Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение метода для обнаружения химических соединений

    Комплексные соединения находят широкое применение для обнаружения ионов, повышения избирательности реакций, маскировки и демаскировки ионов, а также в различных химических и физико-химических методах определения и разделения элементов. Наиболее интересными и перспективными комплексными соединениями являются соединения ионов металлов с комплексонами (полидентатные лиганды). Использование комплексонов в аналитической химии расширило возможности титри- [c.184]


    Работа с веществами, содержащими меченые атомы. Громадное развитие физики и химии стабильных и радиоактивных изотопов многих элементов создало необозримые возможности для изучения многих научных вопросов также в области органической химии, биохимии, в медицине и др. Пользуясь точными методами обнаружения и определения изотопных веществ, можно решать такие вопросы, которые были недоступны для решения обычными химическими методами. Для проведения таких работ необходимо во многих случаях иметь органические вещества, в молекулы которых введены простые или радиоактивные (рад.) изотопы дейтерий (О), тритий (рад.), тяжелый кислород Ю, сера или (рад.), С (рад.), (рад.) и др. Так как соединения с мечеными атомами очень дороги, а в ряде случаев весьма опасны для здоровья, от химика требуется большая тщательность в работе с очень малыми количествами вещества, часто с применением особых мер предосторожности. Это, однако, пе останавливает исследователей, и подобные работы очень энергично развиваются. [c.398]

    Применение люминесценции для аналитических целей включает широкую область использования ее для идентификации веществ, для обнаружения малых концентраций веществ для контроля изменений, претерпеваемых веществом для определения степени чистоты веществ. Широко применяются измерения люминесценции при изучении кинетики обычных химических реакций. Высокая чувствительность метода позволяет фиксировать малую степень превращения, а иногда по люминесценции промежуточных соединений становится возможным установить механизм химической реакции. Люминесцентные методы используются в биологии, в частности, для исследования структуры белков методом флуоресцентных зондов и меток. [c.49]

    З.7. Применение метода для обнаружения химических соединений [c.48]

    Для определения Sb методом инверсионной вольтамперометрии весьма перспективно применение ртутно-графитовых электродов [270, 463-465, 525, 526, 533, 605, 628, 1065. В отличие от стационарных ртутных электродов, для получения ртутно-графитового электрода не требуется каких-либо дополнительных операций, поскольку электрод образуется в процессе электролиза анализируемого раствора, в который вводится определенное количество соли Hg(II) [1065]. Применение ртутно-графитового электрода по сравнению с графитовым позволяет понизить предел обнаружения Sb практически на порядок и исключить образование интерметаллических и химических соединений Sb с другими элементами и тем самым устранить их мешающее влияние на определение Sb. [c.67]


    До настоящего времени изучение природных соединений было чрезвычайно успешным, и все же те сведения, которыми мы располагаем, неизбежно фрагментарны, поскольку методы обнаружения и выделения природных соединений носят более или менее случайный характер. Следовательно, доступная сейчас информация скорее всего не отражает истинного положения ни в качественном разнообразии структур, ни в количественном (относительное содержание индивидуальных метаболитов и промежуточных веществ на каждой стадии роста организма) отношении. Очевидно, необходим более систематический поиск новых соединений. Один из возможных подходов (см. разд. 28.1.7.1) заключается в применении простой экспериментальной методики, которая основана на включении меченных радиоактивными изотопами первичных предшественников во вторичные метаболиты образование последних может контролироваться обычными методами ауторадиографии. Это позволило бы исследовать весь спектр метаболической активности индивидуальных организмов как в качественном, так и в количественном отношении. Однако сейчас все еще господствует случайный подход, когда для изучения выбирают только несколько основных соединений со специфическими химическими или биологическими свойствами. [c.391]

