Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез белка затраты энергии

    Другая линия работы биохимических машин должна состоять в осуществлении различных синтезов, важнейшим из которых является, по-видимому, синтез нуклеиновых кислот и белка. Так как эти две линии должны быть связаны между собой и так как синтезы требуют затраты энергии, то обязательно должен действовать некоторый механизм сопряжения, позволяющий накапливать энергию, выделяющуюся в окислительно-восстановительных процессах, и затрачивать ее в надлежащем направлении и в нужный момент. Это важнейшее условие и определяет в значительной мере химическую и структурную организацию клетки. [c.63]


    Вопрос теперь состоит в том, как и почему возникли биополимеры (полисахариды, белки, полинуклеотиды), реакции образования которых (дегидратационная конденсация исходных мономеров) требуют затраты энергии. При этом непригодны все те первичные источники энергии (см. табл. 1.7), которые использовались для абиогенного синтеза более простых веществ, из-за их большой мощности (большой концентрации энергии). Для синтеза биополимеров нужны особые источники химической энергии, т. е. богатые энергией вещества, способные в водной среде взаимодействовать с аминокислотами, сахарами, азотистыми основаниями, фосфорной и карбонатными кислотами и другими веществами и вызывать их дегидратационную конденсацию. [c.15]

    Орг. в-ва с помощью белка-переносчика попадают внутрь клеток микроорганизмов, где происходит окисление примесей, сопровождаемое выделением энергии и синтезом новых в-в с затратой энергии. Роль катализаторов превращений орг. примесей выполняют ферменты. Для разрушения сложной смеси орг. в-в необходимо 80-100 разл. ферментов. Микроорганизмы потребляют только растворенный в стоках кислород насыщение им воды осуществляют аэрацией. При очистке образуется избыток активного ила, к-рый утилизируют (см. ниже). [c.435]

    Смысл затраты такого большого избытка энергии представляет собой одну из загадок и интереснейших проблем молекулярной биологии. Избыток энергии, диссипируемый в теплоту и не используемый для совершения какой бы то ни было накапливаемой полезной работы (в виде химических связей или н беспорядочного расположения остатков), должен играть какую-то важную роль в функционировании белоксинтезирующей системы. Довольно очевидно, что, во всяком случае, этот избыток энергии необходим для обеспечения высоких скоростей и высокой надежности синтеза белка. [c.61]

    Непрямые затраты на синтез белка. Наряду с непосредственными энергетическими затратами на синтез белка, рассмотренными в предыдущем вопросе, клетка производит и непрямые затраты энергии, связанные с образованием требуемых для синтеза белка биокатализаторов. Сопоставьте факторы, определяющие непрямые расходы, которые приходится нести эукариотической клетке при синтезе линейных а(1 -> 4)-цепей гликогена и при биосинтезе полипептидов. [c.963]

    Для биосинтеза белков и других сложных органических соединений требуется затрата большого количества энергии. Основными источниками энергии в растениях, как известно, являются дыхание (окислительное фосфорилирование) и фотосинтез (фотосинтетическое фосфорилирование). Между интенсивностью синтеза белков и Интенсивностью дыхания существует тесная связь в молодых органах и тканях, характеризующихся высокой скоростью биосинтеза белков, интенсивность дыхания всегда была выше, чем в более старых органах. Без доступа кислорода или -при подавлении дыхания лод действием ингибиторов синтез белков прекращался. Фотосинтез также оказывал влияние на биосинтез белков и при повышении интенсивности фотосинтеза синтез белков -в растениях усиливался. При продолжительном нахождении растений в темноте в искусственных условиях, даже когда растения снабжаются извне питательными веществами (сахарами и нитратами), распад белков преобладает над их синтезом. [c.288]


    В первой реакции переносится пептид, содержащий свободную аминогруппу, во второй реакции — пептид, имеющий свободный карбоксил. В результате реакций транспептидации синтезированные белки, или пептиды, оказываются специфичными для данного организма, так как исходные вещества также были продуктами биосинтеза данного организма. Реакции транспептидации энергетически выгодны для организма, так как при их течении свободная энергия системы существенно не изменяется и для синтеза пептидов и белков по этому пути требуется небольшая затрата энергии. [c.298]

