Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород, и цикл лимонной кислоты

    Вероятно, гликолиз представляет собой живое ископаемое -реликтовый биохимический процесс, сохранившийся с тех времен, когда в земной атмосфере не было кислорода и одноклеточные организмы существовали за счет расщепления органических молекул, встречающихся в естественных условиях. Когда живые организмы приобрели большие размеры, стали сложнее и увеличили свои энергетические потребности, а в земной атмосфере появился кислород, произошло развитие более сложного биохимического процесса, требующего намного большего количества энергии и известного под названием цикла лимонной кислоты . Но прежде чем мы рассмотрим этот процесс, следует познакомиться с универсальным способом запасания химической энергии в любых живых организмах. [c.327]


    Дыхательная цепь. Последовательность обратимых окислительно-восстановительных реакций, приводящая к восстановлению молекулярного кислорода. Электроны для восстановления поступают из цикла лимонной кислоты. Эпергия, которая освобождается при функционировании дыхательной цепи, идет на синтез АТФ. Дыхательная цепь будет рассмотрена подробно в гл. 23. [c.194]

    Яблочная и лимонная кислоты принимают участие в цикле трикарбоновых кислот, называемом также циклом лимонной кислоты, или циклом Кребса, — универсальном этапе окислительного катаболизма углеводов, липидов и других соединений в присутствии кислорода. В ходе цикла трикарбоновых кислот происходит, кроме того, образование предшественников аминокислот. [c.260]

    Продукт гликолиза-пируват-может использоваться тремя способами. У аэробных организмов гликолиз составляет лишь первую стадию полного аэробного расщепления глюкозы до СО2 и воды (рис. 15-1). Образовавшийся при гликолизе пируват претерпевает затем окислительное декарбоксилирование, т. е. теряет СО2, а оставшийся двухуглеродный фрагмент в виде ацетильной группы включается в ацетилкофермент А (см. рис. 10-8). Далее уже эта ацетильная группа полностью окисляется до СО2 и Н О в цикле лимонной кислоты с участием молекулярного кислорода (рис. 15-1). Таков путь, на который вступает пируват в аэробных животных и растительных клетках. [c.439]

    На рис. 17-1 приведена схема, помогающая понять общую организацию процесса переноса электронов и окислительного фосфорилирования. В каждом обороте цикла лимонной кислоты специфичные дегидрогеназы отщепляют от изоцитрата, а-кетоглутарата, сукцината и малата четыре пары атомов водорода. Эти атомы водорода в определенной точке отдают свои электроны в цепь переноса электронов и превращаются таким образом в ионы Н, которые поступают в водную среду. Электроны, переходя от одного переносчика к другому, достигают в конце концов цитохрома аяз, или цитохромоксидазы, при участии которой они и передаются на кислород— конечный акцептор электронов у аэробных организмов. Всякий раз, когда атом кислорода присоединяет два электрона, поступающие к нему по цепи переноса, из водной среды поглощаются два иона Н, равноценные тем, в которые превратились два атома водорода, отщепленные ранее дегидрогеназами в результате этого образуется молекула НгО. [c.508]


    При наличии адекватных источников кислорода, способных окислять НАДН в цикле дыхания (разд. 13.3), пировиноградная кислота входит в цикл лимонной кислоты (разд. 15.4) и полностью разрушается до диоксида углерода. При отсутствии кислорода НАДН восстанавливает пировиноградную кислоту до молочной кислоты (рис. 15.5). Например, молочная кислота образуется в мышечной ткани во время интенсивной работы, вследствие чего возникает характерная боль в мускулах. Ве [c.311]

    При биохимическом сгорании углеводов в клетках, потребляющих энергию зеленого аккумулятора, центральной топкой служит так называемый цикл лимонной кислоты — круговая последовательность реакций. В топку поступает горючее, предварительно приведенное к стандартному виду (для этого любые углеводы клетка превращает в ацетилкоэнзим А, ацетил КоА ), а выходит из цикла-топки восстановления форма НАД и, как из любой топки,— СОг, дым . Кислород же, поступивший в живую клетку, вначале окисляет вовсе не углеводы и даже не вещества, из них образовавшиеся. Прежде всего он реагирует с цитохромом, молекула которого похожа на молекулу хлорофилла, но вместо магния содержит (на этот раз в самом деле содержит) железо. Реакцию эту можно записать так  [c.305]