    В последние годы интерес к аналитической химии кобальта сильно возрос. Это обусловлено разнообразными новыми применениями кобальта и его соединений. Общеизвестно использование кобальта в качестве легирующего компонента специальных сплавов с высокой твердостью и термостойкостью. Многие соединения кобальта обладают высокой каталитической активностью и служат катализаторами синтеза различных химических соединений. Радиоактивные изотопы кобальта широко применяются в медицине. Ряд сложных органических соединений кобальта влияет на обмен вешеств у растений и животных и т. п. Все ъто привело к необходимости разработать новые методы качественного обнаружения и количественного определения кобальта как основного компонента и примеси в технических и биологических материалах весьма разнообразного состава. Особое внимание в работах последних лет обращено на развитие методов определения следов кобальта. Для этого в настоящее время используются главным образом спектрофотометрические, кинетические и электрохимические методы анализа. Много исследований посвящено также синтезу новых органических реагентов для определения кобальта и изучению оптимальных условий их применения. [c.5]

    Во-первых, это позволяет устранить многие матричные эффекты, поскольку материал матрицы полностью остается в реакционном сосуде. Во-вторых, практически все выделенное количество определяемого элемента достигает атомизатора, причем в форме, способствующей эффективной атомизации. В-третьих, селективное выделение определяемого элемента из большой навески позволяет улучшить относительный предел обнаружения в 100-1000 раз. Наиболее широкое применение метод химического вьщеления определяемых элементов в виде летучих соединений нашел при определении ртути и элементов IVA, VA и VIA групп периодической системы. [c.844]

    Влияние на интенсивность и спектр вторичного излучения физико-химических свойств материала контролируемого объекта (см. 7.5) дает возможность проводить их контроль, причем чаще всего ионизирующие излучения используют для измерения физических свойств, связанных с плотностью и составом материала. Аппаратура радиационного контроля качества применяется для измерения плотности, концентрации определенного вещества (элемента) в смеси или химическом соединении, расхода вещества, и для обнаружения наличия того или иного вещества в каком-то объеме. Контроль физических свойств проводят по прошедшему или отраженному излучению, а также по наведенной или собственной радиоактивности материала. Одним из перспективных методов радиационного контроля материалов является применение нейтронных потоков и наиболее чувствительных — радиационных методов избирательного контроля содержания определенных химических элементов. [c.353]

    Области применения метода разнообразны. Его можно использовать для исследования механизма электродных процессов, для определения ряда физико-химических констант, изучения кинетики химических реакций, установления состава и прочности комплексных соединений в растворах и т. п. С другой стороны, полярографический метод широко применяется и в аналитической химии для качественного обнаружения и особенно для количественного определения многих неорганических и органических веществ. [c.209]

    В природе встречаются все типы стабильных ядер. Их относительная распространенность может изменяться в широких пределах — в 10 раз. Определение распространенностей изотопов было проведено рядом авторов, и полученные результаты использовались для объяснения процесса образования элементов [16, 1968] подобные измерения большей частью осуществлялись в области спектро-аналитических астрономических наблюдений и неорганической химии. Чувствительность масс-спектрометрического анализа образцов, приготовленных в удобной для изучения форме, высока, однако необходимо признать, что этот метод не является во всех случаях лучшим или наиболее чувствительным. Часто обычные химические методы оказываются более приемлемыми. Например, наличие некоторых химических соединений в воздухе легче устанавливается при пропускании больших количеств образца через соответствующий реагент при этом нет необходимости проводить обогащение для повышения чувствительности обнаружения примесей. Радиоактивные изотопы с гораздо большей чувствительностью обнаруживаются путем регистрации излучения, чем методом масс-спектрометрии. Так, например, в мл тяжелой воды, полученной из 13 ООО т поверхностных вод Норвегии, была определена молярная доля трития, равная 3,2-10 , что позволило установить мольную долю трития в водороде этих вод, равную 10 [797]. Масс-спектро-метрический метод не обладает подобной чувствительностью. Однако преимущества его в определении относительной распространенности изотопов элементов неоспоримы. В настоящей главе будут рассмотрены подобные измерения, а также измерения относительных количеств различных положительных осколочных ионов в масс-спектрах химических соединений. Применение метода анализа изотопного состава рассмотрено в конце настоящей главы, применение в химическом анализе обсуждено в гл. 8. [c.70]