    Превращая различные исходные молекулы, например молекулы жиров, углеводов, белков, в молекулы конечных продуктов обмена — двуокись углерода, воду, аммиак или мочевину, мы получим работу в той или иной форме иногда ее можно получить в форме энергии тока, а в иных случаях в форме теплоты, или механической работы. Организм обладает приспособлениями для превращения химической энергии, скрытой в молекулах пищевых веществ, в разнообразные формы. Биологические машины производят работу не только за счет электрических сил, но и работу мышечного сокращения в некоторых организмах энергия окисления пищевых веществ частично выделяется в виде света. Важной статьей расхода энергии является создание специфических белков организма, синтез которых требует затраты энергии. [c.21]

    Удивительной чертой биоэнергетики является необыкновенно широкое использование АТФ для покрытия расходов энергии, производимых организмов. АТФ обеспечивает энергией мышечную ткань. Когда спортсмен начинает бег, в его мышечной системе прежде всего расходуется АТФ. АТФ питает энергией механизмы синтеза белка (для соединения аминокислот в полипеп-тидную цепочку необходимы затраты энергии) АТФ отдает энергию даже для движений протоплазмы — недавно доказана ее роль в слабых, но закономерных потоках протоплазмы в клетке. [c.76]

    Комплекс [Ф — М — РНК] перемещается с малой части на крупную и садится на п-место. Переход требует затраты энергии, доставляемой гуанозинтрифосфатом (он действует подобно АТФ). Эти процессы носили подготовительный характер. Теперь, когда место а свободно, на него помещается одна из т-РНК со своим грузом какой-либо аминокислоты — и начинается собственно синтез полипептидной цепи. Между концевой аминокислотой [ФМ-РНК] и вновь прибывшей аминокислотой образуется пептидная связь, м-РНК делает шаг вперед , и поэтому место а на рибосоме освобождается ему соответствует теперь уже другой кодон на матричной РНК, и к этому кодону прикрепляется т-РНК, достав шая соответствующую аминокислоту. Например, если на рибосоме свободен кодон ААГ, то на него садится т-РНК с триплетом (антикодоном) УУС. Этот антикодон отвечает аминокислоте — фенилаланину (см. приложение табл. 3), и она входит в состав синтезируемого белка. Снова сдвиг м-РНК, освобождается очередной кодон на м-РНК, пусть это будет, скажем, ЦЦГ к этому кодону может прикрепиться т-РНК, имеющая антикодон ГГЦ. Этот триплет отвечает аминокислоте глицину. Следовательно, в синтезируемой белковой цепи рядом с фенилаланином станет глицин. Соединение аминокислот будет происходить до тех пор, пока на м-РНК не обнаружится бессмысленный кодон (терминирующий), например УАА. Он не соответствует ни одной аминокислоте и играет роль точки, если сравнить белковую цепь с длинной фразой. Постепенное наращивание белковой цепи показано подробнее на цветной таблице П1, где намечен контур рибосомы, но не изображены а и п-места и комплекс ФМ = РНК, играющий роль инициатора синтеза. На рисунке 47 рибосома показана в виде объемного тела. Молекула м-РНК изображена в виде полосы, прикрепленной к [c.169]

    Основную же роль в очистке сточных вод играют процессы превращения вещества, происходящие внутри клеток микроорганизмов. В процессе этих превращений происходит окисление вещества с выделением энергии и синтез новых белковых веществ, который протекает с затратой энергии. Процесс синтеза белка идет через образование промежуточных продуктов типа углеводов, поли-Р-гидроксимасляной кислоты и др. [c.20]

    Опытами, проведенными в строго контролируемых условиях, установлено, что степень обеспеченности растений сахарами имеет наибольшее значение не для начальных этапов усвоения неорганического азота растениями, а для конечного этапа переработки азотистых соединений, для синтеза белка. В среднем из ряда опытов установлено, что синтез 1 г белка в растениях сопровождается затратами примерно 5 г сахара. По-видимому, синтез белка сопровождается интенсивным окислением сахара, в результате которого освобождается энергия, необходимая для активации молекул аминокислот, вступающих в реакцию синтеза белка. [c.229]

