Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия торможение

    Ионы четырехвалентного титана будут восстанавливаться со скоростью, ограниченной диффузией. Торможение процесса активирования титана под действием катодного тока, происходящее при повышении температуры раствора серной кислоты, содержащего достаточную для поддержания титана в пассивном состоянии концентрацию ионов Т1 +, объясняется усилением подвода окислителя к электроду. В данном случае ионы Т1 , обладающие окислительными свойствами, играют роль катодного деполяризатора. Восстанавливаясь на катоде до ионов низшей валентности, они тем самым повышают эффективность катодного процесса деполяризации, смещая общий потенциал коррозионной системы к более положительным значениям. Перемешивание раствора будет оказывать такое же действие, что и повышение температуры, т. е. затормаживать процесс активирования титана или, что то же самое, облегчать процесс восстановления ионов титана. [c.144]


    Когда скорость химической реакции и скорость диффузии приблизительно равны, считают, что процесс протекает в переходной области. В этом случае при определении константы скорости должны учитываться и диффузионные О, н кинетические к этапы, которые вызывают дополнительное торможение процесса  [c.90]

    Молекулярно-кинетическая теория также позволяет делать предсказания относительно диффузии, вязкости и теплопроводности газов, т.е. так называемых транспортных свойств, проявляющихся в явлениях переноса. Каждое из этих явлений может условно рассматриваться как диффузия (перенос) некоторого. молекулярного свойства в направлении его градиента. При диффузии газа происходит перенос его массы от областей с высокими концентрациями к областям с низкими концентрациями, т.е. в направлении, обратном градиенту концентрации. Вязкость газов или жидкостей (иногда их обобщенно называют флюидами) обусловлена диффузией молекул из медленно движущихся слоев в быстро движущиеся слои флюида (и их торможением) и одновременной диффузией быстро движущихся молекул в медленно движущиеся слои (и их ускорением). При этом происходит перенос механического импульса в направлении, противоположном градиенту скорости движения флюида. Теплопроводность представляет собой результат проникновения молекул с большими скоростями беспорядочного движения в области с малыми скоростями беспорядочного движения молекул. Ее можно описывать как перенос кинетической энергии в направлении, противоположном градиенту температуры. Во всех трех случаях молекулярно-кинетическая теория позволяет установить коэффициент диффузии соответствующего свойства и дает наилучшие результаты при низких давлениях газа и высоких температурах. Именно эти условия лучше всего соответствуют возможности применения простого уравнения состояния идеального газа. [c.150]

    Для сложных реакций влияние внешнедиффузионного торможения не сводится к простому выражению (3.31). Так, в случае обратимых химических реакций приповерхностные концентрации веществ будут близки к равновесным, наблюдаемая же скорость реакции определяется скоростью диффузии одного из реагентов. Для реакции типа А - - В С будем иметь [c.59]

    Как указывалось в гл. 1, в жидкостных процессах могут иметь место торможения диффузией на границах фаз потоков (жидкость — [c.73]

    Другой формой кинетического уравнения, справедливой как для химической кинетики, так и для области внутренней диффузии [37], является уравнение с торможением продуктом [c.172]


    Таким образом, в граничном слое Прандтля при наличии в нем градиента концентрации массоперенос осуществляется двумя разными параллельно протекающими путями. Суммарная скорость процесса массопереноса определяется скоростью протекания каждого элементарного процесса переноса. Если, однако,торможение одного из этих параллельных процессов значительно меньше торможения другого, то суммарная скорость массопереноса определяется в основном скоростью этого наименее заторможенного, т. е. быстрого, процесса переноса. Скорость конвективного массопереноса в граничном слое Прандтля снижается по мере уменьшения скорости движения V в нем жидкости (см. рис. 143) и его роль в определении суммарной скорости массопереноса тоже уменьшается, а роль молекулярной диффузии возрастает. Начиная с какого-то расстояния от твердой поверхности б молекулярный перенос вещества становится преобладающим по сравнению с конвективным переносом, который преобладает в части слоя Прандтля (77 — б). [c.209]

