Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия испускания

    Для обычных тщательных аналитических методов среднее значение х предполагается идентичным с истинным значением, а наблюдаемые ошибки приписываются неопределенно большому числу источников малых ошибок, действующих случайно. Среднее квадратичное отклонение 5 зависит от этих источников малых ошибок и может принимать любое значение. Среднее значение измеряемой величины и среднее квадратичное отклонение, вообще говоря, независимы, и, таким образом, может существовать бесконечно большое число кривых распределения. Как мы уже видели, в рентгеновской эмиссионной спектроскопии испускание квантов регистрируемого излучения рассматривается как беспорядочный процесс, и этим она резко отличается от обычных методов анализа. При идеальных условиях изме- [c.289]


    Спектроскопия испускания или эмиссионная спектроско- ПИЯ. Молекула переходит из высокого энергетического состояния в более низкое. Избыток энергии испускается в виде фотона, и экспериментатор наблюдает частоты, соответствующие каждой энергии перехода. 3. Спектроскопия КР — комбинационного рассеяния — метод, в котором энергетические уровни молекул определяются по рассеянию ими света. Каждой области электромагнитного излучения соответствует определенный тип молекулярных процессов и соответствующий вид спектроскопии, а именно  [c.459]

    Б. Спектроскопические методы. На первый взгляд кажется, что оптическая спектроскопия является идеальным методом для изучения неустойчивых промежуточных продуктов, однако во многих случаях применение этого метода встречает существенные трудности. Причина заключается в малой концентрации присутствующих промежуточных веществ, а также в сложности выделения спектров промежуточных веществ (эмиссионных или абсорбционных) из спектров других присутствующих веществ. Тем не менее имеется большое число примеров успешного использования этих методов. Так, спектры испускания возбужденных радикалов, атомов и ионов наблюдались в случае тлеющих и дуговых разрядов, а также во взрывных реакциях и пламенах. В частности, при электрически возбуждаемом излучении [16, 17] были идентифицированы радикалы Сг, СН, Н8, 82, О, СК, КН, ОН, PH, HgH. Подобным же образом в пламенах и взрывах [18] наблюдались, в частности, радикалы С2, СН, ОН, КН, 80, Н, С1, СНО. Однако в обоих этих примерах наблюдаемые спектры испускания могут дать сведения только об относительном количестве возбужденных радикалов и ничего не говорят о типе или количестве радикалов, присутствующих в невозбужденных состояниях и не способных к излучению. [c.96]

    Столкновение фотонов с атомами или молекулами может привести к испусканию фотоэлектронов. В течение последних двух десятилетий фотоэлектронная спектроскопия развилась в многообещающую область химии. Фотоэлектронная спектроскопия отличается от описанных ранее спектроскопических методов, в которых измеряются характеристики поглощенного, испущенного или рассеянного электромагнитного излучения. В этом методе предмет изучения — кинетическая энергия испущенных при ионизации электронов. [c.331]

    В случае УФС, как мы увидим, разрешение таково, что можно легко регистрировать колебательную структуру, связанную с электронным состоянием ионизуемой молекулы. Аналогия с электронной абсорбционной спектроскопией очевидна. В эксперименте УФС фотоионизации с испусканием электрона сопутствует электронный переход из основного состояния исходной молекулы в основное электронное состояние (иногда в возбужденное состояние, см. ниже) ионизованной молекулы. В электронной абсорбционной спектроскопии колебательная структура наблюдается для возбужденного электронного состояния, а в УФС — для электронного состояния ионизованной молекулы. Тогда явная форма уравнения (16.23) для энергии, необходимой для освобождения электрона из молекулы, выглядит как [c.332]


    Опыт 1. Наблюдение спектра испускания атомов с помощью спектроскопа. [c.5]

    Опыт 2. Наблюдение спектра поглощения атомов. С помощью спектроскопа наблюдайте спектр испускания обычной электрической лампы накаливания. Между лампой и щелью спектроскопа поместите горелку, в пламя которой внесите кусочек асбеста, смоченного раствором хлорида натрия (асбест закрепите в штативе). Объясните наблюдаемое. [c.6]

