Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дробление, определение

    Рассмотрим два предельных случая. В первом случае вследствие коагуляции устанавливается характерный для рассматриваемого аппарата диаметр частиц, не зависящий, в определенных пределах, от объемного расхода диспергированной фазы. Во втором предельном случае пренебрегается коагуляция и дробление частиц. В зтом случае остается постоянным по высоте аппарата поток числа частиц, но не меняется их диаметр. [c.245]


    Величина поверхности раздела фаз, которой в определенных условиях пропорциональна скорость реакции. Поверхность раздела фаз можно увеличить путем дробления твердых частиц или диспергирования жидкостей при помощи разбрызгивания их через форсунки или путем фильтрации жидкостей через слой твердых частиц. [c.173]

    В. Г. Левич 182] приводит соотношение для определения критического радиуса капли при дроблении в поле однородной изотропной турбулентности [c.77]

    Приготовление катализаторов. Так как существует определенная связь между активностью и поверхностью катализатора, способ его приготовления сильно влияет на его активность. Для получения высокой степени дисперсности недостаточно ограничиться механическим дроблением и распылением катализатора необходимо использовать химические или физические методы прокаливание, осаждение, выделение из сплавов или через коллоиды (в электрической дуге, коллоидной мельнице). [c.242]

    В табл. 2.3 и 2.4 величины производительности щековых и конусных дробилок крупного и мелкого дробления соответствуют определенной ширине разгрузочной щели а. Пересчет производительности на другую величину а (с учетом коэффициента размолоспособности) осуществляется по формуле [c.40]

    Загрузка материала в дробилку осуществляется с определенной скоростью, обеспечивающей проникновение куска материала на определенную глубину С = 0,6 битах В зону дробления (см. рис. 2.7). На практике зто осуществляется путем сбрасывания материала с определенной высоты Я (м), величину которой можно рассчитать по уравнению [c.52]

    Ударные воздействия в технологии могут реализовываться следующими путями. При определенных режимах в ряде аппаратов движение твердых частиц, капель, пузырьков, струй, подвижных конструктивных элементов (шары и т.д.) могут носить ударный характер, например в осциллирующих режимах, сопровождающихся гидравлическими ударами. Целенаправленное использование этих режимов может служить одним из методов создания интенсифицирующих воздействий. Другим способом является генерирование ударных (импульсных) воздействий специальными устройствами, в качестве которых могут служить механические и другие вибровозбудители, работающие в соответствующем диапазоне амплитудно-частотных или временных характеристик. Разнообразные виброударные устройства нашли широкое применение в строительстве, машиностроении, геофизике [31]. В химической технологии подобные устройства почти не используются за исключением механических процессов (дробление), тогда как целесообразным является их применение и для интенсификации процессов других классов. [c.70]


    Третья глава посвящена проблемам определения параметров кристаллизации (коэффициентов массоотдачи скоростей роста, растворения кристаллов, зародышеобразования параметров агрегации и дробления частиц). Приведены подробные методики определения скоростей роста и зародышеобразования в ячейках различного типа (смешения, трубчатого типа и т. п.). [c.6]

    Из определения субстанциональной производной полной энергии системы следует, что выражения типа источников энергии из-за дробления должны равняться нулю, т. е. [c.58]

    Плавленые катализаторы [3] бывают двух типов металлические и окисные. Технология их приготовления проста и обычно сводится к следующим операциям приготовление шихты нужного состава, расплавление компонентов, охлаждение расплава, дробление массы до определенных размеров частиц. Для применения в кипящем слое плавленые катализаторы иногда гранулируют в виде зерен округлой формы. [c.129]

    Удар рабочего органа по дробимому куску, как и удары при соударении кусков между собой, являются на вполне упругими, и часть кинетической энергии, которую тела имели до момента удара, затрачивается на их необратимую деформацию. Экспериментально установлено, что дробление материала возможно лишь при определенном минимуме передаваемой энергии и имеется связь между [c.183]