    Из-за все увеличивающегося торможения за счет ограниченной диффузии катодная поляризационная кривая идет вверх более круто (участок кривой АС на рис. 159), чем при наличии только перенапряжения ионизации кислорода (участок АВ на рис. 159), и при приближении к предельной диффузионной плотности тока по кислороду 1д она переходит в вертикальное положение (участок ЛВ на рис. 159). [c.242]

    Наиболее характерным катодным процессом в подземных условиях является кислородная деполяризация с преобладанием торможения транспорта кислорода к металлу. Транспорт кислорода в почве или грунте к поверхности корродирующего металла осуще-стр)ляется направленным течением газообразной нли жидкой фазы, конвекционным перемешиванием этих фаз или диффузией кислорода в газообразной или жидкой фазе (рис. 275). [c.384]

    Одной из обязательных стадий гетерогенно-каталитической реакции является перенос вещества к активной поверхности. Типичный гетерогенно-каталитический процесс идет на поверхности твердой частицы, большей частью пористой, которая омывается потоком газа или жидкости. Если химическая реакция протекает достаточно быстро, скорость процесса может лимитироваться подводом реагентов из ядра потока к внешней поверхности частицы, а также диффузией реагентов в порах внутрь зерна катализатора. В этом случае говорят соответственно о внешне- и внутридиффузионном торможении процесса. [c.98]

    При описании макрокинетики каталитической реакции на составных зернах применяют двойную диффузионную модель, вводя отдельные эффективные коэффициенты диффузии для системы транспортных макропор и для микропор в мелких гранулах 19]. При этом сначала определяют зависимость скорости реакции в мелких гранулах от локальных концентраций реагентов в транспортных макропорах, а затем вычисляют макроскопическую скорость реакции в зерне в целом с учетом диффузионного торможения в макропорах. Описывать составное зерно как квазигомогенную среду с эффективным коэффициентом диффузии, найденным в отсутствие химической реакции, можно только в предельных случаях, когда реакция либо не тормозится диффузией в микропорах, либо протекает настолько быстро, что локализуется па внешней поверхности малых гранул. [c.102]

    Основные уравнения. Чтобы понять основные закономерности диффузионного торможения каталитических реакций, начнем с простейшего случая — необратимой изотермической реакции первого порядка [17, 18]. Пусть эта реакция протекает на частице катализатора, имеющей форму пластины толщиной 21, торцы которой открыты для подачи реагента, а боковые грани запечатаны . Если такое зерно однородно, то концентрация реагирующего вещества С будет изменяться только в одном направлении — вдоль оси X, перпендикулярной к торцам пластины. В согласии со сказанным в разделе 1П.1,,будем рассматривать пористый катализатор как гомогенную среду, а перенос вещества в порах характеризовать эффективным коэффициентом диффузии D. Тогда стационарное распределение концентрации реагента по толщине пористой пластины будет описываться одномерным диффузионным уравнением  [c.106]

    Нормальный размер зерен промышленных катализаторов гидроформинга составляет примерно 3—5 мм. Однако специальное исследование влияния диффузии в зерне катализатора на кинетику каталитического дегидрирования циклогексана (на 100%-ном циклогексане и алюмохромовом катализаторе) показало, что в ряду размеров частиц катализатора 3,1 1,8 и 0,5 мм резко возрастает скорость реакции и увеличивается соотношение между промежуточными (циклогексен) и конечными (бензол) продуктами реакции [118], что определяется снижением эффекта диффузионного торможения. Такое явление имеет существенное значение при оценке процесса на пылевидных катализаторах (на этом мы остановимся ниже). [c.292]


    Во-первых, в начале процесса его скорость лимитируется внешней диффузией и скоростью собственно-химического превращения. Она возрастает по мере зарождения и быстрого роста ядер ионита, но при слиянии образовавшихся ядер и образовании поверхности раздела фаз сополимера и ионита фронт реакции перемещается вглубь гранулы сополимера, что приводит к уменьшению скорости процесса за счет увеличения внутридиффузионного торможения. [c.352]