    Биосинтез белков, нуклеиновых кислот, сахаров и эфиров, т. е. всех сложных биомолекул клетки, не может происходить без затрат химической энергии, самопроизвольно. Для синтеза любого из этих веществ необходим молекулярный источник энергии, который с помощью соответствующей сопряженной реакции передает энергию вновь образующемуся термодинамически неустойчивому веществу. Такой универсальный поставщик химической энергии для синтеза биомолекул, а также других процессов, требующих затрат энергии, — молекула аденозинтрифосфата, сокращено АТФ. В молекуле АТФ аккумуляция энергии происходит в фрагменте, который представляет собой трифосфат-ион. Запасенная в трифосфат-ионе энергия лишь ненамного меньше энергии АТФ. Основной причиной возникновения энергетического запаса на связях трифосфат-иона и АТФ являются отрицательные заряды, возникающие при отщеплении протонов от трифосфорной кислоты  [c.443]


    Когда речь идет о живом веществе, о живой клетке, то прежде всего необходимо понять, каким образом в живой природе из суммы реакций обмена веществ, дающих энергию, эта энергия непрерывно подводится к процессу синтеза белка, потребляющему ее. Дело в том, что химическое равновесие в системе белок- - вода сдвинуто далеко в область гидролиза, и необходимо затратить работу, чтобы сместить равновесие от гидролиза к синтезу. Ферменты сами по себе не могут изменить равновесие они только ускоряют реакцию перехода из неравновесного состояния в равновесное. Давление же может смещать равновесие от распада к синтезу. Но синтез под давлением представляет только модельный опыт. В клетке должен существовать иной эффективный принцип, способный производить нужный сдвиг хими- [c.335]

    Взаимосвязь обмена углеводов и белков. Углеводы могут превращаться в белки, так как в процессе распада углеводов образуются кетокислоты и щавелевоуксусная кислота, которые могут подвергаться восстановительному аминированию (присоединение ЫНд) и превращаться в аминокислоты — аланин, аспарагиновую и глутаминовую кислоты, используемые при синтезе белка. Однако такой процесс в организме человека ограничен. Для синтеза белков необходимы значительные затраты энергии, что требует усиленного окисления углеводов. [c.267]

    Но синтез АТР-это не единственный процесс, идущий за счет энергии электрохимического градиента. В матриксе, где находятся ферменты, участвующие в цикле лимонной кислоты и других метаболических реакциях, необходимо поддерживать высокие концентрации различных субстратов в частности, для АТР-синтетазы требуются ADP и фосфат. Это означает, что через обычно непроницаемую мембрану должны проходить разнообразные субстраты. Обмен с цитозолем осуществляется с помощью ряда важных транспортных белков, встроенных во внутреннюю мембрану. Во многих случаях эти белки активно переносят определенные молекулы против их электрохимических градиентов, т. е. осуществляют процесс, требующий затраты энергии. Для ряда метаболитов источником этой энергии служит сопряжение с транспортом каких-то других молекул, перемещающихся вниз по электрохимическому градиенту (разд. 6.4.2). Например, в транспорте ADP участвует система антипорта ADP-ATP при переходе каждой молекулы ADP в матрикс из него выходит наружу одна молекула АТР, причем перенос последней осуществляется по электрохимическому градиенту. В то же время система симпорта сопрягает передвижение фосфата внутрь митохондрии с направленным туда же потоком Н протоны входят в матрикс по градиенту и при этом тащат за собой фосфат. Подобным образом переносится в матриксе и важнейшее топливо для митохондрий-пируват (рис. 9-22). [c.21]

    Действия ферментов согласованны продукты катализа одного фермента поступают к другому, а не рассеиваются в содержимом клетки реакции, выделяющие энергию, тесно связаны с реакциями, требующими ее затрат. Например, окисление сахаров и жиров происходит с выделением энергии, тогда как для синтеза белков необходимы затраты ее. Связь между реакциями такого типа устанавливается через аденозинтрифосфорную кислоту (АТФ)—химический аккумулятор энергии в удобной для усвоения форме, [c.70]

    Облегченная диффузия происходит также в результате разницы концентрации веществ по обе стороны цитоплазматической мембраны. Однако этот процесс осуществляется с помощью молекул-переносчиков, локализующихся в цитоплазматической мембране и обладающих специфичностью. Каждый переносчик транспортирует через мембрану соответствующее вещество или передает другому компоненту цитоплазматической мембраны — собственно переносчику. Белками-переносчиками могут быть пермеазы, место синтеза которых — цитоплазматическая мембрана. Облегченная диффузия протекает без затраты энергии, вещества перемещаются от более высокой концентрации к более низкой. [c.44]