    При работе на больших расходах капли занимали все сечение колонны в зоне фотографирования, ухудшая этим условия съемки и качество фотографий. Поэтому в верхней части аппарата установили ловушку 5, которая пропускает в зону фотографирования определенную часть потока. Диаметр проходного сечения ловушки примерно равен глубине резкости в плоскости наводки, отношение ln/dn = 8,75...9,6. Скорость жидкости в сопле замеряется объемным способом с помощью мерника 4. Температура потоков постоянна и равна примерно 20° С. Основные параметры исследуемых систем при проведении опытов по дроблению струи представлены в табл. 5. [c.67]

    В производстве электродной продукции нефтяной кокс прокаливают при 1000—1200°С, после чего истираемость различных коксов становится одинаковой (2,5—3%). Так как затем кокс подвергается дроблению, то вопросы истираемости его в этом случае теряют свое значение. Литейный же (каменноугольный) кокс, получаемый при температуре 900—1000 °С, применяется в виде крупных кусков без предварительной про калки и дробления, и высокая истираемость его приводит к нарушению нормальной работы домны. Следовательно, регламентированный действующими техническими нормами способ определения прочности по истираемости не показателен для нефтяного кокса как сырья для электродной промышленности. По мере накопления опытных и производственных данных интерес к этому методу уменьшается. На алюминиевых заводах и на большинстве нефтеперерабатывающих заводов истираемость коксов не определяют и ограничиваются определением выхода летучих как взаимосвязанных показателей. [c.168]

    Дробление кокса часто практикуется в Японии. Оно развивается в США и в других странах. Помимо желаемого гранулометрического состава, оно дает, как и любая грубая механическая обработка, увеличение прочности остающихся кусков и особенно улучшение их индекса истирания, что также благоприятно. Обычно стараются при дроблении уменьшить получение угольной пыли, дробя только большие куски, предварительно отделенные грохочением, или используя особые дробилки, раздавливающие большие куски. Трудно иметь точные данные по получению коксовой мелочи во время дробления, по-видимому, из-за недостатка точных определений на заводах. Тем не менее можно полагать, что этот метод был бы менее распространен, если бы ои приводил к повышенному количеству мелочи. [c.200]

    Этот способ уже давно с успехом используется в промышленности. В числе других видов применения мы укажем на использование пыли, получаемой при дроблении кокса, которая вводится в шихту уже около 20 лет на заводах с трамбованием шихты в Лотарингском угольном бассейне. На этих заводах проводили также опыты по использованию полукокса, которые вначале не давали ожидаемых результатов, но тем не менее представляли интерес для дальнейших исследований и привели к определенному прогрессу. [c.253]

    Плотность загрузки определяли в лабораторных условиях с навеской около 200 г неуплотненного продукта. Крупность продукта, взятого для этих определений, составляла 98% зерен с размерами менее 0,5 мм дробленые продукты имели более высокую плотность загрузки, чем мелкие, так как дробление разрушает крупную пористость. [c.267]

    Кроме того, определенное улучшение М40 наступает при использовании методического дробления. [c.296]

    Классификация опытов проведена по способу загрузки, что позволило определить основное значение этих способов при оценке результатов. Затем осуществляли методическое дробление, которое рекомендовано в определенных случаях (загрузка сухой шихтой), и дифференцированное дробление, на которое многие возлагали надежды, оказавшиеся тщетными. [c.309]

    Согласно теории Колмогорова-Обухова при подводе дополнительной энергии извне дробление капель происходит до определенного размера. Для пульсационных аппаратов средний диаметр капель, образующихся в потоке, пульсирующем с интенсивностью 1 , определится с использованием формулы Мишека  [c.52]


    Изыскивали способы изменения гранулометрического состава кокса. Результаты кажутся довольно разбросанными. Отсутствует четко установленная закономерность для шихты А. При шихте В гранулометрия кокса, по-видимому, возрастает с применением более тонкого дробления шихты. Существует определенная корреляция между М40, с одной стороны, и классами >40 и >60 мм, с другой стороны, причем изменения идут в одном направлении. [c.317]

    Какое бы ни было представление о механизме воздействия гранулометрического состава углей на качество кокса, неизбежно возникает вопрос целесообразно ли было бы дробить каждый компонент в зависимости от его коксуемости Несколько серий опытов было проведено для определения рациональности такой операции. Они всегда оставляли впечатление, что результаты, полученные при дифференцированном дроблении, не отличались от результатов, соответствуюш,их совместному дроблению шихты со средним гранулометрическим составом. [c.321]

