Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Области применения колоночной хроматографии

    Область применения тонкослойной хроматографии практически безгранична, что объясняется возможностью большого выбора слоев различных сорбентов. Для разделения полярных веществ применяют слои адсорбентов, для гидрофильных — распределительную хроматографию на целлюлозе или силикагеле, для гидрофобных — импрегнированные слои (обращенные фазы). Можно применять также ионообменную или гель-хроматографию в тонком слое. Метод тонкослойной хроматографии в настоящее время применяют в основном для целей качественного анализа. Количественное определение возможно в такой же степени, как и в бумажной хроматографии. При проведении определений можно работать с очень небольшими количествами веществ, разделение проходит быстро и с умеренными затратами. Тонкослойную хроматографию в связи с этим можно применять для предварительных опытов по выбору фаз для разделения больших количеств веществ методом колоночной хроматографии. [c.361]


    Применение колоночной распределительной хроматографии. Успехи, достигнутые в развитии современной жидкостной распределительной хроматографии, позволяют решать различные аналитические задачи. Ранее этот метод использовался редко, так как из-за малой эффективности колонок значительно увеличивалась длительность анализа, что способствовало сильному разбавлению образцов подвижной фазой. Эти недостатки, а также отсутствие эффективной аппаратуры препятствовали распространению метода. В последнее время в этой области достигнуты значительные успехи, и метод колоночной распределительной хроматографии стал применяться как стандартный при решении [c.68]

    Основной областью применения колоночной хроматографии является препаративное разделение химически сходных соединений. Этим способом можно, например, разделить а- и р-каро-тины, отличающиеся только положением двойной связи. Инте- [c.243]

    Для аналитических и препаративных работ наиболее часто применяют динамический метод ионного обмена в колонках. Способы работы такие же, как в колоночной хроматографии (разд. 38.3.6.4). Следует кратко остановиться на некоторых специфичных областях применения ионообменной хроматографии. [c.249]

    По типу стационарной фазы различают колоночную (КХ), бумажную (БХ) и тонкослойную хроматографию (ТХ). Вследствие специфических особенностей техники выполнения, областей применения, четкости разделения каждого хроматографического метода они будут рассмотрены при обсуждении вопросов практического применения хроматографии. Особо следует выделить метод газовой хроматографии, представляющий собой разновидность колоночной хроматографии, вследствие его большого значения и аппаратурных особенностей. [c.343]

    Для жидкостно-жидкостной ТСХ со стационарной неполярной фазой поверхность диоксида кремния подвергается гидрофобизации обработкой алкилсиланами. Первоначально, как и в классической колоночной хроматографии, при формировании тонкослойных пластинок использовались сорбенты и носители жидких фаз с размерами частиц 200-250 мкм. В настоящее время чаще применяют мелкодисперсные сорбенты с узким диапазоном размеров частиц от 1 до 25 мкм. Появился и соответствующий термин — высокоэффективная тонкослойная хроматография. [90]. Подробно с техникой тонкослойной хроматографии и областями ее применения можно познакомиться в [91-94]. [c.189]


    Области применения колоночной хроматографии [c.354]

    В настоящее время имеется огромное количество работ, в которых описывается или упоминается применение колоночной хроматографии для разделения стероидов. В связи с этим интересно было бы оценить процент работ, посвященных стероидам, в которых бы не упоминалась хроматография. Принимая во внимание то, что число разнообразных стероидов так же велико, ясно, что в данном обзоре невозможно рассмотреть все приложения (или даже большую их часть) колоночной хроматографии в области стероидов. Все, что можно здесь сделать,— это свести обзор к наиболее поздним работам, указать различные хроматографические методы, сравнить их (если они поддаются сравнению) и попытаться рекомендовать определенные хроматографические методы, применимые для разделения определенных типов стероидов. [c.211]

    Разделение радиоактивно меченных органических соединений в основном рассматривается в соответствующих главах данной книги. В табл. 52.1 приведены примеры применения колоночной хроматографии в области радиохимии в конце таблицы дано несколько примеров из области органической химии и биохимии. [c.364]