    Цикл лимонной кислоты. Аэробное превращение молочной кислоты в двуокись углерода и воду протекает через стадию образования пировиноградной и затем уксусной кислот. Уксусная кислота является одним из наиболее важных продуктов обмена. Она лежит на перекресте многих биохимических путей. Участие уксусной кислоты в образовании АТФ связано в основном с включением в цикл лимонной кислоты. Этот цикл (фиг. 104) представляет собой последовательную цепь реакций, начинающуюся с конденсации двууглеродного остатка уксусной кислоты с четырехуглеродным носителем . Образовавшаяся шестиуглеродная кислота носит название лимонной кислоты. Путем ряда дегидрирований (потеря водорода) и декарбоксилирований (потеря двуокиси кислорода) она, в конце концов, теряет 2 углеродных атома и опять образуется четырехуглеродная молекула носителя. Таким образом, становится возможным следующий оборот цикла. В результате каждого оборота цикла образуется 18 молекул АТФ на каждую исходную молекулу молочной кислоты. Механизм образования АТФ в лимоннокислом цикле не показан на фиг. 104, да он еще и неизвестен. Общее обсуждение этого вопроса см. в приложении 2. [c.380]

    Анаэробный гликолиз происходит не в митохондриях, но зато именно там протекают последующие стадии дыхания — цикл Кребса (называемый также циклом трикарбоновых кислот и циклом лимонной кислоты) и конечное дыхание. Эти реакции изучены до мельчайших подробностей. Нас здесь будет интересовать только основной принцип. Он состоит в том, что пировиноградная кислота расщепляется все дальше и дальше, до углекислого газа (СОг) и водорода (Нг), а в заключение водород окисляется кислородом воздуха (следовательно, этот этап процесса дыхания является аэробным) с образованием воды. Так как СОг и НгО представляют собой бедные энергией конечные продукты, следовательно, энергия, заключавшаяся ранее в пировиноградной кислоте, должна была перейти в какую-то иную форму. Часть ее (небольшая), очевидно, переходит в тепло большая же часть энергии обнаруживается в богатом энергией химическом соединении — это наш старый знакомый АТФ, который известен как универсальный донор энергии для клетки. [c.223]

    При образовании СО2 в этом цикле используется кислород, образующийся при распаде молекулы воды. Молекулы СО2 выходят из митохондрий и покидают клетку. Суммарная реакция цикла лимонной кислоты имеет вид [c.54]

    Цикл лимонной кислоты функционирует только в аэробных условиях. Поэтому его работа зависит от скорости поступления кислорода в организм и скорости его утилизации клетками, а также от концентрации окисленных форм НАД и ФАД. Скорость многих биохимических реакций цикла зависит также от содержания АТФ и АДФ в митохондриях. При уменьшении использования АТФ в клетке, а также при недостаточности АДФ скорость происходящих в цикле реакций снижается. [c.54]

    Важную роль в регуляции цикла лимонной кислоты играют активность и количество ферментов и коферментов, при этом изменяется концентрация ацетил-КоА и ряда промежуточных продуктов обмена. Так, дополнительное поступление ацетил-КоА и таких промежуточных продуктов окисления, как цитрат, сукцинат, фумарат, повышает скорость реакций этого цикла и общую скорость потребления кислорода. В состав многих ферментов входят витамины, поэтому наличие их в клетке в необходимых количествах также существенно влияет на скорость реакций этого цикла. Многие катионы (Ре , Мп , Mg , Си ), являясь активаторами ферментов митохондрий, также влияют на скорость реакций цикла лимонной кислоты. Отдельные вещества, например фторсодержащие, могут снижать скорость реакций биологического окисления в этом цикле, подавляя активность ферментов. [c.54]


    Таким образом, в цикле лимонной кислоты происходит окисление питательных веществ и извлечение энергии в виде высокоэнергетического водорода (2Н+ -I- 2е ) его переносчиками НАД и ФАД. Восстановленные переносчики (НАДН и ФАДН ) доставляют водород к внутренним мембранам митохондрий, где передают его на так называемую дыхательную цепь. В этой цепи происходит передача электронов к молекулярному кислороду с образованием молекулы НдО и создается электрохимический градиент концентрации Н , за счет энергии которого происходит синтез АТФ в процессе окислительного фосфорилирования. [c.54]