    Синтетические процессы в клетках — синтез белков, нуклеиновых кислот, пуринов, пиримидинов, липидов, сахаров и др. представляют собой, как правило, эндергонические процессы, т.е. процессы, требующие затраты свободной энергии. Биосинтез осуществляется в открытой термодинамической системе— клетке в результате сопряжения с экзергоническими процессами гидролиза АТФ и окисления НАД-Н, НАДФ-Н и ферредоксина, в ходе которых освобождается энергия. Б конечном счете восстановленные коферменты также возникают за счет АТФ — наиболее универсального аккумулятора энергии (глюкоза фосфорилируется АТФ). Основные биосинтетические реакции идут с участием ферментов киназ или синтетаз. [c.108]

    Синтез белка процесс, протекающий со значительной затратой энергии. Легко подсчитать число макроэргов, которые расходуются на образование одной полипептидной связи. При активации аминокислот АТФ гидролизуется до АМФ, что эквивалентно затрате двух макроэргов, а инициация трансляции требует один макроэрг ГТФ. В процессе элонгации затрачивается два макроэрга ГТФ один на доставку аминоацил-тРНК в А-центр рибосомы, а второй — на процесс транслокации. И наконец, на терминацию требуется один макроэрг 1ТФ. [c.468]

    Как мы уже видели (разд. 29.4), на ферментативное образование каждой ами-ноацил-тРНК из свободной аминокислоты затрачиваются две высокоэнергетические фосфатные группы. Для исправления ошибок, выявленных с помощью гидролитического действия аминоацил-тРНК-синтетазы, на этом этапе могут понадобиться добавочные молекулы АТР. Напомним, что одна молекула GTP расщепляется до GDP и фосфата на первой стадии элонгации и еще одна молекула GTP гидролизуется в процессе транслокации. Следовательно, в итоге для образования каждой пептидной связи необходимы по меньшей мере четыре высокоэнергетические связи. Это означает, что для поддержания процесса синтеза белка необходим большой термодинамический вклад, поскольку на образование пептидной связи затрачивается не менее 7,3 4 = 29,2 ккал энергии фосфатной группы, в то время как стандартная свободная энергия ее гидролиза составляет всего около — 5,0 ккал. Таким образом, чистая затрата энергии на синтез пептидной связи составляет — 24,2 ккал/мол. Хотя столь высокий расход энергии может показаться расточительным, он служит одним из важных факторов, обеспечивающим почти совершенную точность биологического перевода генетической информации мРНК на язык ами- [c.942]

    В клетках живых организмов эндергонические реакции, связанные с затратой энергии, идут за счет химической энергии, освобождаемой при экзергоническом расщеплении молекул углеводов, жиров, белков и других веществ. Основные ироцес-сы требующие затрат энергии, — биосинтез более сложных молекул из более простых, выполнение механической работы (например, при сокращении мышцы), накопление веществ или их активный перенос против градиента химического потенциала , для растительных организмов главные реакции, протекающие с затратой энергии, — синтетические процессы. Экзергоническне и эндергонические процессы в клетках тесно взаимосвязаны, и-в большинстве случаев усиление синтетических реакций требует усиления процессов распада веществ, при которых выделяется энергия, необходимая для синтеза веществ. [c.18]

    Было установлено, что внутри митохондрий синтезируются только мембранные структурные белки, а синтез растворимых белков, например, ферментов цикла Кребса, осуществляется вне митохондрий, на рибосомах эндо-плазматической цепи. Синтез белков электронтранспарт-ной цепи (напирмер, цитохрома с) тоже происходит вне митохондрий. Затем эти белки транспортируются внутрь митохондрий с затратой энергии гидролиза нуклеозидтри-фосфатов (АТФ и, вероятно, УТФ). [c.71]