    Из различных хроматографических процессов, которые могут быть рассмотрены здесь лишь кратко, наиболее доступна давно известная колоночная хроматография. Область ее применения, так же как и препаративного варианта тонкослойной хроматографии, распространяется лишь на растворимые вещества. Принцип обоих методов состоит в том, что раствор смеси веществ пропускают через адсорбент, помещенный в колонку (рис. 10) нли распределенный в виде тонкого слоя на стеклянной пластинке. При этом смесь веществ разделяется на зоны, которые далее могут быть изолированы после проявления или элюированы при помощи другого растворителя (или смесн растворителей). В качестве адсорбентов применяют вещества, перечисленные в табл. 24. Элюентами служат обычные органические растворители и вода, а при тонкослойной хроматографии — преимущественно смесн растворителей. Большим достоинством этих методов является весьма эффективное (иногда уже после проведения одного цикла) разделение веществ в количестве от [c.132]

    Газовая хроматография представляет собой процесс, в котором разделение смеси производится с помощью подвижной газовой фазы, проходящей над сорбентом. Метод подобен широко применяемой жидкостной распределительной колоночной хроматографии, за исключением того, что подвижная жидкая фаза заменена движущейся газовой фазой. Газовая хроматография (ГХ) подразделяется на газо-адсорбционную хроматографию (ГАХ), где сорбентом является твердое тело с большой поверхностью, и газожидкостную хроматографию (ГЖХ), где сорбент — нелетучая жидкость, нанесенная на инертный твердый носитель. Подвижная фаза, или газ-носитель, представляет собой инертный газ, который пропускается с постоянной скоростью через насадочную колонку — трубку небольшого диаметра, содержащую сорбент. Аналитическая к олонка длиной около 1,5 ле и внутренним диаметром 4 мм может иметь эквивалент от 700 до 4000 теоретических тарелок (смотри ниже) в зависимости от типа и равномерности заполнения насадки. То, что говорится о газо-жидкостной хроматографии, об ее аппаратуре, детекторах, взятии пробы газа и т. д., в основном применимо к газо-адсорбционной хроматографии, которая является исторически более ранним методом и применяется преимущественно в случае анализа газов или относительно неполярных веществ с высокой летучестью. Область применения газо-жидкостной хроматографии значительно шире, так как этот метод применим к более широкому многообразию веществ и вместе с тем допускает применение не только насадочных, но и капиллярных колонок. В этой главе рассматривается только газо-жидкостная хроматография. [c.43]

    Параллельно с развитием аналитического метода хроматографии в тонком слое шла разработка применения этого метода в препаративных целях. Благодаря большим успехам, достигнутым в этой области, препаративная хроматография в слоях сорбента в настоящее время широко применяется в лабораториях для выделения малых и средних количеств веществ из смесей. По сравнению с более привычной колоночной хроматографией техника разделения в слоях имеет два основных преимущества  [c.122]

    Хроматография производных аминокислот получила интенсивное развитие в связи с разработкой методов определения первичной структуры белков. Вероятно, трудно найти в органической химии и биохимии более удачный пример столь тесной взаимосвязи развития представлений о структуре и функциях большого класса веществ, каким являются белки, с хроматографическими методами анализа. Основное внимание было направлено на разработку методов определения N-концевых остатков аминокислот в белках, причем в идентификации соответствующих производных большое значение имели тонкослойная (ТСХ) и бумажная хроматография (БХ) (см. обзоры [1, 2]). Газожидкостная и жидкостная колоночная хроматографии находят в этой области ограниченное применение, однако интерес к последнему методу постепенно растет. Интерес к жидкостной хроматографий вызван вполне определенными причинами. Во-первых, постоянно появляются новые методы избирательной модификации остатков аминокислот в белках, а идентификация производных аминокислот требует развития хроматографических методов. Во-вторых, исследованию подвергают все более труднодоступные белки, что в свою очередь вызывает необходимость создания надежных методов количественного анализа. Интерес к колоночной хроматографии возрастает также в связи с выделением и получением необычных аминокислот, а также в связи с необходимостью предотвращения ошибок при определении аминокислотной последовательности. Понятия современный и классический метод используют здесь условно, поскольку новые методики обычно создают на базе стандартной аппаратуры примером может служить автоматический анализ ДНФ- и ДНС-аминокис-лот [3, 4]. Насколько известно, до сих пор не пытались использовать скоростную хроматографию высокого разрешения для разделения производных аминокислот, хотя некоторые соединения, например ДНС-аминокислоты, являются для этого метода довольно удобным объектом. Производные аминокислот использовали в структурном анализе белков крайне неравномерно. По-видимому, всеобщее увлечение ДНФ-аминокислотами проходит окончательно, уступая место повышенному интересу [c.360]