    Специальные измерения показали, что для жидкостей Ре, меньше, чем для газов (кривая 2 и область между кривыми 3 на рис. 111-17). Последнее объясняется, вероятно, тем, что в жидкостях обмен вещества между мертвыми зонами и основным потоком протекает медленнее из-за малой скорости диффузии. Кривые 1, 2 ш 3 характеризуют продольное перемешивание, усредненное по всему поперечному сечению трубы, заполненной твердыми частицами. На рисунке показано также торможение потока у стенок (кривые 3 ж 4) обнаружено, что воздействие стенок уменьшается с увеличением Ке от 100 до 1000. Порядок величины Ре, показывает, что продольное перемешивание при потоке через плотный слой может быть настолько незначительным, что в реальном и идеальном трубчатом реакторах режимы практически совпадают, так как 100. [c.110]

    Кривые показывают, что степень использования внутренней поверхности катализатора снижается по мере увеличения скорости химической реакции и физического сопротивления движению реагента. Кроме того, видно, что в данной системе реагенты — катализатор увеличение фактора эффективности связано с размером частицы и в меньшей степени — с коэффициентом массопередачи р [последний приблизительно нронорционален Изменение этих двух параметров в опытах по исследованию превращения позволило установить, что физический перенос влияет на полную скорость превращения. Таким образом, если на скорость превращения не влияет скорость движения жидкости, то можно утверждать, что торможение внешней массопередачей отсутствует внутренняя диффузия, однако, может быть ограничивающим фактором. Чтобы получить окончательное решение, исследуют влияние диаметра частиц. [c.177]

    Процесс снятия гидрофобных растворителей со слоя активного угля ири десорбции водяным паром изучали на примере гексана [4]. Исследования показали, что, как и в случае гидрофильных растворителей [4], гексан десорбируется сразу со всего слоя адсорбента, причем десорбция сопровождается одновременной адсорбцией водяного пара. В начальной фазе процесса гексан вытесняется из лобовых слоев в замыкающие, активность их по гексану превосходит первоначальную примерно на 10%- Это свидетельствует о том, что десорбция гидрофильных и гидрофобных растворителей из углей протекает по одному и тому же механизму. Торможение процесса десорбции, вероятно, можно объяснить замедлением диффузии водяного пара внутрь пор адсорбента, заполненных растворителем. [c.92]

    Предполагается, что внутренняя диффузия при повышенных температурах протекает быстро и коэффициент массопередачи, учитывающий лишь внешнедиффузионное торможение, можно принять равным коэффициент внешнего массообмена (в газовой или паровой фазе). [c.102]

    Уменьшение размера частиц катализатора увеличивает скорость внешней диффузии и снижает внутридиффузионное торможение реакции для данных скорости реакции и условий ее проведения уменьшение размера частиц катализатора до некоторой величины в принципе всегда может обеспечить протекание реакции в кинетической области. Увеличение скорости потока в проточной системе (или перемешивание в статической) увеличивает скорость внешней диффузии, что способствует переходу реакции в область внутренней диффузии. [c.152]

    Если катализатор отравляется побочным продуктом реакции, протекающей во внешнедиффузионной области, или содержащимся в сырье ядом, который реагирует с катализатором с такой скоростью, что отравление лимитируется только диффузией молекул яда, то отравляется внешний слой частицы катализатора, толщина которого увеличивается со временем работы катализатора (пропорционально т /=). Если катализатор отравляется побочным продуктом реакции, то скорость реакции снижается в результате дополнительного диффузионного торможения, связанного с необходимостью для молекул реагентов диффундировать через отравленный внешний слой частицы катализатора. Если же катализатор отравляется ядом, а реакция протекает в кинетической области, то скорость реакции снижается в результате уменьшения активной поверхности катализатора. [c.154]

    Противоположное влияние скорость газа оказывает на фиктивную константу скорости массообмена. С увеличением линейной скорости потока газов в общем случае снижаются внешнедиффузионные торможения, но при этом значительно увеличивается коэффициент осевого неремешивания (продольной турбулентной диффузии). При наличии продольного перемешивания газов происходит снижение движущей силы процесса, кроме того, возрастает проскок газа в виде [c.258]