    На основании изложенных выше литературных и экспериментальных данных можно предложить следующую гипотетическую схему биохимических процессов, возникающих в простейшем случае лод действием ауксина в растительной клетке, находящейся в фазе растяжения. Молекула ИУК, являющаяся донором электрона, образует лабильный комплекс с гипотетическим рибонуклеопротеидом-переносчиком поверхностной мембраны. Образование такого комплекса приводит к увеличению количества фосфатных групп, освобождающихся от связи с белком. Активированный таким образом переносчик связывает кальций пектатов клеточных стенок свободными фосфатными группами и транспортирует его на внутреннюю сторону мембран. Эта реакция идет с использованием энергии АТФ, в результате чего усиливается окислительное фосфорилирование и дыхание. В реакции переноса кальция принимают участие сократительные белки, содержащие сульфгидрильные группы. Перемещение кальция сопровождается изменением мембранного потенциала и активности ферментов, локализованных в мембранах и клеточных стенках (аскорбатоксидазы, метилпектинэстеразы). Изменяется также поглощение и выделение ряда катионов и анионов, в частности, увеличивается поглощение калия. В результате удаления части кальция клеточная стенка становится более пластичной, вследствие чего возрастают сосущая сила и поступление воды в вакуоль. Начинается растяжение клеточной оболочки. Переносчик под действием РНК-азы распадается на внутренней стороне мембраны и затем ресинтезируется для переноса новых ионов кальция. Растяжение клеточной стенки индуцирует системы синтеза пектинов, целлюлозы и других компонентов оболочки. Эти процессы также сопровождаются затратой энергии и усилением интенсивности дыхания. Растяжение и увеличение гидратации цитоплазмы приводит к уменьшению ее вязкости и активизации гидролитических ферментов. Вслед за поглощением воды в вакуоль поступают осмотически активные вещества, поддерживающие сосущую силу клетки. [c.42]

    Энергетика живой клетки характеризуется использованием энергии, аккумулированной в некоторых богатых энергией мак-роэргических соединениях, среди которых особенно большую роль играет аденозинтрифосфорная кислота, называемая сокращенно АТФ. Реакция АТФ с водой (гидролитическое отщепление молекулы фосфорной кислоты) сопровождается выделением 8000 калЫоль теплоты. Эта энергия в результате сложных процессов сопряжения может быть использована для покрытия всех энергетических расходов клетки. Идет ли речь о синтезе белков, требующем затраты энергии, о движении протоплазмы, переносе вещества через мембраны против градиента концентрации или о мышечной (механической) работе — во всех случаях источником энергии в конечном счете оказывается гидролиз АТФ. Однако вскрытие всех тех промежуточных реакций, которые делают возможным сопряжение одного процесса со множеством других представляет собой необычайно трудную задачу. Ее решение известно лишь для относительно простых систем. Уже реакция окисления хромовой кислотой иодистого водорода [c.391]

    По синтез АТР - это не единственный процесс, идущий за счет энергии электрохимического градиента. В матриксе, где находятся ферменты, участвующие в цикле лимонной кислоты и других метаболических реакциях, необходимо поддерживать высокие концентрации различных субстратов в частности, для АТР-синтетазы требуются ADP и фосфат. Поэтому через внутреннюю мембрану должны транспортироваться разнообразные несущие заряд субстраты. Это достигается с помощью различных белков-переносчиков, встроенных в мембрану (см. разд. 6.4.4). многие из которых активно перекачивают определенные молекулы против их электрохимических градиентов, т. е. осуществляют процесс, требующий затраты энергии. Для большей части метаболитов источником этой энергии служит сопряжение с перемещением каких-то других молекул вниз по их электрохимическому градиенту (см. разд. 6.4.9). Папример, в транспорте ADP участвует система антипорта ADP-ATP при переходе каждой молекулы ADP в матрикс из него выходит по своему электрохимическому градиенту одна молекула АТР. В то же время система симпорта сопрягает переход фосфата внутрь митохондрии с направленным туда же потоком П протоны входят в матрикс по своему градиенту и при этом ташат за собой фосфат. Подобным образом переносится в матрикс и пируват (рис. 7-21). Энергия электрохимического протонного градиента используется также для переноса в матрикс ионов Са , которые, по-видимому, играют важную роль в регуляции активности некоторых митохондриальных ферментов большое значение может иметь и поглощение митохондриями этих ионов для удаления их из цитозоля, когда концентрация Са в последнем становится опасно высокой (см. разд. 12.3.7). [c.443]

    Хорошим примером биомолекул, находящихся в динамическом состоянии, могут служить сывороточные белки позвоночных. Их концентрация в крови поддерживается на одном уровне в результате функционирования специфических циклов. Так, сывороточный альбумин образуется в рибосомах клеток печени из аминокислот в ходе хорошо известного процесса синтеза белков, протекающего под контролем ДНК, при участии мРНК и сопровождающегося затратой энергии (2, Б). Эта энергия высвобождается при гидролизе АТФ — универсального агента переноса энергии 6,А). В стационарном состоянии уровень циркулирующего сывороточного альбумина с той же скоростью падает в результате гидролиза протеиназами. [c.20]