    Хроматографические методы уже давно применяли в химии алкалоидов. Некоторые исследования, в которых для очистки алкалоидов использовали ионный обмен, остались незамеченными. Что касается хроматографии на окиси алюминия, то этот сорбент впервые использовали в 1937 г. для очистки настоек белладонны, хинина, ипекакуаны и стрихнина [1]. Хроматографические методы были впервые использованы при очистке отдельных или целых групп алкалоидов для отделения от сопутствующих веществ с последующим выделением и определением классическими методами анализа. Введение таких хроматогра,-фических методов, как хроматография на бумаге и тонкослойная хроматография, произвело переворот в анализе алкалоидов, особенно в идентификации близких в структурном отношении алкалоидов (например, алкалоидов спорыньи, опиума и раувольфии и др.). Из колоночных методов подобный успех имела газовая хроматография, впервые примененная в этой области в 1960 г. Следует ожидать, что в ближайшее время широкое применение получит хроматография высокого разрешения. [c.100]

    Книга разделена на три основные части. В части I рассматривается теория современной жидкостной хроматографии, используемое оборудование, включая детекторы, и определяется роль подвижной фазы в жидкостной хроматографии. В часть И включены главы, в которых описываются четыре вида колоночной хроматографии жидко-жидкостная, твердо-жидкостная, эксклюзионная и ионообменная. Эти интересные главы заставляют пересмотреть некоторые аспекты метода. Часть III содержит главы, посвященные различным примерам применения скоростной жидкостной хроматографии высокого разрешения. Эти главы написаны представителями лабораторий, где исследуются возможности использования разработанных фирмой приборов для различных целей. Естественно, что некоторые авторы большее внимание уделили тем областям, где они непосредственно работают. Хотя в книгу включены не все примеры использования разработанных приборов, мы пытались дать представление о практическом подходе к различным наиболее актуальным проблемам разделения. В этой части книги больше всего выражены черты учебного пособия. [c.8]

    Тонкослойная хроматография (ТСХ) является одним из видов жидкостной хроматографии, поэтому область ее применения столь же широка, как и колоночной жидкостной хроматографии. Однако ТСХ характеризуется и дополнительными преимуществами 1) простота методики и аппаратуры 2) экспрессность 3) большая гибкость (например, возможность осуществлять проявление в двух направлениях — двумерная хроматография, совместное использование электрического поля и хроматографического разделения и т. д.) 4) определение соединений, которые практически не элюируются (в колоночной хроматографии эти соединения отравляют колонку). [c.5]

    Колоночная хроматография с использованием целлюлозной пульпы с окисью алюминия и без нее [10, 11] применялась для анализа ториевых руд и минералов, но не нашла широкого распространения для анализа силикатных пород. Методы жидкостной экстракции также имеют ограниченное применение в этой области анализа, хотя имеется сообщение [12] об экстракции окисью мезитила [12] и, как указывалось выше, экстракцию трибутилфосфатом можно использовать для выделения тория с цирконием и церием [9]. [c.405]

    Большинство природных и синтетических веществ нельзя перевести в газовую фазу, поэтому область применения жидкостной хроматографии значительно шире, чем газовой. В последние годы аналитическая жидкостная хроматография в различных ее вариантах (колоночная, тонкослойная) развивается очень быстро. Однака молекулярная теория жидкостной хроматографии, как и молекулярная теория адсорбции из растворов (см. лекции 14 и 15), еще не разработана. Причиной этого является сложность системы и необходимость учета межм олекулярного взаимодействия молекул всех компонентов раствора не только с адсорбентом, но и друг с другом, причем находящихся как в адсорбированном состоянии, так и в растворе. Поэтому развитие молекулярной теории жидкостной хроматографии зависит от состояния и развития молекулярной теории жидкостей и разбавленных растворов. Поэтому, как и в лекциях 14 и 15 по адсорбции из растворов, мы ограничимся здесь лишъ качественным рассмотрением этих вопросов. [c.282]

    Более редко встречающиеся стероиды, такие, как азастероиды [119] и различные тиостероиды [120], не представляют особых затруднений при хроматографировании их различными методами. Создается впечатление, что до настоящего времени не возникало необходимости в создании для их анализа высокоэффективной жидкостной колоночной хроматографии. Возможно, что по мере совершенствования этого метода он найдет применение во всех областях исследования стероидов. [c.245]