    Поперечный температурный градиент предопределяет возникновение тепловых потоков, направление которых, т. е. диффузия выделившегося при торможении тепла, определяется числом Прандтля — Рг. [c.35]

    На рис. 35 показано, что поверхность раздела фаз в промышленных системах может быть в сто и больше раз выше, чем в лабораторной установке с относительной высотой реактора до 0,1. Следовательно, в промышленных масштабах условия гидрирования значительно улучшаются если в лабораторных опытах не было обнаружено заметного диффузионного торможения, то его не следует ожидать и в заводских реакторах. Влияние диффузии водорода к поверхности катализатора при жидкофазной гидрогенизации в проточных реакторных устройствах до настоящего времени не изучалось. В статических условиях оно детально изучено в ИФХ АН СССР [54, 58]. Ё результате всестороннего изучения гидрирования жирных кислот в жидкой фазе было предложено обобщенное кинетическое уравнение [58], которое может быть выражено так  [c.161]

    Интенсивность перемешивания увеличивает константу скорости процесса за счет замены молекулярной диффузии конвективной. При этом снижаются диффузионные торможения. Следовательно, неремсшивание це,1С-сообразно применять для процессов, протекающих в диффузионной области до тех пор, пока не наступит переход процесса из диффузионной области в кппет1И1ескую. [c.99]

    В случае, когда скорость реакции пропорциональна среднему геометрическому из константы скорости реакции и ко,эффициента диффузии, соответствующая макрокинетиче-ская область называется внутридиффузионной областью. Поскольку коэффициент диффузии весьма слабо зависит от температуры, наблюдаемая энергия активации составит половину ее истинного значения. Скорость реакции, протекающей во внутридиффузионной области, зависит также от размеров зерен твердого материала и среднего радиуса пор. Величина фактора диффузионного торможения для внутри- [c.73]

    Поскольку константа скорости реакции возрастает с температурой значительно сильнее, чем коэффициент диффузии, повышение температуры благоприятствует переходу реакции во внутридиффузионную область. Следовательно, при повышении температуры влияние внутридиффузионного торможения, как и внешнедиффузионного, усиливается. При этом внутридиффузионное торможение начинает сказываться на наблюдаемой кинетике реакции при более низких температурах, чем внешнедиффузионное торможение, особенно, если диаметр пор достаточно мал (меньше 100 нм при атмосферном давлении) [3.43]. При наличии внутридиффу-зионного торможения квазистационарный режим не устанавливается.  [c.74]

    Как видно из рис. 1.9, капиллярно-осмотическое торможение приводит к тому, что продолжение линейных участков зависимостей v AP) не проходит через нача.по координат и отсекает на оси давления отрезок, численно равный так. называемому динамическому осмотическому давлению Ал. Для полупроницаемых мембран, когда в порах находится только растворитель (С = 0), Ап = Апо = ЯТАС. В случае обратноосмотических мембран, в поры которых растворенное вещество проникает (СфО), Ал = аАпо. В первом приближении а=ф <1, где ф=1— — (С//Со) — коэффициент селективности мембраны. Давление Ап является динамическим в том смысле, что оно возникает только при течении раствора. В отсутствие течения, разность концентраций снимается диффузией растворенного вещества через поры мембраны. [c.26]

    Характер опытной зависимости k от t в ряде процессов бывает обусловлен соизмеримостью торможений двух или более элементарных их стадий с разными величинами энергий активации (например, смешанным диффузионнокинетическим контролем или контролем диффузией через двухслойную окалину). Так, для процессов окисления металлов, описываемых во времени уравнением (113), значения кажущейся энергии активации процесса, вычисленные из наклона прямых g = f (1/Т) [c.123]