    Гамма-резонансная ядерная флуоресценция, т. е, испускание и поглощение -квантов при ядерных переходах без затраты энергии на отдачу ядра, была открыта Р. Л. Мессбауэром в 1958 г. Эффект назван поэтому его именем, как и разработанный метод спектроскопии. Источником излучения и объектом, поглощающим его, являются ядра одного и того же изотопа, соответственно, в возбужденном и основном состояниях. В ядерной физике ядра с одинаковыми зарядами и массовыми числами, но разными энергиями и временами жизни (полураспада) называют изомерами. Бремя жизни изомеров играет огромную роль в гамма-резонансной спектроскопии, определяя ширину линий. Большим достоинством метода является высокая монохроматичность -излучения (узость линии) и высокое спектральное разрешение. Положение резонансного сигнала или так называемый изомерный сдвиг зависит от электронного окружения ядер. Метод мессбауэровской спектроскопии позволяет получить такие же данные о градиенте электрического поля на ядрах, как и метод спектроскопии ЯКР, [c.88]

    На рис. У.З, а в качестве примера представлена схема широко используемого в мессбауэровской спектроскопии распада радиоактивного материнского изотопа Со с образованием при захвате электронов возбужденных состояний изотопа Р и переходом ядер в основное состояние Fe. Изотоп Со доступен (получают в циклотроне) и удовлетворяет как материнский изотоп четвертому условию. Из верхнего возбужденного состояния Ре меньшая часть ядер (9%) непосредственно переходит в основное состояние с испусканием у-квантов высокой энергии, а большая часть (91%) — в более низкое возбужденное состояние (мессбауэровский уровень), удовлетворяющее третьему условию, из этого состояния и осуществляется мессбауэровский переход. Изотоп Ре в основном состоянии удовлетворяет последнему условию, и хотя его природное содержание всего около 2%, этого достаточно. Именно такое ядро и является партнером мессбауэровского возбужденного ядра, т. е. поглощает испущенный им у-квант, переходя при акте ЯГР в возбужденное состояние. [c.116]

    Эмиссионная спектроскопия — метод элементного анализа по атомным спектрам испускания. Атомизацию растворов производят так же, как и в атомно-абсорбционной спектроскопии. Спектры испускания регистрируют обычно в спектрографах на фотопластинках — получают спектрограммы. Плотность почернения линий определяют с помощью микрофотометров. Для количественного анализа используют зависимость плотности почернения линий от концентрации излучающих атомов. Этот метод позволяет определять практически все элементы прн содержании Ю" —10 мае. долей, %. [c.241]

    Молекулярная оптическая спектроскопия — это раздел физики и физической химии, в котором изучаются молекулярные спектры поглощения, испускания и отражения электромагнитных волн в диапазоне волновых чисел от 10 до 10 см . Она включает инфракрасную спектроскопию, спектроскопию в видимой области и УФ-спектроскопию. [c.242]

    Молекулярная спектроскопия изучает спектральный состав излучения, получающегося в результате поглощения, испускания или рассеяния электромагнитного излучения веществом. Во всех случаях молекулярный спектр является результатом квантовых переходов между различными энергетическими состояниями молекул и содер.жит информацию об их строении. [c.157]

    Эмиссионная спектроскопия, нашедшая широкое применение в-атомной спектроскопии, для изучения молекул используется реже. Эмиссионные спектры возникают путем возбуждения электронов в атомах или молекулах при сообщении им избыточной энергии извне и последующего возвращения их в основное состояние с испусканием квантов энергии в виде излучения строго определенных частот. Для перевода вещества в возбужденное состояние нередко применяют пламя горелки, дуговой или искровой разряд. Однако нри этом многие химические связи в молекулах разрываются и наблюдаемый эмиссионный спектр представляет собой спектр продуктов диссоциации — радикалов, атомов и ионов. В то же время именно это делает метод эмиссионной спектроскопии одним из плодотворных экспериментальных приемов для изучения радикалов, играющих решающую роль в протекании многих цепных реакций. Эмиссионные спектры используются также для изучения электронных оболочек атомов, свойств среды, образованной совокупностью атомов, получения некоторых сведений о состоянии ядер атомов, а также для целей качественного и количественного атомного спектрального анализа. [c.157]