    Ацетил-КоА далее включается в цикл лимонной кислоты, где расщепляется до СО2 и Н2О. Вода образуется на системе дыхательных ферментов при взаимодействии водорода, образовавшегося в реакциях биологического окисления, с атомарным кислородом вдыхаемого воздуха. Суммарное уравнение аэробного окисления молекулы глюкозы можно представить таким образом  [c.174]

    Дополнительные атомы кислорода, необходимые для образования СО2 из включающейся в цикл лимонной кислоты ацетильной группы, поставляются не молекулярным кислородом, а молекулой воды. В каж- [c.91]

    Рнс. 7-16. Потоки важнейших метаболитов, поступающих в митохондрию и выходящих из нее. Пируват и жирные кислоты входят в митохондрию и метаболизируются в цикле лимонной кислоты, в котором образуется КАТ)Н. Затем в ходе окислительного фосфорилирования богатые энергией электроны КАТ)Н передаются па кислород с помощью дыхательной цепи, находящейся во внутренней мембране при этом благодаря [c.439]

    Бактерии извлекают энергию из самых разнообразных источников. Некоторые бактерии, подобно животным клеткам, синтезируют АТР, окисляя сахара до СО, и Н2О в процессе гликолиза и затем в цикле лимонной кислоты в плазматической мембране таких бактерий имеется дыхательная цепь, сходная с аналогичной цепью внутренней митохондриальной мембраны Бактерии других типов - строгие анаэробы получают энергию только за счет реакций гликолиза (брожения) или же за счет окислительных процессов, но конечным акцептором электронов у них служит не кислород, а какая-либо иная молекула. Такими альтернативными акцепторами могут быть соединения азота (нитрат или нитрит), серы (сульфат или сульфит) или углерода (фумарат или карбонат). Электроны передаются на эти акцепторы с помощью ряда переносчиков, находящихся в плазматической мембране и сходных с компонентами дыхательной цепи митохондрий. [c.458]

    В организме существуют другие циклы реакций, поддерживающих энергетический метаболизм. Например, в цикле лимонной кислоты (цикл Кребса или цикл трикарбоновых кислот) (13, В) щавелевоуксусная кислота расщепляется и затем снова регенерирует, в то время как органический субстрат превращается в СОг и метаболический водород [Н]. Последний обычно окисляется атмосферным кислородом с помощью ферментов дыхательной цепи (13, Г). [c.20]

    Как и в митохондриях клеток различных эукариотических организмов, метаболический водород [Н] (главным образом в форме НАД-Н) из цикла лимонной кислоты поступает в связанные с мембранами окислительно-восстановительные цепи, по которым электроны текут через флавопротеиды и цитохромы, попадая в конце концов на свободный кислород 13, Г). Поток электронов здесь также сопряжен с синтезом АТФ путем окислительного фосфорилирования [28, 412, 487, [c.143]

    В переносе энергии принимают участие еще две другие молекулы, с которыми следует познакомиться, прежде чем перейти к рассмотрению цикла лимонной кислоты. Одной из них является никотинамидадениндину-клеотид (НАД), структура которого показана на рис. 21-22. Эла молекула напоминает АТФ, так как тоже содержит адениновую группу, рибозу и фосфатную группу. Однако важнейшей частью НАД является никотиновое кольцо, которое может попеременно восстанавливаться и окисляться. Эта молекула является окислительно-восстановительным переносчиком энергии. Когда какой-либо метаболит окисляется на одной из стадий цикла лимонной кислоты, окисленная форма никотинамидадениндннуклеоти-да, НАД , может присоединить два атома Н и восстановиться с образованием НАД Н и Н . Другим важным переносчиком энергии является флавинадениндинуклеотид (ФАД). который восстанавливается в ФАД Н2. Оба этих переносчика энергии питают последнюю производственную линию биохимической фабрики запасания энергии, завершающ ю окислительный цикл дыхательной цепи. Она представляет собой четырехстадийный процесс, в котором принимают участие ферменты-цитохромы и происходит повторное окисление восстановленных переносчиков энергии НАД Н и ФАД Н2. В этом процессе кислород восстанавливается до воды, а выделяющаяся энергия запасается в молекулах АТФ. Каждый раз, когда происходит повторное окисление восстановленной молекулы-переносчика энергии, выделяемая при этом окислении энергия запасается путем синтеза нескольких молекул АТФ. [c.328]