    Теоретически любые растворимые вещества можно разде--лить с помощью подходящего метода жидкостной хроматографии. Ионообменная хроматография и электрофорез применимы в тех случаях, когда соединения имеют ионный характер или содержат ионогенные группы. Область применения гель-хроматографии ограничена соединениями с относительно высокой молекулярной массой (10 —10 дальтон). Адсорбционная и распределительная хроматография используются для разделения веществ со средней молекулярной массой (10 —10 дальтон),. и поэтому эти методы представляют особый интерес для хими-ков-органиков. Небольшие количества веществ можно разделить с помощью различных методов плоскостной хроматографии. Преимуществом последних является возможность анализа одновременно нескольких образцов, а также низкая стоимость, оборудования. Методы плоскостной хроматографии отличаются очень простым аппаратурным оформлением, однако требуют от экспериментатора определенных навыков. Разработано несколько вариантов препаративной плоскостной хроматографии и количественного анализа хроматограмм, однако они в известной степени несовершенны. Современная колоночная хроматография обладает теми же достоинствами и недостатками, что и газовая хроматография, однако в отличие от последней ее можно рекомендовать не только для анализа, но и для препаративного выделения веществ, особенно если эти вещества недостаточно термостойки, разлагаются на свету или легко окисляются. [c.31]

    Распределительная хроматография занимает промежуточное положение между адсорбционной хроматографией и хроматографией на обращенных фазах. Распределительные системы предпочтительны при разделении членов гомологического ряда. Такое разделение можно провести и в системах с обращенной фазой. Методом адсорбционной хроматографии можно разделить только низшие члены гомологического ряда. Оптические изомеры удается разделить только в форме пар диасгереомеров (см. рис. VI.21), что в ( щем не представляет трудностей. Для расщепления рацематов в принципе пригодны оптически активные подвижные фазы. Подобные фазы для классической колоночной хроматографии известны только в форме производных целлюлозы [2, 3], для жидкостной хроматографии при высоком давлении они не пригодны. Область применения ионообменной хроматографии ограничена, так как использовать можно лишь чисто водные системы. В таких системах можно разделять те ионы или соединения, которые легко и обратимо образуют комплексы (обмен лигандов) с ионами, связанными с ионообменником. Кроме того, на органической матрице ионообменника может также происходить неионообменная сорбция. Если в системах с ионообменниками к водным элюентам добавляют органические растворители, то элюенты разделяются и образуется распределительная система. Если бы дополнительно учитывали обе эти возможности разделения на ионообменниках, то возможности использования этого метода были бы более многообразны, чем это следует из табл. Х.1. [c.218]

    Для расширения области применения жидкостной хроматографии с целью повышения чувствительности детектирования и/или улучшения разделения компонентов пробы, преобразуемых в более удобные аналитические формы (обычно содержащие хромофорные или электрофорные группы), дериватизацию осуществляют как на стадиях, предшествующих анализу (пред-колоночная дериватизация), так и непосредственно в хроматографической системе до или после формирования зон. Для разделения оптических изомеров прибегают к специальным приемам дериватизации, предусматривающим использование хи-Ральных неподвижных фаз, а также введение хирального агента [c.215]

    Среди методов разделения веществ важное место занимают хроматографические методы, которые в последние годы находят все большее применение в аналитической химии. Хроматографию на бумаге и в тонких слоях применяют в качественном анллизе чаще, чем колоночную. Хотя основной областью применения хроматографии является органическая химия, в хроматографии неорганических веществ также достигнуты определенные успехи, о чем можно судить по постоянно растущему числу публикаций на эту тему. [c.85]

    Колоночная хроматография является макрометодом. Применение зто-го метода для проведения микро- и полумикроопределений связано с использованием чувствительных детекторов, имеющихся лишь для некоторых веществ, действие которых основано, например, на измерении радиоактивности. За последние два десятилетия колоночная хроматография потеряла прежнее значение. В области аналитической химии ее вытеснили такие методы, как бумажная и тонкослойная хроматография. Однако колоночную хроматографию можно применять в области препаративной химии. Эта тенденция развития не характерна для ионообменной и гель-хроматографии. [c.354]