    Источники, используемые в ЯГР спектроскопии, должны иметь синглетную узкую линию испускания у-квантов без потери на отдачу и большое значение величины вероятности излучения таких квантов. Желательно, чтобы вероятность излучения / была значительной уже при комнатной температуре (т. е. чтобы дебаевская температура вещества источника была высока). Это существенно для сокращения времени, затрачиваемого на эксперимент. [c.190]

    Интенсивность излучения источника у-квантов со временем ослабевает, поэтому необходимо, чтобы методика приготовления источников была не слишком трудоемкой и обеспечивала хорошую воспроизводимость ширины линии испускания. Линия испускания должна оптимально располагаться в шкале энергий. Наибольшее распространение в ЯГР спектроскопии получили изотопы 57 .Со, 1"5 "Те и Аи. [c.190]

    Электронная спек-троскопия, как уже указывалось, это спектроскопия в видимой и ультрафиолетовой области спектра. Спектры испускания в этой области можно получить, нагревая вещество до высоких температур, при которых за счет термического возбуждения оказываются в достаточной мере заселенными электронно-возбужденные состояния частиц. При переходе частиц с более высокого в более низкое по энергии возбужденное или основное состояние испускаются кванты видимого или ультрафиолетового излучения. Поскольку при высоких температурах большинство молекул разлагается, спектры испускания исследуются преимущественно для некоторых простых достаточно прочных многоатомных частиц и атомов. Рассмотрим несколько подробнее вопрос о спектрах испускания атомов на примере атомов водорода. [c.150]

    Условием для получения колебательных и вращательных спектров поглощения или испускания является изменение дипольного момента, тогда как переходы, наблюдаемые в спектрах Ki связаны с изменением поляризуемости молекул. Благодаря различию правил отбора ИК-спектроскопия и спектроскопия КР существен но дополняют друг друга. [c.267]

    Известны инфракрасные спектры испускания, отражения и поглощения. Однако наибольшее распространение в ИК-спектроскопии получил абсорбционный метод, т. е. метод, с помощью которого в результате взаимодействия вещества с электромагнитным излучением получают спектры поглош,ения. Преимущество этого метода состоит в том, что спектр поглощения можно получить, располагая лишь небольшим количеством вещества (доли см ) в любом агрегатном состоянии, в растворе, при разных температуре и давлении, вещества, окрашенного и непрозрачного в видимом свете, люминесцирующего и т. п. [c.185]

    Спектроскоп, предназначенный для эмиссионного анализа, получил название стилоскопа. Другой тип спектроскопа — стилометр — также предназначен для спектрального анализа по спектрам испускания. Стилометры снабжены фотометрами, что позволяет не только наблюдать спектр, но и изменять количественно относительную интенсивность спектральных линий. [c.117]

    Спектрографы служат, главным образом, для работы с эмиссионными спектрами. В абсорбционной спектроскопии фотографические методы регистрации применяют в настоящее время сравнительно редко. Тем не менее любой спектрограф может быть легко использован для получения спектров поглощения, если только имеются источник сплошного излучения и кюветы для работы в соответствующей области спектра. Обычно все спектрографы снабжаются комплектом приспособлений, которые рассчитаны для работы со спектрами испускания, однако для некоторых из них выпускают и абсорбционные комплекты. [c.125]