    Определенное влияние на работу транспортных систем оказывает влажность кокса. Наличие влаги в коксе является отрицательным фактором, так как транспортирование кокса, содержащего влагу, связано с перемещением большого балласта, коррозией оборудования и смерзанием его на складах и в железнодорожных вагонах. Поэтому товарные фракции кокса должны содержать возможно меньше влаги. Однако имеется мнение о [249] благоприятном влиянии влаги на процесс прокаливания, если ее содержание не превышает 8-10%. Небольшое присутствие влаги в коксе исключает пыле-ние при дроблении, классификации и транспортировании. [c.197]

    Эти опыты показывают, что методическое дробление в определенных случаях может дать специфический эффект при одинаковой тонине помола давление распирания слабее, чем при простом дроблении. Таким образом, можно предположить, что давление распирания во многом зависит от содержания в шихте крупных зерен (класса >2—3 мм) дробление зерен до класса ниже 1 мм для снижения давления распирания, по-видимому, не имеет большого значения. [c.390]

    Существенное ускорение процесса спуска при сохранении простоты определения шага может быть достигнуто в случае использования комбинированного способа шаг принимается постоянным и достаточно большим при движении вдали от точки оптимума, а после входа в зону оптимума предусматривается возможность уменьшения шага в 2, 4, 8,. .. раз. Тем самым обеспечивается возможность первоначального быстрого спуска с большим шагом и точного определения точки оптимума благодаря дроблению шага в зоне оптимума. [c.131]

    При дроблении кокса в несколько стадий общая степень дробления (измельчения) равна произведению степеней дробления каждой стадии I = ) 12- л л Стадии дробления характеризуются определенной степенью дробления  [c.214]

    Исследование механических свойств твердых топлив приобретает все большее значение из-за механизации их добычи и в связи с их технологическим использованием, где часто требуется предварительное дробление и измельчение. Для оценки механических свойств служат такие показатели, как прочность, твердость, пластичность, дробимость и др. Эти свойства твердых топлив обусловливаются химическим составом и структурными особенностями угольного вещества. Поэтому, зная физико-механические свойства твердых топлив, можно делать определенные выводы об их структуре и химическом составе. [c.191]

    При кучном вьпцелачивании ситуация совершенно иная. В этом случае бактериальное вьпцелачивание является процессом извлечения металла, проводимом биохимическими методами на рядовой руде, который заменя-ет традиционные методы обогащения руды. Поэтому абсолютно необходимо добиваться максимальной эффективности бактериального выщелачивания, а значит и максимальной степени вскрытия и извлечения металлов. Обычно буровзрьтное дробление не обеспечивает необходимой крупности, поэтому руда затем поступает в дробилки, расположенные вблизи места добычи. Необходимо отметить, что измельчение обычно приводит к появлению мелких частиц (шламов) размером -3 мм (при кучном выщелачивании — менее 3 мм), причем их количество может становиться очень большим в зависимости от типа породы. Как будет подробно описано в разделе 5.З.2.5. большое количество мелких частиц может отрицательно влиять на коэффициент перколяции и, возможно, снижать степень извлечения металла. Следовательно, лучше отсеять мелкие частицы и извлечь из них металл другими методами (например, чановым выщелачиванием, флотацией с последующей пирометаллургической обработкой концентрата). В этих условиях стоимость дробления и просеивания входит в общую стоимость бактериального выщелачивания. Опыт показывает, что стоимость грохочения прогнозируется с достаточно высокой степенью точности. Однако, количество энергии, необходимое дпя дробления определенного типа породы с разным распределением частиц по размеру, трудно оценить непосредственно, и аналитические способы пока не разработаны. Существует, правда, полуэмпирическая модель, разработанная в начале 50-х годов американским технологом Ф. К. Бондом [29], которая дает довольно точный прогноз относительно количества энергии, затрачиваемой на дробление данной породы. Предлагается использовать специально изготовленную лабораторную шаровую или стержневую мельницу, действующую строго определенным образом, чтобы найти так назьтаемый индекс работы (Wj), т, е. энергию в кВт-ч, необходимую для измельчения 1 малой тонны (907 кг) руды с размером частиц от теоретически бесконечного до такого, чтобы [c.247]