    В этой главе на ряде примеров было показано, как применение метода ЭПР позволило обнаружить новые свойства органических соединений. Мы еще далеки от полного понимания этих эффектов. Можно лишь не сомневаться, что дальнейшие исследования окончательно выяснят физические механизмы и химическое значение обнаруженных неожиданных свойств высокоупорядоченных органических структур. В решении этих проблем важную роль, безусловно, сыграют методы магнитной радиоспектроскопии. [c.223]

    Метод ЭПР нашел широкое применение для исследования строения и превращения соединений с ненасыщенной валентностью— свободных радикалов — в ходе химических реакций, протекающих в жидких и газовых фазах. Кроме того, этот метод применяют для обнаружения и количественного определения парамагнитных веществ, например многих солей металлов переходных групп периодической системы Д. И. Менделеева. [c.65]

    Для определения примесей широко используют газовую хроматографию [1, 2], так как объектами анализа являются обычно сложные смеси органических соединений. Применение химических методов в газохроматографическом определении примесей позволяет сушественно улучшить решение таких общих задач, как определение примесей в зоне основного компонента, селективное концентрирование примесей, улучшение разделения примесей и основного вещества, а также понижение предела обнаружения. Первые аналитические работы по определению примесей с использованием химических превращений в хроматографической схеме были выполнены в 1955 г. Реем [3], Грином [4] и Мартиным и Смартом [5]. [c.214]

    В некоторых случаях идентификация неизвестного вещества может быть обеспечена сбором фракции, соответствующей пику хроматографического разделения, и последующим анализом этой фракции физическими или химическими методами. При этом подвижная и неподвижная хроматографические фазы должны быть очищенными, чтобы фон от фазы был сведен к минимуму, они не должны вступать в химическую реакцию с растворенным веществом, должны быть совместимыми-с хроматографической системой, используемой для разделения и обнаружения пика. Неподвижная фаза не должна выноситься из колонки. Кроме того, обе фазы не должны мешать идентификации вспомогательными методами и быть летучими, чтобы их можно было легко удалить выпариванием, фракции обычно собирают вручную, хотя возможно применение коллектора фракций. Для обеспечения чистоты, соответствующей пику собираемой фракции, внутренний объем трубки между детектором и выходом канала для сбора фракций должен быть минимальным. Этот объем должен быть измерен и внесены поправки на задержку между регистрацией пика детектором и фактическим выходом пика из канала для сбора фракций. Фракции удобно собирать в чистые, сухие, защищенные от попадания света сосуды с навинчивающимися крышками и тефлоновыми прокладками во избежание загрязнений. Возможен барботаж этих фракций чистым азотом или гелием. Растворители удаляют из образца выпариванием, продувкой газом, нагреванием ИК-лампой. Воду и смеси органических растворителей с водой удаляют выпариванием или лиофильной сушкой. Летучие буферные соединения удаляют при повышенных температурах. [c.171]

    Масс-спектрометрия является на сегодняшний день одним из наиболее информативных, быстрых, чувствительных и надежных методов анализа индивидуальных органических соединений и их смесей 2,3]. Возможно определение состава и строения практически любых типов органических соединений низкий предел обнаружения компонентов в смеси при малом объеме пробы обусловливает ведущую роль масс-спектрометрии в органическом анализе [4, 5]. Метод находит применение для производственного контроля в химической и нефтехимической промышленности [6]. Присоединение масс-спектрометра к коммуникациям и аппаратам позволяет осуществлять непрерывный контроль и автоматическое управление производственным процессом. [c.125]

