе СгО поглощение фотонов происходит в фиолетовой области видимого спектра, что соответствует волновым числам около 24 ООО см поэтому растворы хромат-ионов имеют желтую окраску (дополнительные цвета указаны в табл. 20-3). (В спектроскопии принято выражать энергию фотонов в волновых числах, которые измеряпотся в обратных сантиметрах, см см. разд. 8-2.) Ион Мп + имеет самую высокую степень окисления и при возбуждении с переносом заряда поглощает зеленый цвет (приблизительно при 19000см ), этим и объясняется пурпурная окраска иона МпО ". Окраска комплексов, в которых происходят электронные переходы с переносом заряда, обычно очень интенсивна, что указывает на сильное поглощение света. Повышение размера центрального атома затрудняет перенос заряда и сдвигает поглощение в ультрафиолетовую область поэтому комплексы МоО , WOr и КеО бесцветны. [c.215]

    Частично из-за потребности в монохроматическом излучении возникли два раздела фотоэлектронной спектроскопии. Рентгеновская фотоэлектронная спектроскопия, сокращенно обозначаемая как РФС или ЭСХА (электронная спектроскопия для химического анализа), использующая рентгеновские лучи в качестве источника ионизирующего излучения, изучает в основном электроны оболочки (т.е. невалентные электроны). Создание этого метода приписывают Сигбану и сотр. [27]. В ультрафиолетовой фотоэлектронной спектроскопии (УФС) используют ультрафиолетовое излучение, имеющее более низкую энергию, и, таким образом, исследуют энергии связи валентных электронов. Обязанная своим развитием главным образом Тернеру и его сотрудникам [28], УФС предназначалась не только для измерения энергий связывания валентных электронов, но и для наблюдения за возбужденными колебательными состояниями молекулярного иона, образующегося в процессе фотоионизации. [c.331]

    Сераорганические соединения входят в состав большинства нефтей. По содержанию и составу сернистые соединения нефти сильно различаются. В нефтях, кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ), которые определ пот специфику взаимодействия веществ с растворителями, термостойкость и другие свойства [1]. Чтобы перейти к изучению фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, содержащих серу Определенные перспективы в этом направлении открывает электронная абсорбционная спектроскопия. Целью настоящей работы является установление существования подобных зависимостей между ПИ и СЭ в рядах органических соединений серы и логарифмической функцией интегральной силы осциллятора (ИСО). Основой данной работы явились закономерности [2-4], что ПИ и СЭ для я-электронных органических веществ определяются логарифмической функцией интегральной силы осциллятора по абсорбционным электронным спектрам растворов в видимой и УФ области. Аналогичные результаты получены для инертных газов. Обнаружена корреляция логарифмической функции ИСО в вакуумных ультрафиолетовых спектрах, ПИ и СЭ [3]. [c.124]

    Поглощение молекулой ультрафиолетового излучения вызывает переход от исходной комбинации колебательной и вращательной энергии ее электронов к соответствующей комбинации этих энергий при возбужденном состоянии электронов. Систематические измерения большого числа органических соединений позволили установить, что только молекулы, содержащие полярные или ненасыщенные группы, поглощают в коротковолновой части ультрафиолетовой области. Для многоатомных молекул эти спектры очень сложны и трудно поддаются расшифрсвке. Учитывая характерный вид ультрафиолетовых спектров ароматических колец, Корбетт и Швэрбрик (23) с помощью ультрафиолетовой спектроскопии установили присутствие ароматических колец в парафиновых п нафтеновых фракциях битумов. [c.52]

    Обширные перспективы в этом плане открывает метод интегральной электронной спектроскопии. На основе обойцения обширного эмпирического и теоретического материала М.Ю.Доломатовым установлена квазилинейная связь физико-химических, зависящих от электронной структуры инградиентов, характеристик многокомпонентных химических систем с удельными показателями поглощения в видимой и/или ультрафиолетовой области [46,47]. Закон квазилинейной связи имеет вид  [c.16]

    Из физико-химических (инструментальных) йй-бдов исследования, применяемых для установления молекулярной структуры органических веществ, наиболее часто используются оптическая спектроскопия (в ультрафиолетовой, видимой и инфракрасных областях спектра), спектроскопия ядерного магнитного резонанса (ЯМР), хроматография, метод дипольных моментов молекул, рентгеноструктурный анализ, молекулярная масс-спектроскопия и др. С помощью этих методов получают ценную информацию о взаимном расположении атомов в молекуле, их взаимовлиянии, внутримолекулярных расстояниях, поляризуемости связей, валентных углах и распределении электронной плотности и т. д. [c.123]

    При измерении спектров поглощения в ультрафиолетовой области в качестве источника света используется водородная (дейтеривая) лампа (200—350 нм), а кюветы для раствора вещества, призма и вся оптика в приборе должны быть изготовлены из кварца (обычное стекло непрозрачно для коротковолнового излучения). При работе в видимой области используют тот же прибор, но в качестве источника излучения применяют лампу накаливания (от 350 нм и далее), а кюветы могут быть изготовлены из обычного стекла. В качестве растворителей в УФ спектроскопии применяют вещества, не имеющие поглощения в исследуемой области спектра и не вступающие в химическое взаимодействие с растворенным веществом (см. табл. 1). Для измерения электронных спектров поглощения обычно используют сильно разбавленные растворы (10 —10" моль/л). [c.129]

    Для современной органической химии при решении структурных проблем все большее значение приобретают физические методы исследования. Теплоты сгорания, парахор, дипольные моменты, изучение кинетики, магнитная проницаемость, метод меченых атомов, константы хроматографии и электрофореза, скорость осаждения при центрифугировании, люминесцентный анализ, нефелометрия, по-ляриметрия, масс-спектроскопия, рентгеноструктурный анализ, но особенно, — спектроскопия в видимой, инфракрасной, ультрафиолетовой областях, изучение спектров электронного парамагнитного и ядернОго магнитного резонанса открыли необыкновенно широкие возможности для решения задач установления строения молекул. Физические исследования все чаще оказываются решающими для понимания структуры соединения. [c.19]

    Широко используются в химии различные формы взаимодействия вещества с электромагнитным излучением рассеяние света при нефелометрии, определение показателя преломления, оптического вращения. Особенно часто для характеристики соединений используются спектры поглощения в различных областях электромагнитных колебаний. Поглощение в области видимого или ультрафиолетового спектра характеризует электронные свойства молекул. Р1нфракрасные спектры отражают колебания ядер. Наконец, дифракция рентгеновских лучей открывает возможность устанавливать геометрию молекул, чему служат также электронография и нейтронография. Дополнительную информацию о строении молекул может дать резонансная 7-спектроскопия (эффект Мессбауэра). [c.22]


Смотреть страницы где упоминается термин Спектроскопия ультрафиолетовая электронная : [c.252]    [c.3]    [c.94]    [c.428]    [c.482]    [c.251]    [c.13]    [c.7]    [c.56]    [c.3]    [c.132]   
Химия привитых поверхностных соединений (2003) -- [ c.289 , c.290 , c.354 ]




ПОИСК





Смотрите так же термины и статьи:

Спектроскопия ультрафиолетовая

Спектроскопия электронная



© 2024 chem21.info Реклама на сайте