    Мартенсен В. Н., Аюкаев Р. И., Стрелков А. К- и др. Дробленый керамзит— новый фильтрующий материал для водоочистных фильтров. Куйбышев, 1976. 168 г. ГОСТ 2409—67. Материалы и изделия огнеупорные. Метод определения водопоглощения, кажущейся плотности, открытой ji o5 щей пористости. [c.80]

    В химической промышленности широко применяют различные процессы обработки твердых пылеобразуюших материалов, которые в определенных условиях могут образовывать опасные пылевоздушные смеси. Дробление, размол, смешение и сортировка сыпу-> чих материалов в большинстве своем связаны с применением движущихся и вращающихся узлов и деталей в аппаратуре, что может явиться источником энергии воспламенения и взрыва пыли в закрытых аппаратах. При ведении таких процессов не исключена возможность попадания вместе с обрабатываемыми материалами твердых металлических предметов или камней, которые также могут служить источником искры или тепловой энергии при соударении. [c.274]

    Режимы движения фаз в колонных аппаратах чрезвычайно многообразны. Знание закономерностей поведения фаз в каждом режиме и пределов изменения гидродинамических параметров, в которых существует тот или иной режим, соверщенно необходимо при правильном определении условий проведб йя химических и тепло-массообменных процессов. Многообразие режимов движения фаз в аппаратах колонного типа обусловлено многими факторами в частности, многообразием участвующих в движении сред (твердые, жидкие и газообразные), многообразием величин и направлений скоростей фаз, различными условиями ввода и вывода фаз, возможностью возникновения различного рода неустойчивостей в двухфазном потоке, возможностью протекания процессов дробления и коагуляции частиц, а также влиянием поверхностно-активных веществ и различных примесей на поведение капель и пузырей. Однако при всем многообразии различного вида течений, встречающихся в колонных аппаратах, можно вьщелить определенный класс дисперсных потоков, которые имеют ограниченное число установившихся режимов, а поведение фаз в этих режимах определяется общими для всех систем закономерностями. Такие потоки можно назвать идеальными. Они существуют при скоростях движения фаз, сравнимых со скоростью их относительного движения. При этом частицы распределены достаточно равномерно по сечению аппарата если и существуют градиенты концентрации дисперсной фазы, то они имеют конечную величину. Это означает, что концентрация частиц в среднем меняется от точки к точке непрерывным образом. Форма частиц близка к сферической, а их размер не слишком отличается от среднего размера частиц в потоке. [c.86]

    Метод заключается в определении количества пылн, образующейся при дроблении навески кокса в аппарате типа Сыскова. [c.424]

    Коллоидные растворы представляют собой гетерогенную (двухфазную) систему, в которой одной фазой является коллоидно-раздробленное вещество (дисперсная фаза), другой — растворитель (дисперсионная среда). Коллоидное состояние вещества характеризуется определенной степенью раздробления этого вещества. В коллоидных растворах частицы представляют собой скопления многих молекул, составляющие целые агрегаты — мицеллы. Коллоидные растворы аэ.гъгваж) мицеллярными золями, а их водные растворы — гидрозолями. Для получения мицеллярных растворов и их длительного существования требуются некоторые непременные условия наличие двух взаимно нерастворимых компонентов и достижение коллоидной степени дисперсности вещества дисперсной фазы (размалывание, растирание, распыление и другие механические приемы дробления вещества). [c.34]

    Авторы изучали теплообмен между горячим газом и холодными псевдо-ожнжеиными твердыми частицами (дробленая окись алюминия и зерна Во ех-50) в аппарате диаметром 60 мм и высотой 250 мм. Они сделали вывод, что слой не может рассматриваться как однородно расширенный напротив, следует полагать, что определенная доля газа проскакивает через слой без контакта с твердыми частицами. [c.402]

    Существенным недостатком метода диафрагм (иопользо-ваннаго Вейцем и Пратером [36]) является необходимость дробления исходных гранул катализатора и прессование из полученного порошка таблеток (диафрагм) требуемого размера. При этом определение Оэф лроводится на новой модельной структуре катализатора, коггорая может отличаться от его обычной рабочей структуры. [c.34]