    Метод спектроскопии ядерного магнитного резонанса (метод ЯМР) в принципе применим для обнаружения, выяснения положения в молекуле и количественного определения Щ (и Н), и а также комбинированных меток типа — С, и т. п. Метод не требует никакой химической обработки меченого соединения и даже его выделения в особо чистом состоянии интерпретация основывается на результатах исследования немеченого соединения в тех же условиях тем же методом. Метод находит все более широкое применение, что связано с растущей доступностью соответствующих приборов, особенно для определения С. Метод ЯМР может не только заменить радиоизотопный метод, но и обеспечить информацией, не доступной при использовании других методов. Поэтому широкое внедрение метода ЯМР привело [c.475]

    Хорошие результаты получают при определении иода и брома в геохимических пробах эмиссионным методом с применением химико-термической обработки пробы [351]. Пробу испаряют из камерного электрода, работающего как печь сопротивления. Для повышения скорости и полноты выделения иода и брома использована способность серной кислоты вытеснять галогены из их соединений с образованием легколетучих галогеноводородов или свободных галогенов. В связи с нежелательностью работы с концентрированной серной кислотой при проведении спектрального анализа в качестве химически активной добавки опробованы различные сернокислые соединения, разлагающиеся при слабом нагреве (300—400 °С) с образованием серной кислоты. Из проверенных двух десятков сульфатов наиболее эффективными добавками оказались гидросульфат калия и гидрат сульфата магния. Установлено, что при химико-термической обработке искусственных эталонных смесей бром выделяется в основном в виде бромоводорода, а нод — в свободном состоянии. При этом чувствительность определения брома оказывается недостаточной. Для повышения чувствительности определения брома к пробе наряду с сульфатом добавляют нитрат калия в качестве окислителя. К 0,5 г пробы добавляют 0,4 г сульфата магния и 0,1 г нитрата калия. При этом предел обнаружения иода и брома составляет 10 мкг/г. [c.258]

    В связи с высокой энергией излучения радиоактивных веществ практическое значение имеют лишь небольшие их концентрации. По той же причине представляется возможным измерить чрезвычайно малые их концентрации. Следовательно, радиохимия имеет дело главным образом с исключительно малыми концентрациями и количествами радиоактивных элементов. Явления, наблюдаемые в радиохимии, встречаются также и в химии стабильных соединений, но они, как правило, остаются не- замеченными, так как, кроме радиометрических методов, не существует достаточно чувствительных методов их обнаружения. Таким образом, имеется два направления, изучаемых в радиохимии. Одно из них связано с явлениями, наблюдаемыми при малых концентрациях радиоактивных веществ. Второе изучает поведение очень малых концентраций веществ и определяет возможности использования его при разработке радиохимических методов. Радиохимические методы находят разнообразное применение при изучении механизма химических реакций, при определении возраста минералов и археологических материалов, для прослеживания пути химических элементов в биологических процессах, химических реакциях и при механических испытаниях. [c.31]

    Развитие аналитических методов обнаружения и количественного определения имело решающее значение для выявления витамина С в природе й изучения его стабильности. Применявшиеся первоначально биологические методы постепенно были вытеснены химическими вследствие простоты, большей чувствительности, селективности и воспроизводимости последних. Многие успешно используемые сегодня методы анализа основаны на применении высокоэффективной жидкостной хроматографии. Однако возможности этих методов применения ограничены относительно низкой чувствительность обнаружения дегидроаскорбиновой кислоты в присутствии г сюкорбиновой кислоты, что значительно затрудняет количественное определение дегидроаскорбиновой кислоты в животных и растительных тканях. Ситуация аналогична и в случае продуктов дальнейшего окисления. Поэтому существует настоятельная необходимость в совершенствовании методов обнаружения этих соединений, что позволило бы изучать механизм и кинетику окисления ь-аскорбиновой кислоты в овощах и фруктах, определяя количество всех продуктов окисления. [c.10]