    Анаэробная ферментация (или гликолиз), цикл лимонной кислоты и дыхательная цепь присущи всему живому на Земле вьипе уровня бактерий. Некоторые аэробные, т.е. поглощающие кислород, бактерии тоже используют этот процесс для полного окисления глюкозы или аналогичного метаболита-в диоксид углерода и воду. Другие анаэробные, т.е. непотребляющие кислород, бактерии осуществляют только ферментацию поглощение глюкозы или других богатых энергией молекул, их разрыв на меньшие молекулы, такие, как пропионовая кислота, уксусная кислота или этанол, и использование сравнительно небольших количеств высвобождаемой сво- [c.333]

    В подготовленное таким образом сусло добавляют дрожжевые клетки. В аэробном сусле дрожжи растут и размножаются очень быстро, извлекая необходимую им энергию из некоторых присутствующих в сусле сахаров. На этой стадии спирт не образуется, потому что дрожжи, располагая достаточным количеством кислорода, окисляют образовавшийся в процессе гликолиза пируват через цикл лимонной кислоты до СО2 и Н2О. Аэробный метаболизм дрожжей обусловливает очень быстрый рост клеток, регулируется же этот метаболизм добавлением нужного количества кислорода. После исчерпания всего растворенного кислорода в чане с суслом дрожжевые клетки как факультативные анаэробы (разд. 13.1) переключаются на анаэробное использование сахаров. Начиная с этого момента дрожжи сбраживают содержапщеся в сусле сахара с образованием этанола и СО 2. Процесс брожения регулируется концентрацией образовавшегося этанола, а также величиной pH и количеством несброженного сахара. В определенный момент брожение останавливают, удаляют дрожжи, и молодое, или зеленое, пиво поступает на дображивание. Светлое пиво, которое стало теперь очень популярным, содержит меньше сахара и алкоголя, чем обычное, однако по своему аромату оно не отличается от обычных сортов. [c.470]

    Клеточное дыхание включает три стадии 1) окислительное образование аце-тил-СоА из пирувата, жирных кислот и аминокислот, 2) расщепление ацетильных остатков в цикле лимонной кислоты, в результате которого образуются Oj и атомы водорода, и 3) перенос электронов на молекулярный кислород, сопряженный с окислительным фосфорилированием ADP до АТР. При окислительном катаболизме глюкозы выделяется гораздо больше энергии, чем при анаэробном гликолизе. В аэробных условиях конечный продукт гликолиза прируват подвергается сначала дегидрированию и декарбоксилированию с образованием ацетил-СоА и Oj. Катализирует этот [c.502]

    В качестве топлива скелетные мышцы в зависимости от степени их активности используют глюкозу, свободные жирные кислоты или кетоновые тела. В покоящихся мышцах основными субстраташ энергетического обмена служат свободные жирные кислоты и кетоновые тела, доставляемые с кровью из печени. Эти субстраты подвергаются окислению и распаду до ацетил-СоА, который вступает далее в цикл лимонной кислоты, и окисляется до СО2. Сопутствующий перенос электронов к кислороду обеспечивает энергией процесс окислительного фосфорилирования и превращение ADP в АТР. При умеренной нагрузке в дополнение к жирным кислотам и кетоновым телам мышцы используют еще и глюкозу крови. При этом глюкоза подвергается фосфорилированию и распадается в ходе гликолиза до пирувата, который далее через ацетил-СоА окисляется в цикле лимонной кислоты. Наконец, при максимальной мышечной нагрузке расход АТР на сокращение настолько велик, что скорость доставки субстратов (топлива) и кислорода кровью оказывается недостаточной. В этих условиях в ход идет накопленный в самих мышцах гликоген, который расщепляется до лактата путем анаэробного гликолиза при этом на один расщепившийся остаток глю- [c.756]

    Помимо этих двух новых реакций для осуществления цикла необходимо еще и одновременное участие трех ферментов цикла лимонной кислоты (см. гл. XIV) цитрат-конденсирующего фермента, аконитазы и малат-дегидрогеназы. Необходимо также наличие цепи переносчиков электронов для окисления восстановленного НАД молекулярным кислородом — этот процесс вместе с реакцией, катализируемой малат-синтазой, служит движущей силой цикла. В результате одного оборота цикла окисляются две молекулы ацетил-КоА и образуется одна молекула сукцината. Одновременно происходит удаление двух восстановительных эквивалентов. Образовавпхий-ся таким путем сукцинат может быть затем превращен в уг.девод в цепи реакций, показанных в правой части фиг. 89. Эта цепь включает две дополнительные реакции, катализируемые ферментами цикла лимонной кислоты — сукцинатдегидрогеназой и фумаразой кроме того, в ней также прини гает участие малатдегидрогеназа. Другие клеточные компоненты, метаболически связанные с промежуточными продуктами ЦЛК, могут образоваться в результате второй реакции конденсации ацетил-КоА с оксалоацетатом [c.302]