    Термин фотохимия используется достаточно широко. Хотя фотохимия в основном рассматривает химические превращения при поглощении света, ряд физических процессов, не включающих каких-либо суммарных химических изменений, также относятся к области фотохимии например, такие процессы, как флуоресценция (когда свет испускается образцом, поглотившим излучение) или хемилюминесценция (когда продуктом химической реакции является излучение света), должны рассматриваться как фотохимические. Слово свет также используется достаточно произвольно, поскольку в процессах, идентифицируемых как фотохимические, участвует излучение гораздо более широкого диапазона длин волн, чем видимая область. Длинноволновый предел, видимо, располагается в ближней инфракрасной области (около 2000 нм), а рассматриваемый диапазон простирается далеко в вакуумный ультрафиолет (см. примечание на с. 179) и лишь формально ограничивается длинами волн, при которых излучение становится заметно проникающим (рентгеновское излучение). Важным вопросом фотохимии является механизм участия возбужденных состояний атомов и молекул в изучаемых процессах. Очевидно, что изучение процессов поглощения или испускания света является делом спектроскописта в той же мере, что и фотохимика, и последний должен иметь по крайней мере общие знания в области спектроскопии. В то же время фотохимику [c.11]

    Атомная и молекулярная спектроскопия изучают спектральный состав излучения при поглощении (абсорбции), испускании (эмиссии) или рассеянии света. [c.516]

    Для фотохимии и спектроскопии наиболее важны следующие три типа электронных переходов 1) спонтанное испускание 2) вынужденное испускание 3) вынужденное поглощение. [c.121]

    Представим, что спектр на рис. 32.5 — это спектр испускания образца, и излучение описывается чисто синусоидальной волной со строго фиксированной частотой V. Если детектор обладает достаточно малой инерционностью, то на его выходе должен наблюдаться сигнал, имеющий ту же частоту V, причем выходной сигнал детектора рассматривается как функция времени (спектроскопия с временной разверткой), а не как функция частоты (частотная развертка). Предположим теперь, что образец излучает на двух различных частотах, тогда детектор зафиксирует сумму двух синусоидальных волн. Из рис. 32.5 видно, что выходной сигнал детектора осциллирует с частотой, близкой к частотам слагаемых волн, но амплитуда периодически пульсирует. Факт возникновения пульсации обусловлен степенью совпадения фаз слагаемых волн в точках А, С В. Частота биений всегда равна разности частот составляющих волн. [c.762]

    Международная комиссия по спектроскопии признала целесообразным и рекомендовала при записи переходов в двухатомных и многоатомных молекулах всегда, независимо от того, наблюдается ли переход в поглощении или в испускании, первым символом обозначать верхнее состояние например, в переходе А — В символ А следует относить к верхнему, а символ В — к нижнему состоянию. [c.52]

    К сожалению, эта принятая в молекулярной спектроскопии система обозначений противоположна системе, принятой в атомной спектроскопии. Кроме того, некоторые авторы, работающие в области микроволновой спектроскопии, а также электронной спектроскопии больших молекул, не следуют принятому правилу и записывают первым символом исходное состояние, т. е. нижнее состояние в поглощении и верхнее состояние в испускании. В настоящей книге мы всегда будем придерживаться рекомендации Международной комиссии по спектроскопии. [c.52]

    Главным условием квалифицированного применения методов колебательной спектроскопии является надежное отнесение наблюдаемых в эксперименте полос поглощения (ИК) или испускания (КР) к тому или иному типу колебания связей, выявление характеристических частот колебаний. Ниже рассмотрены лишь отдельные представители пероксидов различных классов. Соединения отобраны исходя из их практической значимости, а также надежности экспериментальных данных. [c.144]

    Атомы и молекулы газов при нагревании или при возбуждении их электрической искрой испускают световое излучение с определенными длинами волн. Такой свет, испускаемый атомами и молекулами в указанных условиях, и представляет собой их спектр испускания. На рис. 19.6 приведены спектры испускания щелочных металлов, ртути и неона. Спектры испускания элементов, особенно металлов, позволяют идентифицировать эти элементы, и спектроскопический химический анализ стал важным методом аналитической химии. Прибор, имеющий дифракционную решетку или призму для разложения света на составляющие его волны и для определения длины этих волн, называют спектроскопом. Схема простого спектроскопа приведена на рис. 3.15. При помощи такого прибора немецкий химик Роберт Вильгельм Бунзен (1811 —1899) открыл в 1860 г. рубидий и цезий. Изобретен спектроскоп был всего лишь за год до этого физиком Кирхгоффом, и цезий стал первым элементом, открытым спектральным методом. [c.65]