    В растительных клетках с участием ферментов самопроизвольно могут протекать экзергоиические реакции, характеризующиеся отрицательным изменением химического потенциала (—АО). Наряду с этим в клетках постоянно идут эндергоииче-ские процессы синтеза белков нз аминокислот, полисахаридов, из простых углеводов, жиров, алкалоидов, гликозидов, пигментов и других сложных соединений из более простых, которые требуют затраты энергии и получают ее за счет сопряженных экзергонических. процессов, [c.26]

    Протеолиз играет особенно важную роль в процессах клеточной дифференцировки, о чем, например, свидетельствует утрата способности к спорообразованию при дефекте синтеза протеиназ. Возможны два основных типа протеолиза ЛТР-независимый и АТР-зависимый. Первый активируется в условиях голодания и не требует затраты энергии второй действует постоянно и весьма избирательно. В эти системы, вероятно, включаются разные ферменты, так как некоторые ингибиторы протеиназ подавляют первый процесс и не влияют на второй. АТР-зависимый протеолиз, по-видимому, включает стадию узнавания аномального белка и введение в него метки, которой является специальный белковый агент — убихитин, после чего меченый белок подвергается деградации протеиназами. [c.91]

    В синтезе белковой молекулы может участвовать не одна рибосома, а несколько, образующих полирибосому. Число рибосом, входящих в состав полирибосом, зависит от длины информационной РНК. Так, в образовании молекулы гемоглобина, имеющей молекулярный вес 16 000, по-видимому, участвует 4—5 рибосом. Для образования молекул белка с молекулярным весом 70 000 требуется около 20 рибосом. Готовая по-липептидная цепь покидает матрицу. Возможно, что на той же матрице ачинает выстраиваться новая белковая молекула. Синтез белка — эндотермический процесс, нуждающийся в затрате энергии. Получение этой энергии связано с циклом аденозинтрифосфорной кислоты (АТФ). [c.59]

    Поскольку рост связан с различными эндергоническими, т, е. требующими затрат энергии, процессами, например синтезом белка, не удивительно, что для быстро удлиняющихся тканей корня характерна высокая интенсивность дыхания по сравнению с интенсивностью дыхания равного объема ие-делященся ткани, хотя при пересчете на 1 клетку интенсивность дыханид зрелых клеток может быть значительно выше, чем меристематических, поскольку последние меньше по размерам и содержат меньше цитоплазмы. Кроме того, рост требует аэробных условий и адекватного снабжения углеводами, служащими источником энергии и строительным материалом. [c.17]

    Поток энергии и вещества (в виде атомов углерода) в ходе метаболизма зависит от процессов синтеза ферментов и активации проферментов. Однако процессы эти необратимы. Как и все белки млекопитающих, ферменты распадаются на аминокислоты (обновление белков). В бактериальных клетках активность фермента может разбавляться из-за распределения его среди дочерних клеток, образующихся в результате последовательных делений. Хотя оба механизма приводят к уменьшению концентрации фермента и как следствие к уменьшению каталитической активности, идут такие процессы медленно и сопровождаются большими затратами вещества представим себе по аналогии, что мы выключали бы свет, разбивая лампочку, а затем, чтобы снова его включить, вкручивали бы новую лампочку. Ясно, что гораздо эффективнее регулировать активность фермента, включая и выключая его. Каталитическая актюность некоторых ключевых ферментов действительно регулируется с помощью низкомолекулярных метаболитов (см. гл. 6). Низкомолекулярные модуляторы, подавляющие ферментативную активность, называют отрицательными модуляторами, а повышающие ее—положительными. Мы рассмотрим их в гл. 10 и в последующих главах. [c.90]


Смотреть страницы где упоминается термин Синтез белка затраты энергии: [c.264]    [c.115]    [c.117]    [c.173]    [c.60]    [c.392]    [c.412]    [c.257]    [c.417]    [c.448]    [c.443]   
Химия окружающей среды (1982) -- [ c.49 , c.63 ]




ПОИСК





Смотрите так же термины и статьи:

Затраты

Синтез энергии для



© 2025 chem21.info Реклама на сайте