    Приведенное выше сопоставление, которое (несомненно) не охватывает всех аспектов и не обрисовывает ситуацию в целом, показывает, что для любого из методов находится своя оптимальная область применения. Если есть возможность выбирать, то тонкослойной хроматографией предпочитают пользоваться в тех случаях, когда аналитические задачи могут непредсказуемо меняться, когда требуется серийное определение от одного до трех веществ когда чувствительность колоночной жидкостной хроматографии оказывается слишком низкой (что отмечается довольно часто) когда параллельно приходится анализировать широкий спектр образцов когда необходи.м мониторинг лекарственных средств или посторонних веществ в биологических жидкостях (непосредственно на месте, а не в условиях оснащенной аналитической лаборатории). [c.36]

    Основной областью применения привитых фаз все еще является колоночная жидкостная хроматография. Аналитики, работающие в области ВЭЖХ, позаимствовали этот метод из газовой хроматографии. Как правило, исследователи просто недостаточно осведомлены об использовании обращенных фаз в бумажной, тонкослойной и коло- [c.82]

    Последним из хроматографических методов, разработанных на основе теории распределительной хроматографии Мартина и Синджа, явилась колоночная хроматография в жидкой фазе. Этот метод развивался сравнительно медленно из-за высоких требований к аппаратуре, необходимой для его реализации. Только в последние годы жидкостная хроматография получила широкое распространение благодаря исключительно большим возможностям применения как в аналитических, так и препаративных целях, причем скорость анализа и его высокая чувствительность компенсируют высокую стоимость соответствующих приборов. Хотя метод жидкостной хроматографии имел те же предпосылки для развития, что и метод газовой хроматографии, в решении некоторых аналитических задач, прежде всего в области высокомолекулярных соединений, жидкостная хроматография имеет большие преимущества. Тем не менее в большинстве аналитических лабораторий жидкостная хроматография не может вытеснить хроматографию в тонких слоях, поскольку ТСХ выгодно отличается простотой оборудования и обслуживания и малыми затратами денежных средств. [c.14]

    Жидкостная адсорбционная колоночная хроматография прочно завос вала ведущее место среди хроматографических методов анализа нефтепродуктов. Другие методы жидкостной хроматографии в значительно меньщей степени используют при исследовании нефтепродуктов. Связано это как с ограниченностью области применения этих методов, так и с трудностью надежной интерпретации получаемых результатов. Так, ионообменная и координационная хроматография могут быть использованы лищь для вьщеления и разделения неуглеводородных компонентов тяжельпх нефтепродуктов, обладающих свойствами кислот или оснований. Эксклюзионная (ЭХ), или гель-хроматография, несмотря на все увеличивающееся число попыток использования ее для исследования нефтепродуктов, пока еще не завоевала должной популярности, что объясняется в первую очередь трудностью надежной количественной интерпретации результатов разделения. Тонкослойную хроматографию в основном применяют как вспомогательный метод для подбора условий адсорбционного разделения в колонках или для качественной идентификации нефтепродуктов и вьщеленных из них фракций. Бумажная хроматография практически не нашла применения в анализе нефтепродуктов. [c.71]

    Термолиюовую спектроскопию применяют для высокочувствительного определения окрашенных соединений, а также для определения термооптических характеристик растворителей. Кроме того, термолинзовый детектор используют в высокоэффективной жидкостной (колоночной) хроматографии, проточно-инжекционном анализе. Важной областью применения термолннзовой спектроскопии является дистанционный анализ газовых сред (нижние границы определяемых содержаний таких газов как N 2, N0, ЗОз, паров йода составляют 10 —10 % об.). Фототер-мическую рефрактометрию применяют для решения аналогичных задач. Кроме того, вследствие высокого пространственного разрешения фото-термическую рефрактометрию используют в капиллярной хроматографии, методах капиллярного зонного электрофореза и методах локального анализа жидкостей. [c.338]

    В этой главе рассматривается жидкостная хроматография нитросоединений, мочевины и ее производных, гуанидинов, нит-розаминов, амидов, азосоединений и ароматических гидразосо-единений. Хроматография амидов описывается лишь кратко, так как практическая ценность хроматографического разделения пептидов и их смесей очень велика. Поэтому этим методам посвящена специальная глава [34]. Основной областью применения жидкостной колоночной хроматографии для других указанных соединений является отделение их от соединений других типов. Все современные методы хроматографии можно было бы с успехом применять для разделения разбираемых в этой главе соединений, однако до сих пор этому вопросу уделяли мало внимания. Интересный способ был разработан для нитросоединений, некоторые из них синтезируют непосредственно в хроматографической колонке, где они затем отделяются от других соединений реакционной смеси. [c.296]