    Хотя флуоресцентная и фосфоресцентная эмиссионная спектроскопия выходит за рамки настоящей книги, эти явления нашли много важных практических приложений. Упомянем, например, об использовании флуоресцирующих соединений для приготовления оптических осветлителей . Оптический осветлитель поглощает ультрафиолетовое излучение, но излучает поглощенную энергию в виде красно-синей флуоресценции, маскируя таким образом менее желательный желтый цвет некоторых изделий. Так как флуоресцентное испускание может быть очень интенсивным и вызывает поглощение и излучение с характеристическими длинами волн, флуоресценцией пользуются во многих аналитических процедурах, например для оценки уровня адреналина в крови и моче. [c.517]

    Природа взаимодействия столь различающихся по энергии квантов с веществом принципиально неодинакова. Так, излучение уквантов связано с ядерными процессами, излучение квантов в рентгеновском диапазоне обусловлено электронными переходами во внутренних электронных слоях атома, испускание квантов УФ- и видимого излучения или взаимодействие вещества с ними — следствие перехода внешних валентных электронов (сфера оптических методов анализа), поглощение ИК- и микроволновых квантов связано с переходом между колебательными и вращательными уровнями молекул, а излучение в ра-диоволновом диапазоне обусловлено переходами с изменением ориентации спинов электронов или ядер атомов. Для решения разнообразных задач наибольшее значение имеют спектральные методы анализа, оперирующие с излучением рентгеновского, оптического, ИК- и радиоволнового диапазонов. В данном практическом руководстве по физико-химическим методам анализа рассматриваются оптические методы, которые традиционно делятся па оптическую атомную и оптическую молекулярную спектроскопию. В первом случае аналитические сигналы в области спектра от 100 до 800 нм являются следствием электронных переходов в атомах, во втором — в молекулах. [c.7]

    Метод мессбауэровской спектроскопии, называемой иногда спектроскопией ядерного гамма-резонанса (ЯГР), основан на изучении поглощения -у-излучения какого-то ядра-источника ядром того же изотопа, находящимся в исследуемом образце. Возможность такого поглощения, т. е. у-резонанса, зависит не только от разности энергий возбужденного и основного состояний ядер. Условия резонанса соблюдаются только тогда, когда устранен также эффект отдачи ядер при испускании и поглощении уквантов, а также скомпенсирован каким-то образом эффект Допплера. Метод получил свое развитие именно с того момента, когда это было понято, а еще раньше экспериментально был найден простой и едва ли не единственно возможный путь ликвидации потерь на отдачу. [c.112]

    Если рентгеновские спектры испускания, поглощения и флуоресценции были известны и стали применяться еще в первой половине нашего века, то новые методы анализа и исследования веществ, которые можно условно объединить под общим названием — методы фотоэлектронной спектроскопии, разрабатывались лищь в 50-х и 60-х годах параллельно в СССР, Швеции, Англии и США. Их применение в химии началось в конце 60-х, а соответствующие серийные приборы появились лишь в 70-х годах и постоянно совершенствуются. [c.134]

    Абсорбционная спектроскопия основана на способности вещества к избирательному поглощению. Чтобы определить, какие именно кванты поглощаются веществом и ка-д см кова ве.чичина их поглощения, через ве- дд Радиобо ь щество пропускают электромагнитное излучение источника, имеющего непрерыв-Микровоты ный спект испускания, а затем прошед- ший поток раскладывают в спектральном -Ю —------------- приборе по длинам волн и исследуют его [c.158]