    Энергетический эффект цикла лимонной кислоты. В цикл лимонной кислоты поступает молекула ацетил-КоА, образующаяся при распаде углеводов, жиров или белков. В процессе полного ее окисления высвобождается три пары водорода, переносимые НАДН2, и одна пара водорода, переносимая ФАДН (см рис. 18). При передаче водорода от НАДН , на кислород в системе дыхательной цепи образуется 3 АТФ, поэтому из 3 НАДН,, образуется 9 мо.иекул АТФ. При передаче водорода от ФАДН образуется 2 молекулы АТФ. Кроме того, в цик.пе лимонной кислоты синтезируется 1 молекула ГТФ, которая энергетически равноценна молекуле АТФ. Поэтому энергетическая ценность окисления одной молекулы ацетил-КоА в цикле лимонной кислоты составляет 12 вновь образованных молекул АТФ. [c.60]

    Затем начинается третий и последний этап окисления глюкозы — окислительное фосфорилирование. На этом участке окисления глюкозы в процесс наконец включается молекулярный кислород, за счет которого и происходит окисление на этом этапе. Окислительное фосфорилирование осуществляется сложным набором ферментов, называемых в совокупности дыхательными ферментами. В присутствии молекулярного кислорода 12 молекул НАД- Н, образовавшихся в ходе гликолиза и цикла лимонной кислоты, окисляются в реакциях окислительного фосфорили-рования, давая НАД+ и воду. Высвобождающаяся при окислении НАД- Н энергия используется дыхательными ферментами на фосфорилирование АДФ за счет неорганического фосфата. [c.67]

Рис. 2-23. Цикл лимонной кислоты. В митохондриях и клетках аэробных бактерий ацетогруппы, образованные из пирувата, подвергаются дальнейшему окислению. Атом углерода ацетильной группы превращается в СО2, водородные же атомы переносятся к молекулам-переносчикам NAD и FAD. Дополнительные атомы кислорода и водорода включаются в цикл в вгше молекул воды на стадиях, отмеченных звездочками ( ). Рис. 2-23. <a href="/info/71266">Цикл лимонной кислоты</a>. В митохондриях и клетках <a href="/info/199816">аэробных бактерий</a> <a href="/info/508996">ацетогруппы</a>, образованные из пирувата, подвергаются <a href="/info/1459744">дальнейшему окислению</a>. <a href="/info/10974">Атом углерода</a> <a href="/info/97563">ацетильной группы</a> превращается в СО2, водородные же атомы переносятся к молекулам-переносчикам NAD и FAD. Дополнительные атомы кислорода и <a href="/info/1493586">водорода включаются</a> в цикл в вгше <a href="/info/5256">молекул воды</a> на стадиях, отмеченных звездочками ( ).
    Еще в прошлом веке биологи заметили, что в отсутствие воздуха (в анаэробных условиях) клетки образуют молочную кислоту (или этанол), тогда как в аэробных условиях они используют кислород, образуя СО2 и Н2О- Усилия по выяснению путей аэробного метаболизма в конце концов сосредоточились на окислении пирувата и привели в 1937 г. к открытию цикла лимонной кислоты, называемого также циклом трикарбоновых кислот или циклом Кребса. В большинстве клеток в цикле лимонной кислоты происходит около двух фетей всех реакций окисления углеродных соединений. Главные конечные продукты этого цикла - СО2 и NADH. СО2 выделяется как побочный продукт, а молекулы NADH передают свои богатые энергией электроны в дыхательную цепь, в конце которой эти электроны используются для восстановления О2 до Н2О. [c.437]

    Хотя механизмы извлечения энергии в дыхательной цепи и в других катаболических реакциях различны, в их основе лежат общие принципы. Реакция Нг + 1/2 Ог Н2О разбита на много небольших шагов , так что высвобождаемая энергия может переходить в связанные формы, а не рассеивается в виде тепла. Как и в случае образования АТР и NADH при гликолизе или в цикле лимонной кислоты, это связано с использованием непрямого пути. Но уникальность дыхательной цепи заключается в том, что здесь прежде всего атомы водорода расщепляются на электроны и протоны. Электроны передаются через серию переносчиков, встроенных во внутреннюю митохондриальную мембрану. Когда электроны достигают конца этой электронтранспортной цепи, протоны оказываются там же для пейтрализации отрицательного заряда, возникающего при переходе электропов на молекулу кислорода (рис. 7-17). [c.440]