    До последнего времени широкое применение находила классическая колоночная хроматография на силикагеле или окиси алюминия. Недавно в химии бора стали использовать сухую колоночную хроматографию. Основными преимуществами этого метода являются хорошее качество и высокая скорость разделения, незначительная степень деструкции твердой фазы под действием водорода (вследствие гидролиза), а также возможность быстрого подбора условий разделения методом ТСХ. Хорошие результаты были получены не только при разделении окрашенных соединений (металлокарбораны, имеющие структуру типа сэндвича), но также и при разделении соединений, поглощающих в УФ-области спектра, при условии проведения хроматографии в кварцевых колонках или в колонках из полиэтилена или полипропилена. Для разделения борорганических соединений пытались использовать гель-проникающую хроматографию [1] и высокоэффективную жидкостную хроматографию [2], однако эти методы требуют дальнейшего усовершенствования. [c.167]

    ТОГО, с ПОМОЩЬЮ ТСХ можно контролировать результаты разделения, проведенного другими способами, например перегонкой, колоночной хроматографией, рекристаллизацией и т. п. Можно также использовать ТСХ для предварительной оценки структуры хроматографируемого соединения. Область применения ТСХ, которая с самого начала ее развития была достаточно широкой [38, 76], еще более расширилась благодаря универсальности метода (непрерывное и двумерное элюирование, электрофорез и гель-фильтрация в тонком слое). Благодаря своим преимуществам метод ТСХ часто вытесняет, а во многих случаях уже вытеснил бумажную хроматографию, в которой также используется плоскостное расположение хроматографической системы. Одпако в последнее время количество опубликованных статей, посвященных ТСХ, несколько уменьшилось, несмотря на то что разработаны новые модификации метода, увеличивающие его разрешающую способность и чувствительность [22а, 54а]. [c.86]

    Управление пищевых продуктов и лекарств (FDA) проводит анализы каждой подлежащей освидетельствованию партии красителей с целью проверки ее соответствия требованиям, установленным Кодексом федеральных законов. Для определения содержания основного продукта, примесей, сопутствующих красителей, неорганических солей, тяжелых металлов и т.п. используются такие аналитические методы, как ИК-, видимая и УФ-снектрофотомет-рия, титриметрия, спектроденситометрия, спектрометрия рентгеновского излучения, колоночная, газовая, тонкослойная и жидкостная хроматография высокого давления. В зависимости от результатов анализа партия красителя может быть признана либо пригодной для выдачи свидетельства (сертификата), либо непригодной. Сертификат дает право продавать продукт для обусловленных областей применения. [c.462]

    Другим полезным методом обнаружения соединений на хроматограммах, предложенным Кирхнером и сотр. [3, 46], является применение флуоресцирующих слоев. Под действием УФ-облучения такой слой ярко флуоресцирует. Если же на слое присутствуют соединения, поглощающие в УФ-области, то они обнаруживаются в виде темных пятен на флуоресцирующем фоне. Чтобы получить флуоресцирующий слой, к адсорбенту добавляют по 1 % каждого из флуоресцирующих неорганических соединений, использовавшихся Сизе [47, 48] в колоночной хроматографии, а именно сульфида цинка (№ 62 Ои Роп1) и силиката цинка (№ 609 той же фирмы). Рейтсема [49] предложил в качестве флуоресцентной добавки родамин 60, а Шталь [50] готовил суспензии адсорбентов в 0,04 %-ном водном растворе флуоресцеина. Однако до сих пор лучшие результаты были получены с неорганическими флуоресцирующими добавками. В некоторых случаях флуоресцирующие реагенты [c.220]

    Для разделения красителей методом хроматографии использовали или колоночную хроматографию, или так называемый капиллярный анализ. С помощью последнего метода Гоппельсредер разделял красители па фильтровальной бумаге еще во второй половине прошлого вока. Однако широкое применение хроматографии па бумаге в этой области относится лишь к последним годам. [c.660]


Смотреть страницы где упоминается термин Области применения колоночной хроматографии: [c.244]    [c.381]    [c.381]    [c.104]    [c.107]   
Смотреть главы в:

Руководство по аналитической химии 1971 -> Области применения колоночной хроматографии

Руководство по аналитической химии -> Области применения колоночной хроматографии




ПОИСК





Смотрите так же термины и статьи:

Область применения

Хроматография колоночная

Хроматография области применения

Хроматография применение



© 2025 chem21.info Реклама на сайте