    Поскольку фотохимия тесно связана с процессами поглощения и испускания излучения, представляется полезным привести хотя бы краткое их описание. Рассматривать эти вопросы более детально здесь нет возможности, и мы лищь напомним те разделы спектроскопии, которые будут использованы позже в этой книге. За более подробной информацией читатель может обратиться к списку литературы, приведенному в конце главы. [c.27]

    Природу, структуру и электронное состояние промежуточного продукта. Для абсорбционной спектроскопии можно использовать источник белого света в сочетании со спектрографом для получения фотографически зарегистрированного обзорного спектра поглощающих соединений в реакционной системе. В других случаях для сканирования спектрального диапазона может применяться монохроматор с фотоэлектрическим приемником. Многие исследуемые короткоживущие интермедиаты обладают достаточно большим оптическим поглощением из-за наличия разрешенного электронного дипольного перехода на более высокий уровень энергии, В этом случае, например, триплетные возбужденные состояния могут наблюдаться по их триплет-триплетному поглощению. В общем случае индивидуальные полосы поглощения имеют тем большую амплитуду, чем они уже. Вследствие этого эффекта атомы имеют разрешенные линии поглощения с особенно большими амплитудами. При количественных измерениях поглощения обычно выбирается длина волны, при которой наблюдается сильная полоса поглощения и на нее не накладываются полосы поглощения других соединений, В экспериментах по оптическому поглощению в качестве источника света можно применять лазеры. Очень эффективны в лазерных абсорбционных исследованиях перестраиваемые лазеры на красителях, особенно для веществ с узкими полосами поглощения (таких, как атомы и малые радикалы), поскольку лазерное излучение отличается высокой монохроматичностью и узкой спектральной полосой. Повышения поглощения можно достигнуть, заставив световой пучок многократно пересекать образец с помощью соответствующего расположения зеркал в многопроходовом абсорбционном эксперименте. Вновь для этой цели превосходно подходят лазеры благодаря малой расходимости лазерного пучка. В ряде случаев можно создать источник света, который спектрально адекватен абсорбционным свойствам именно исследуемых соединений. Например, можно сконструировать электрические разрядные лампы, содержащие подходящие газы и испускающие резонансные спектральные линии (при переходе из первого возбужденного состояния в основное) многих атомов и простых свободных радикалов. Очевидно, что резонансные спектральные линии точно соответствуют длинам волн поглощения этих же веществ, соответствующим переходу из основного электронного состояния. Если эти атомы или простые радикалы присутствуют в реакционной смеси, то будет наблюдаться резонансное поглощение. Если спектральные ширины полосы испускания источника и полосы поглощения объекта исследования совпадают, то чувствительность абсорбционных измерений может быть высокой при различающейся избирательности, так [c.195]

    Можно сделать некоторые замечания о сравнительных характеристиках абсорбционной и люминесцентной спектроскопии, а также спектроскопии КР. Хотя люминесцентные исследования обычно более чувствительны, чем абсорбционные, они ограничены кругом веществ, которые имеют возбужденное состояние, достаточно долгоживущее для спонтанного испускания с Л-фак-тором не более 10 с и способное эффективно конкурировать с предиссоциацией или другими безызлучательными процессами релаксации, которые экспериментатор не волен контролировать (но см. разд. 7.6). Более того, время жизни люминесценции накладывает ограничение на самую длинную временную шкалу в экспериментах с временным разрешением (около 10 с). Взаимодействие электромагнитного излучения с веществом при поглощении или комбинационном рассеянии происходит примерно в течение одного периода волны, или около с в УФ-области. Поэтому промежуточные соединения реакции могут исследоваться с фемтосекундным временным [c.197]