    Электродные процессы электрохимической коррозии металлов обязательно включают в себя, как всякий гетерогенный процесс, помимо электрохимической реакции, стадии массопереноса, осуществляемые диффузией или конвекцией отвод продукта анодного процесса (ионов металла) от места реакции — поверхности металла, перенос частиц деполяризатора катодного процесса к поверхности металла и отвод продуктов катодной деполяризацион-ной реакции от места реакции — поверхности металла в глубь раствора и т. п. Суммарная скорость гетерогенного процесса определяется торможениями его отдельных стадий. Если, однако, торможение одной из последовательных его стадий значительно больше других, то сумм.арная скорость процесса определяется в основном скоростью этой наиболее заторможенной стадии. В коррозионных процессах довольно часты случаи диффузионного или диффузионно-кинетического контроля, т. е. значительной заторможенности стадий массопереноса. В связи с этим диффузионная кинетика представляет теоретический и практический интерес. [c.204]

    Интенсивность массопередачи к внешней поверхности зерен катализатора зависит от конструкции контактного аппарата. Ее можно повысить, увеличив линейную скорость потока. Однако одновременно возрастает гидравлическое сопротивление слоя. Скорость вну енней диффузии зависит только от структурь пористого каталнз тора н свойств реагирующей среды. Уменьшение размера зерен снижает отрицательные последствия внутридиффузионного торможеннй, позволяя полнее использовать реакционный объем. Однако при этом также повышается гидравлическое сопротивление слоя частиц. При переводе процесса в кипяпщй слой, где можно использовать мелкие частицы, не повышая гидравлического сопротивления слоя, возникают специфические затруднения с диффузией реагентов между различными частями потока газов. [c.263]

    По изучению кинетики гетерогенных химических реакций проведено огромное число работ, особенно для тех случаев, когда устранено торможение диффузией. В общем кинетика превращения на поверхности включает все три фактора в, гид), так как почти невозможно исследовать их раздельно. Это приводит к сложным эмпирическим выражениям скорости гетерогенных каталитических реакций, рассмотренных, например, Хоугеном и Ватсоном [c.173]

    Данные о влиянии ироцессов массопередачи на относительно быстрые реакции можно получить, проводя эксперименты при различных температурах. Кажущаяся энергия активации реакцип довольно высока, если скорость процесса определяется химическо11 реакцией однако, когда начинает сказываться торможение Диффузией и массопередачей, величина кажущейся энергии активации снижается. Прн обсуждении экспериментальных данных следует пользоваться методами, рассмотренными на стр. 163 (для гомогенных реакций) и на стр. 171 (для гетерогенных реакций). [c.238]

    В табл. 4.3 приведены сводные данные о влиянии области протекания реакции на ее кинетические параметры. Рассмотрим, как изменяется область протекания реакции с изменением условий ее проведения. Изменение температуры в наибольшей степени влияет на скорость реакции, проходящей в кинетической области, в значительно меньшей степени — при протекании реакции во внутридиффузионной области и практически не влияет на скорость реакции, если она протекает во внешнедиф-фузиоиной области. С повышением температуры реакция, протекающая во внутренней кинетической области, в результате возрастания константы скорости начинает тормозиться диффузией в порах и переходит во внутридиффузионную область. При дальнейшем повышении температуры продолжение возрастания константы скорости приводит к торможению реакции внешней диффузией, и реакция переходит во внешнедиффузионную область. Далее повышение температуры на скорость реакции влияния практически не оказывает. На рис. 4.2 приведена зависимость константы скорости реакции первого порядка на пористом катализаторе от температуры. На непористом катализаторе осуществляются только два режима— внешнекинетический и внешнедиффузионный. Если во внутренней кинетической области реакция протекает по первому порядку, то влияние [c.151]

    Обязательной стадией каталитического процесса является перенос реагентов к поверхности катализатора и продуктов реакции в основной поток газов. Если химическая реакция протекает с большой скоростью, то процесс в целом может лимитироваться подводом реагентов из основного потока газов к внешней поверхности зерен катализатора, а также диффузией реагентов в порах внутрь зерен. В этом случае различают соответственно внешне- и внутрпдиффузион-ное торможение процесса. [c.42]