    Важной характеристикой значимости количественного метода является предел обнаружения или нижняя граница определяемых содержаний. Для ГХ-МС достигнуты величины порядка 1 пг/с (масс-спектрометр является детектором, чувствительным к потоку массы). Современные квадрупольные масс-спектрометры обеспечивают, например, ГХ-МС-определение (с отношением сигнал/шум, равным 30) 200 пг метилстеарата в случае ионизации электронным ударом и 100 пг бензофенона в случае химической ионизации. Приборы с двойной фокусировкой имеют характеристики, обеспечивающие отношения сигнал/шум, равные 200 при ГХ-МС-определении массы метилстеарата 100 пг как для химической ионизации, так и для ионизации электронным ударом и определение 30 фг 2,3,7,8-ДБДД с отношением сигнал/шум не менее 10. Однако, если вспомнить о химических процессах, сопровождающих ионизацию в случае электронного удара и особенно в методах мягкой ионизации, становится ясно, что отклик детектора весьма значительно зависит от исследуемого соединения. Более того, приведенные числа дают мало представления о том, каких пределов обнаружения можно ожидать в реальном случае. В случае анализа реальных образцов пределы обнаружения прежде всего определяются так называемым химическим шумом, а не электронными шумами детектора и цепи усилителя. Успех применения метода в анализе реальных образцов полностью зависит от одновременной и совместной настройки различных его составляющих пробоподготовки и разделения образца, ионизации, масс-спектрометрического анализа, детектирования и обработки данных. Кроме того, в такой ситуации более важны концентрационные (относительные), а не абсолютные пределы обнаружения. [c.299]

    Едва ли необходимо убеждать читателя в том, что в наше время практически ни один эксперимент в органической химии или биохимии не обходится без применения спектроскопических методов. Они широко используются для идентификации продуктов химических и ферментативных реакций или более сложных биологических процессов, обнаружения промежуточных соединений (и тем самым для получения ценной информации о механизмах превращений), исследова- ния кинетики и стереохимии химических реакций, пространственной структуры и динамики молекул и надмолекулярных систем, выяснения строения вновь выделенных природных соединений и для многих других целей. [c.5]

    Применение метода интегрально-структурного анализа с использованием данных ПМР-спектроскопии позволило выявить среди азотистых соединений основного и нейтрального характера структуры, средние молекулы которых построены из 1—2 структурных единиц и представляют собой гетероароматические ядра, сконденсированные с несколькими ароматическими и нафтеновыми циклами и имеющие, как лравило, алкильное обрамление с наибольшей длиной заместителя у нафтенового кольца. Эти структурные единицы макромолекул идентичны но строению соединениям с более низкой молекулярной массой, обнаруженным как в исследуемых нефтях, так и в нефтях других месторождений. С использованием комплекса физико-химических методов разделения и анализа, включающих жидкостно-адсорбцион-яую хроматографию со ступенчатым способом элюирования, установлен структурно-групповой состав основной массы азотистых соединений, содержащихся в концентратах ряда исследованных нефтей. Среди азотистых оснований всех нефтей, как правило, преобладают азаарены, включающие алкилзамещенные структуры бензонроизводных пиридина с максимумом, приходящимся на хинолины. Для них характерно присутствие также основных соединений с N8- и N02-функциями, которые, по данным масс-спектрометрии, были отнесены к производным тиазола и пиридинокарбоновой кислоты соответственно. [c.176]

    Методы термического испарения относятся к группе физических методов разделения и сопровождаются относительно небольшими загрязнениями. В благоприятных случаях (при существенной разнице в летучестях основы и примесей) могут быть достигнуты относительные пределы обнаружения 10 % и менее. Характерными примерами служат определение следов таллия в разнообразных труднолетучих веществах [244, 1095], а также анализ иода с предварительной сублимацией основы [649]. Переведением разделяемых веществ с помощью химических реакций в соединения, различающиеся по летучести значительно больше, чем исходные, можно расширить область применения методов селективного испарения. Однако в подобных случаях приходится решать обычные проблемы повышения надежности определений, характерные для химикоспектральных методов. [c.240]