    Эксперименты на пикосекундной временной шкале и более короткой требуют других подходов. Световая вспышка, вызывающая возбуждение или фотолиз молекул исследуемого вещества, генерируется лазером с пассивной синхронизацией мод, оснащенным системой выделения одиночного импульса из цуга. Хотя пикосекундная импульсная спектроскопия опирается на методику двух вспышек — возбуждающей и зондирую -щей,— импульс зондирующего света обычно получается за счет преобразования части света возбуждающей вспышки, а необходимая короткая временная задержка легко достигается благодаря конечной скорости света. Зондирующий световой пучок направляется по варьируемому более длинному оптическому пути. Для абсорбционных экспериментов спектр этого излучения может быть уширен (например, ССЬ преобразует малую часть излучения лазера на неодимовом стекле с длиной волны 1060 нм в излучение в широком спектральном диапазоне). Для других диагностических методик, например КАСКР, это излучение может быть преобразовано в излучение другой частоты. Существует также ряд специализированных методик для изучения испускания света в пикосекундном диапазоне. Одна из них связана с электронным вариантом стрик-камеры. Для регистрации временной зависимости интенсивности сфокусированного пучка или светового пятна в механическом варианте стрик-камеры используется быстро движущаяся фотопленка. В электронном варианте изображение вначале попадает на фотокатод специального фотоумножителя типа передающей телевизионной трубки. Под действием линейно изменяющегося напряжения, прилагаемого к пластинам внутри трубки, образующиеся фотоэлектроны отклоняются тем сильнее, чем позже они вылетели из фотокатода. Для регистрации мест попадания отклоненных электронов может использоваться фосфоресцирующий экран с относительно длинным послесвечением, изображение на котором фотографируется или преобразуется с помощью электроники для последующего анализа. Этот метод носит название электронно-оптической хроноскопии. В альтернативном методе для изучения флуоресценции с пикосекундным временным разрешением Используется затвор, основанный на эффекте Керра (вращение плоскости поляризации света в электрическом поле), индуцируемом открывающим лазерным импульсом. В еще одном методе (флуоресцентная корреляционная спектроскопия) часть света возбуждающего импульса проходит через оптическую линию задержки и смешивается с испускаемой флуоресценцией в нелинейном кристалле (см. конец разд. 7.2.3), давая на выходе [c.203]

    Оптические методы анализа основаны на измерении характе]5истик оптических свойств вещества (испускание, поглощение, рассеивание, отражение, преломление, дифракция, интерференция, поляризация света), проявляющихся при его взаимодействии с элекгромагнитшш излучением. По характеру взаимодействия электромагнитного излуч(шия с веществом оптические методы анализа обычно подразделяют на эмиссионный спектральный, атомно-абсорбционный, молекулярный абсорбционный спектральный (спектрофотометрия, фотоэлектроколориметрия), люминесцентный, нефелометрический, турбодиметрический, рефрактометрический, интерферометрическиг поляриметрический анализ, а также спектральный анализ на основе спектров комбинационного рассеяния (раман-эффект) и некоторые другие методы, также использующие взаимодействие электромагнитного поля с веществом — ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерная гамма-резонансная спектроскопия (эффект Мессбауэра) и т. д. [c.516]

    Для наблюдения за процессами, происходяищми в течение кототкого промежутка времени (от неск. с до 10 с), широко применяют методы кинетич. спектроскопии. Они основаны иа регистрации (с помощью фотопластинок или фотоэлектрич. приемников) спектров поглощения или испускания исследуемой системы после кратковременного воздействия иа нее, иапр. быстрого смешения с реагентами или возбуждения внеш. источником энергии-светом, потоком электронов, электрич. полем и т.п. Спектром сравнения служит спектр невозбужден-иой системы. Методы кинетич. спектроскопии используют для изучения механизма р-ций (в частности, для установления состава промежут. продуктов), количеств, определения скоростей р-ций. [c.14]


Смотреть страницы где упоминается термин Спектроскопия испускания: [c.153]    [c.143]    [c.153]    [c.149]    [c.170]    [c.192]    [c.13]    [c.5]    [c.294]    [c.537]   
Химия Справочник (2000) -- [ c.459 ]




ПОИСК







© 2024 chem21.info Реклама на сайте