    Применяя кaтaлизatopы в жидкой фазе, следует иметь в виду, что скорость некаталитических реакций в расчете на единицу реакционного объема в жидкостях в 10 — 10 раз больше, чем в газах, а коэффициент молекулярной диффузии в 10 — 10 меньше, чем в газах. Поэтому эффективность применения катализаторов в жидкой фазе [см. уравнение (П. 8)] меньше, чем в газ бвой. Применение катализаторов необходимо сопровождать интенсивным перемешиванием для снятия внешнедиффузионных торможений. Мелкопористые катализаторы неэффективны из-за сильного увеличения вязкости жидкостей в порах и соответствующего снижения коэффициентов диффузии [см. уравнение (П. 18)]. Для увеличения поверхности контакта в жидкой среде целесообразно применять мелкодисперсные не пористые катализаторы, однако при этом ухудшаются условия выделения катализатора (отстаивание, фильтрование, цен трифугирование) из жидкой массы после каталитического реактора. [c.53]

    Основные качественные характеристики областей процесса представлены в табл. 3. Следует заметить, что сочетание тех или иных внешних и внутренних областей процесса не равновероятно. Так, например, мало реальным может оказаться сочетание внешнедиффузионной области с областью внутренней диффузии, так как концентрация реагирующих веществ у поверхности зерна во внешнедиффузионной области уже настолько мала, что трудно ожидать высокой скорости реакции на внутренних порах и соответствующего внутриднффузионного торможения. При выборе наиболее выгодной макроструктуры катализатора, отвечающей максимальной его активности, следует учитывать характерные особенности каждой области протекания процесса с тем, чтобы достичь высоких скоростей реакции. [c.75]

    Ла рис. 24 представлена зависимость активности монодисперсного катализатора от размера пор [88]. Первая часть кривой, где наблюдается практически обратно пропорциональная зависимость (/), характеризует кинетическую область участки кривой 2 и 3 описывают зависимость скорости реакции в области молекулярной и кнудсеновской диффузии, соответственно. По мере уменьшения радиуса пор возрастает скорость процесса до тех пор, пока не вступают в силу диффузионные торможения, когда падение степени использования поверхности начинает компенсировать эффект увеличения ее при уменьшении радиуса пор. В области диффузии Кнудсена наступает полная компенсация (участок 3), т. е. по мере уменьшения радиуса пор усложняется возможность использования внутренней поверхности и скорость течения процесса не зависит от ее величины. [c.76]

    На рис. 25 представлена зависимость скорости реакции от вероятного радиуса пор как для мультидисперсного (кривая /), так и для монодисперсного (кривая 2) катализаторов. Кривая 1 пройдет через максимум Гмакс, границы кинетической области будут значительно расширены, если через крупные каналы беспрепятственно осуществляется транспортировка реагентов. А далее, когда во всем диапазоне пор уменьшается количество последних, снимающих диффузионное торможение, кривая 1 опускается до уровня кривой 2, где влияние роста поверхности уравновешивается ухудшением диффузии. [c.78]

    Взаимодействие индивидуальных сераорганических соединений с водородом протекает ио первому порядку. Однако для процесса гидроочистки нефтяных фракций лучшее приближение к экспериментальным данным дает кажущийся второй порядок. Изменение порядка реакции, ио-видимому, объясняется постоянным снижением константы скорости реакции пс> мере гидрирования наиболее реакциоииоспособных соединений. При высокой температуре, когда скорость химической реакции резко возрастает, скорость суммарного превращения определяется диффузией сырья в поры катализатора. При этом порядок реакции падает, приближаясь к первому. Для уменьшения внутр адиффузионного торможения реакции ири очистке тяжелых видов сырья рекомендуется использовать катализаторы с размером нор более 10 нм. [c.302]


Смотреть страницы где упоминается термин Диффузия торможение: [c.92]    [c.36]    [c.37]    [c.122]    [c.164]    [c.351]    [c.99]    [c.91]    [c.152]    [c.220]    [c.50]    [c.35]   
Защита от коррозии на стадии проектирования (1980) -- [ c.368 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия на десорбцию, торможение

Наложение торможения перехода, диффузии и реакции

Торможение



© 2025 chem21.info Реклама на сайте