    Учет стохастических особенностей процесса эмульсионной полимеризации. Процесс эмульсионной полимеризации является типичным процессом, для которого характерна двойственная де-терминированно-стохастическая природа [23]. К детерминированным свойствам процесса можно отнести непрерывные процессы химического превращения, а к стохастическим — явление вхождения первичных радикалов из водной фазы в полимер-мономерные частицы (которое имеет большее значение, когда скорость диффузии радикалов из водной фазы в частицы превышает скорость обрыва цепи), а также эффекты взаимодействия (дробления и коалесценции) включений дисперсной фазы между собой. Стохастические свойства системы в приведенных выше феноменологических уравнениях (3.47)—(3.68) отражаются среднестатистическими величинами с , тпр-, Для определения этих величин необходима формулировка соответствующих уравнений БСА, записанных относительно функций распределения латексных частиц по объемам V, числу мономерных звеньев растущего макрорадикала 2 и числу молекул мономера в них для растущих и нерастущих макрорадикалов  [c.159]

    Как уже упоминалось (см. введение), технологический оператор физико-химической системы, как правило, представляет суперпозицию (наложение) элементарных т хнологических операторов химического превращения, диффузионного переноса вещества и тепла, межфазного тепло- и массопереноса, механического пере-меншвания, изменения агрегатного состояния вещества (испарения, конденсации, растворения), дробления и коалесценции и т. д. Каждый элементарный технологический оператор по существу является элементарным процессом, подчиняющимся определенным физико-химическим закономерностям с соответствующим математическим описанием. В рамках этого описания элежнтарному технологическому оператору соответствует его элементарный функциональный оператор. [c.199]

    В контактном теплообменном аппарате диспергирование одной из фаз производится при помощи распылителя той или иной конструкции (сопла, перфорированные тарелки и т.п.). На выходе из распылительного устройства происходит дробление струи на множество капель. При этом в барботажном слое создается развитая поверхность контакта фаз. На струю жидкости, вытекающую из отверстия или насадки, действуют силы инерции и гравитации, силы вязкости, поверхностного натяжения, а также турбулентные пульсации в струе и в самой среде. Капли, образующиеся при распаде струи, в процессе движения соударяются между собой п со стенками аппарата. Таким образом, конечная величина частиц диспергируемой фазы определяется суммарным эффектом трех процессов диспергирования, дробления и коалесценции. Определение этой величины расчетным путем пока еще невозможно из-за недостаточной изученности вопроса. Однако для ряда частных случаев решения уже получены и содержатся в работах Колдер-бенка, Фудзияма, Хейфорта и Тройбэла, Сиемса и др. [3]. [c.66]

    Экзинит находится в витрините обычно в тонкодисперсном состоянии. В случае слабоспекающихся углей с высоким выходом летучих тесный контакт этих двух мацералов позволяет иногда экзиниту (легко размягчающемуся) растворять витринит, который при самостоятельном коксовании остается твердым или, как обычно говорят, инертным . Поведение угля зависит, таким образом, не только от индивидуальных свойств их мацералов и их соотношения, но также от их распределения. С другой стороны, спекание малоплавких компонентов (инертинит или витринит углей очень низкой степени метаморфизма) изменяется в зависимости от степени их дисперсности. В развитие этого положения была создана целая доктрина [9], в частности в ФРГ и США, сторонники которой исследуют зависимости между долевым участием, равномерностью распределения и степенью дисперсности различных мацералов в коксуемой угольной шихте и качеством кокса. Практическое значение этой доктрины было испытано в методе селективного помола , называемом иногда петрографическим дроблением , но представляется, что до настоящего времени получен лишь ограниченный результат. Зато эти исследования представляют интерес для объяснения поведения определенных специфических углей (см. ниже). [c.90]