    Широко применяют химико-спектральные методы после концентрирования микрокомпонента или отделения основы. Химические основы методов весьма разнообразны, равно как и способы отделения. Используют физические и химические методы концентрирования примесей, в том числе и натрия методы фракционной дистилляции [161, 517, 665], отделение основы осаждением [195] или экстракцией [492]. Более полные сведения о применении химико-спектрального анализа для определения натрия в числе других элементов приведены в обзорах [195, 196]. В большинстве случаев используют резонансный дублет 589,6—589,0 нм дублет 330,23—330,30 нм используют редко [130, 405, 493]. Метод применим к анализу органических веществ после постепенного упаривания с угольным порошком [536], ароматических кремнийорганических соединений, диэтиламина и тетратиурамдисульфида после упаривания с сульфатом стронция (предел обнаружения натрия 3-10 %) [386]. Некоторые примеры применения химико-спектральных методов приведены в табл. 43. [c.104]

    Аналогичный метод идентификации был применен для обнаружения приоритетных загрязняюших веществ в городском воздухе, почве, воде и донных отложениях в регионе г. Чапаевска и г. Горловки, где функционирует хорошо развитая химическая промышленность. Работа проводилась на итальянском хроматографе Мега 5300 (Карло-Эрба), оснащенном ПИД и несколькими селективными детекторами (ЭЗД, ПФД, ТИД и детектор Холла). Предварительно высушенная почва (0,8-1,0 г) помещалась в кварцевую трубку-реактор (150 X 6 мм), соединенную системой кранов с испарителем хроматографа [18]. После термодесорбции компоненты пробы разделялись на капиллярной колонке с иммобилизованным полидиметилсилоксаном SE-30 (толщина пленки 5 мкм) при программировании температуры в интервале 40—250°С. [c.399]

    Масс-спектральный детектор с индуцированной плазмой незаменим при определении химических форм селена в пробах воды и почвы [148]. Надежность идентификации возрастает при использования метода изотопного разбавления ( 25е). Метод ГХ/МС использовали для однозначной идентификации ЛОС в салоне самолетов [151], обнаружения сильных лакриматоров сложного строения в выхлопных газах дизельных двигателей [152], изучения реакций химических соединений в атмосфере [153], идентификации компонентов ракетного топлива [ 154] и определения полихлорированных дибензо-п-диоксинов и дибензофуранов в выбросах мусоросжигательных заводов, в воде и почве [155]. Последнее применение МС-детектора является наиболее важным по причине уникальности масс-спектрометрии высокого разреще-ния в определении (в комбинации с хроматографическим разделением) индивидуальных изомеров диоксинов (подробнее см. гл. X). [c.440]

    Обзор методов обнаружения мутаций у млекопитающих дается в разд. 5.2.1.2. Геномные и хромосомные мутации в настоящее время могут быть обнаружены почти на всех стадиях развития. В радиационной генетике возможно осуществление определенных экстраполяций на генные мутации, поскольку радиация индуцирует как хромосомные, так и генные мутации, а чувствительность присуща одним и тем же стадиям клеточного развития. Однако для многих химических мутагенов провести такую экстраполяцию гораздо сложнее. Некоторые соединения могут индуцировать генные мутации, но почти не индуцируют хромосомных мутаций. Поэтому здесь существует более настоятельная потребность в специальном поиске генных мутаций, чем в радиационной генетике. К сожалению, наш арсенал методов их обнаружения беднее, чем арсенал методов, применяемых для выявления геномных и хромосомных мутаций. Многолокусный тест, несмотря на свою пригодность с теоретической точки зрения, отнимает слишком много времени и слишком дорог для рутинного применения. Он, однако, очень полезен для тестирования небольшого числа веществ, относительно которых возникли на основании результатов, полученных более быстрыми, но менее надежными методами (см. ниже), подозрения, что они мутагенны. То же самое приложимо к индукции доминантных мутаций, приводящих к скелетным аномалиям или катарактам [1440]. Методы скринирования мутаций на энзиматическом или белковом уровне все еще находятся в развитии. Биохимическая изменчивость, обнаруженная в отдельных клетках, не может быть с уверенностью идентифицирована как мутационная по происхождению. Можно было бы ожидать сосредоточения усилий на дальнейшем совершенствовании методов скринирования белков и фермен- [c.267]