    При полном окислении углеводов они прежде всего без участия свободного кислорода превращаются в пируват. До этого момента весь процесс, для которого, что характерно, необходима только растворенная система, можно еще рассматривать как брожение (гликолиз 7, В). Пируват путем окислительного фосфорилирования превращается в ацетил-КоА. Ацетил-КоА конденсируется со щавелевоуксусной кислотой, образуя лимонную кислоту 10, Г), которая вступает в цикл трикарбоновых кислот (он же цикл лимонной кислоты). Этот цикл (рис. 13.1), как хорошо известно, установил Кребс, опираясь на чрезвычайно важные основополагающие работы Сент-Дьёрдьи [1046, 1047]. Механизм действия этого цикла у растений предложен Чибноллом [375]. [c.136]

    Можно думать, что ранние протоводоросли [469, 470] еще не были способны к дыханию, а могли только переносить присутствие кислорода. По-видимому, такие организмы вымерли. В настоящее время не известны такие сине-зеленые водоросли (или другие растения), которые не были бы способны получать энергию путем дыхания, хотя, насколько известно, цикл лимонной кислоты у сине-зеленых водорослей неполон [1737]. Более того, редко наблюдался настоящий рост растений без кислорода. Даже зеленые водоросли [1339], адаптированные к водороду и не высвобождающие кислород 12, Ж), не могут расти без кислорода. Но быть может, кислород нужен не для дыхания, а для биосинтеза. Некоторое растения предпочитают пониженные давления кислорода [1801]. Но, как бы там ни было, прокариотические и эукариотические растения могут утрачивать фотосинтез и хлорофилл и жить только на дыхании 12, Е, 14, Е) [33, 1477—1479]. [c.141]

    Дыхание начинается с процесса, называемого гликолизьм, при котором сахар анаэробным путем распадается с образованием трехуглеродного соединения — пировиноградной кислоты. Пируват затем, теряет GO2, а оставшиеся два его углеродных атома присоединяются к четырехуглеродной кислоте с образованием лимонной кислоты. В цикле Кребса, называемом также циклом лимонной кислоты, эти два атома поочередно высвобождаются в виде СО2, в то время как электроны от остальной части молекулы переносятся на кислород с образованием воды, причем этот процесс сопровождается синтезом АТР. В переносе электронов участвуют переносчики, в молекулу которых входят витамины ниацин (NAD+ и NADP+) и рибофлавин (FMN, FAD), а также переносчики с железосодержащей группой— гемом цитохромы). NADP+ также способен отнимать электроны от глюкозы. При этом глюкоза окисляется до карбоновой кислоты, которая затем теряет СО2 и превращается в пятиуглеродный сахар, пентозу. Таким путем образуются рибоза, дезоксирибоза и ряд других пентоз, играющих важную роль в метаболизме. Одни из органических кислот, участвующие в цикле Кребса, способны присоединять аммиак, а другие могут вступать в реакции переаминирования и таким путем превращаться в аминокислоты. Эти аминокислоты используются затем по Преимуществу для синтеза белков, но могут претерпевать и другие превращения, ведущие к образованию алкалоидов, фла-воноидов и гормонов, Ацетилкофермент А, образующийся в результате присоединения к коферменту А (СоА) фрагмента, остающегося после декарбоксилирования пирувата, служит исходным продуктом для синтеза жирных кислот, цепи которых строятся путем последовательного добавления двууглеродных фрагментов. Жиры образуются в результате присоединения к [c.166]


Смотреть страницы где упоминается термин Кислород, и цикл лимонной кислоты: [c.801]    [c.478]    [c.601]    [c.719]    [c.759]    [c.312]    [c.358]    [c.318]    [c.112]    [c.233]    [c.90]    [c.91]    [c.438]    [c.446]    [c.455]    [c.145]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.72 , c.73 ]




ПОИСК





Смотрите так же термины и статьи:

Лимонен

Лимонит

Лимонная кислота

Лимонная кислота в лимонах



© 2025 chem21.info Реклама на сайте