    Всегда возможно точно определить реакционную способность кокса для данной реакции с известным механизмом и при строго определенных условиях его проведения это то, что делают, например, при определении реакционной способности по отношению к углекислому газу одним из методов, о которых мы будем говорить ниже. При этом удается классифицировать различные коксы в порядке возрастания их реакционной способности, и с этой классификацией все в основном согласны. Но этим проблема определения реакционной способности не решается, так как точно неизвестло, какие соотношения существуют между определенной таким образом ре-акционной-способностью и поведением кокса в промышленном агрегате, в котором он используется. Например, почти установлено, что в вагранках куски кокса реагируют исключительно по внешней поверхности и что количество кокса, подвергшегося газификации, зависит главным образом от механического дробления кусков кокса по мере опускания их в вагранке, при котором величина внешней поверхности для легко дробящегося кокса значительно увеличивается. При доменной плавке не очень важно констатировать, что кокс А в два раза более реакционноспособен, чем кокс В, если кокс А таков, что температура равновесия в зоне газификации доменной печи устанавливается на 30 или 40° С ниже температуры, которая была бы достигнута с коксом В, что приводит почти к той же самой скорости газификации в обоих случаях. [c.191]

    Эта работа проводилась только с очень небольшим количеством проб, имеющих ограниченное значение. Тем не менее выявлены некоторые тенденции. Зольность изменяется обычно мало, кроме очень мелкой фракции, где она всегда значительно повышается. В измельченных углях иногда отмечается увеличение зольности на 1—2 единицы в самом крупном классе. Это объясняется присутствием здесь случайно попавшей породы или породы, включенной в состав сростков и изолированной при дроблении. Это объяснение тем более вероятно, что такое явление чаще наблюдается, когда поставляемый уголь поступает в классифицированном виде, а не в виде мелочи. В большинстве случаев практики такое увеличение зольности проявляется только в классе, который по массе составляет всего 5—10%, так что относительное увеличение зольности шихты не превысит значения 0,1%. Но даже в таком малом соотношении не исключено, что зерна породы могут оказывать определенное воздействие на качество кокса. Отош,ающие добавки могут действительно сыграть определенную роль при очень малом долевом участии. [c.328]

    В предыдущих опытах рассматривался только случай простого дробления. При таком дроблении достигается определенный гранулометрический состав дробленой шихты, который приблизительно одинаков для всех видов угля, подвергаемых дроблению на принятых в промышленности дробилках (молотковых, дробилках Карр и др.). Представляло интерес выяснить, можно ли распространить это положение на случай, когда гранулометрический состав несколько изменяется, как, например, при методическом дроблении, принятом на некоторых коксохимических заводах (см. гл. VH). Для проверки этого положения провели опыты с двумя шихтами С (100% % жирного Покагонтас , партия 3) и D (30% жирного угля А Камфаузен и 70% / жирного угля Карл Александер , партия 2). [c.389]

    Угольная шихта, предварительно измельчаемая до О—10 или О—15 мм, складируется в башню влажной шихты, которую предпочтительнее устанавливать над печами на случай, если изменение вхнабжении углями вынудит перейти на загрузку обычной влажной шихты. Уголь забирается под башней конвейерами и подается в небольшой промежуточный бункер, питающий подогреватели. Количество подогревателей с дроблением зависит от производственных мощностей коксового цеха, но их должно быть не менее двух с тем, чтобы был определенный резерв. Обрабатываемый уголь пневматическим способом подается в бункер для подогретого угля. В этом бункере в целях безопасности поддерживается инертная среда. Практически предусматривается отбирать небольшую часть дымовых газов, выходящих из комплекса подогревателя с дроблением (содержащих лишь незначительные количества кислорода), и вдувать их в бункер после того, как их подвергнут неглубокой мокрой очистке. [c.467]

    Эг тирический коэффициент 170 отражает работу диспергирования, отнесенную к единице вновь образов 1в-шейся поверхности. На рис. 13 показан прибор конструкции БашНИИ НП для определения механической прочности нефтяного кокса методом толчения, в котором операция дробления навески механизирована. С помощью реле обеспечивается число сбрасываний п = 10. [c.44]


Смотреть страницы где упоминается термин Дробление, определение: [c.812]    [c.146]    [c.131]    [c.362]    [c.335]    [c.335]   
Справочник инженера-химика Том 2 (1947) -- [ c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Дробление

Дробление крупное, определение

Дробление мелкое, определение

Дробление открытом цикле, определение

Дробление размол, определение

Дробление среднее, определение

Дробление степень измельчения определение

Методы определения кинетических констант дробления в процессе грануляции

Определение качества дробления зерна

Определение качества дробления картофеля

Определение качества дробления солода

Определение содержания ацетилена в воздухе помещения дробления карбида кальция



© 2025 chem21.info Реклама на сайте