    Бактериальные интегрирующие векторы находят широкое применение в современной генной инженерии бактерий, в частности, при конструировании стандартных штаммов-продуцентов белков, пептидов или метаболитов. Другим интересным приложением такого рода генетических систем является создание бактериальных штаммов-биорепортеров, используемых для мониторинга окружающей среды и в экотоксикологии. Хотя современные аналитические методы позволяют обнаруживать с высокой эффективностью практически любое химическое соединение, все эти методы не дают ответа на вопрос о биологической опасности таких соединений. Данный недостаток восполняют с помощью биосенсоров в формате целых бактериальных клеток, которые позволяют обнаруживать индивидуальные вещества или группы химических соединений, для которых характерно однотипное взаимодействие с биологическим материалом. Например, для обнаружения фитотоксичных химических соединений применяют генетически модифицированные цианобактерии, исходные представители которых присутствуют в большом разнообразии в фотосинтезирующей биосфере. Введение в хромосому цианобак- [c.102]

    Известную проблему, особенно в биоаналитической химии, составляет определение выхода, т. е. определение процентного количества соединения после его выделения из, скажем, биологической матрицы. Выход часто определяется с помошью метода внутреннего стандарта, основное требование к которому состоит в том, чтобы он по своим свойствам был максимально близок к определяемому соединению. Очень часто эту проблему решить довольно трудно, что, естественно, влияет на достоверность результатов. Почти идеальными внутренними стандартами являются изотопно-меченные аналоги соединения, использование которых привело к исключительно важной роли масс-спектрометрического обнаружения в количественном газохроматографическом анализе. В этом случае для введения метки применяются стабильные изотопы (чаще всего дейтерированные аналоги), и вследствие высокой разрешающей способности такой системы обнаружения отношение меченого внутреннего стандарта и немеченого анализируемого образца можно определить точно. Химическое различие, обусловленное изотопным замещением, обычно пренебрежимо мало и не влияет на результаты выделения и обработки пробы. Хотя в капиллярной ГХ может наблюдаться небольшое различие во временах удерживания изомеров, меченных Н и н, влияние изотопного замещения на удерживание обычно не проявляется ввиду очень незначительного различия в способности к образованию водородных связей с неподвижной фазой. Как и при применении стандартов, меченных радиоактивными изотопами, определение меченого и немеченого соединений основывается целиком на специфическом методе одновременного обнаружения обеих форм. [c.174]

    Рассмотрим подробнее методы получения производных с целью повышения чувствительности ГХ анализа, в том числе получение летучих производных для высококипящих или лабильных соединений, для которых метод ГХ вообще непригоден без перевода их в более летучие производные с проведением химических реакций в мягких условиях. Метод получения производных для повышения чувствительности различных типов детекторов, глав- ным образом таких селективных детекторов, как ДЭЗ, ДТИ и ДПФ, состоит в введении с помощью химических реакций в молекулы анализируемых веществ различных функциональных групп и атомов, к которым используемый детектор имеет максималь- ную чувствительность. Например, ДЭЗ имеет повышенную чув--ствительность к галогенам. Поэтому получение и анализ галоген- содержащих производных органических соединений путем замены атомов Н на атомы С1, Вг, Р и I является перспективным путем повышения чувствительности этого детектора. Получение азот- и фосфорсодержащих производных позволяет увеличить чувст-л вительность анализа с применением ДТИ, а получение фосфор- и серосодержащих производных снижает предел обнаружения ГХ-метода с использованием ДПФ. В табл. 2.13 приведены срав- нительные показания ДЭЗ для некоторых галогенпроизводных спиртов и фенолов. Бром и иод не входят в состав этих производ-1 ных в связи с их малой летучестью и значительно меньшей эффективностью разделения. Из табл. 11.13 видно, что с увели-1 1.  [c.192]

    ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА, основаны ва применении хим. р-ций. В количественных X, м. а. измеряют массу продукта р-ции (гравиметрия), объём р-ра в-ва, количественно прореагировавшего с определяемым компонентом (титриметрия), объем газа, образующегося в результате р-ции (волюмометрия), тепловые эффекты р-цин (энталь-пиметрия), ее скорость (кинетические методы анализа), поглощат, способность р-ра продукта р-даи (фотометрич. анализ) н т, д, В качественных X. м. а, проводят р-ции обнаружения, характерные для ионов в р-ре или атомов о составе орг. соединений. Часто, однако, X, м. а, называют только классич. > методы количеств, анализа — гравиметрию, титриметрию с визуальным обнаружением конечной точки титрования и волюмометрию остальные из перечисленных методов количеств, анализа относят к физ.-химическим (такое деление весьма условно), Классич. методы отличаются высокой точностью и простотой аппаратуры. Их широко используют для определения в-в с содержанием от десятых долей процента до веск, десятков процентов. Однако эти методы постепенно вытесняются физико-химическими методами анализа и физическими методами анализа, отличающимися большей производительностью и меньшей продолжительностью.  [c.649]

    Хроматографический метод разделения основан на малых различиях в таких свойствах веществ, как растворимость, сорбируемость, летучесть, пространственная структура, скорость ионного обмена. Поэтому основой развития хроматографии является понимание химических взаимодействий, определяющих эти свойства. Впечатляет рост масштабов использования жидкостной хроматографии, достигнутый с момента ее появления в 1970 г. В настоящее время на приобретение жидкостных хроматографов, производимых в основном в США, ежегодно затрачивается 400 млн. долл. Такой быстрый рост стал возможен благодаря применению новых приемов и средств, обеспечивших значительное повышение скорости анализа и его разрешающей способности, в частности благодаря использованию давления и подвижных фаз переменного состава (градиентного режима). Повысить селективность разделения и увеличить срок службы колонки позволяют неподвижные фазы с привитыми молекулами . Применение электрохимических, флуориметрических и масс-спектрометрических детекторов повысило чувствительность обнаружения разделяемых компонентов вплоть до 10 г. Газовая хроматография старше жидкостной примерно на десятилетие, но и в ней достигнуты в последнее время заметные успехи. Современные высокоэффективные методы позволяют осуществить разделение всего за несколько десятых секунды. Вне лаборатории применяются портативные хроматографы размером со спичечную коробку. Сложные смеси можно разделять буквально на тысячи компонентов, применяя капиллярные колонки из кварцевого стекла, которые производятся непосредственно по той же технологии, что и оптические волокна для линий связи. Наконец, стало возможно разделять соединения, раз-личаюцщеся только по изотопному составу. [c.241]


Смотреть страницы где упоминается термин Применение метода для обнаружения химических соединений: [c.347]    [c.45]    [c.127]    [c.16]    [c.20]    [c.207]    [c.123]    [c.123]    [c.625]    [c.885]   
Смотреть главы в:

Анализ ядохимикатов -> Применение метода для обнаружения химических соединений




ПОИСК





Смотрите так же термины и статьи:

Химические методы обнаружения

Химическое соединение



© 2025 chem21.info Реклама на сайте