Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мицеллы ПАВ в водных растворах

    По мере протекания полимеризации в мицеллы диффундирует мономер из капель эмульсии, размер которых уменьшается во времени, а размер мицелл увеличивается вследствие образования в них полимера. Возникающие полимер-мономерные частицы адсорбируют эмульгатор из водного раствора, поверхностное натяжение которого повышается. При конверсии мономеров 15—20% практически весь эмульгатор переходит из водного раствора на поверхность полимер-мономерных частиц, а при конверсии мономеров 50—60% исчезают капли мономера. [c.148]


    Переход от сферических к пластинчатым мицеллам (изменение коллоидной структуры водных растворов ПАВ) отражается на кинетических закономерностях полимеризации стирола [44, 45]. Вместе с тем структура мономера также отражается на кинетических закономерностях полимеризации, что подтверждается различными кинетическими закономерностями, например, для стирола и изопрена. [c.151]

    Хотя эти процессы являются самыми простыми из возможных реакций, протекающих в присутствии концентрированных водных растворов гидроксидов щелочных металлов, механизм этих превращений долгое время был непонятен. Депротонирование может протекать на поверхности раздела фаз, в органической фазе под действием экстрагированного гидроксида аммония или же внутри инвертной мицеллы. В настоящее время известно, что этот процесс протекает в результате экстракции QOH. Поскольку при этом не образуется липофильного галоге-нид-аниона, то отравления катализатора не происходит. Протонирование или дейтерирование промежуточно образовавшегося карбаниона протекает под действием небольших количеств НгО или ВгО, которые экстрагируются вместе с анионом. [c.214]

    Следует отметить, что величина pH (от 7 до 10) водных растворов КМЦ существенно не влияет на величину набухания ранее не гидратированных глин и способствует росту набухания гидратированных глин. Последнее объясняется ростом адсорбции мицелл КМЦ на гидратированных глинистых частицах с увеличе-пием pH среды. [c.46]

    Хорошо известно, что органические соединения, особенно неполярные, могут абсорбироваться на поверхности или внутри мицелл. Это приводит к увеличению их растворимости в водных растворах и часто к изменению химической активности. В то же время именно мицеллы, а не индивидуальные молекулы ответственны за изменение скорости органических реакций в водных растворах, содержащих ПАБ. Следовательно, удачный выбор поверхностно-активного вещества может способствовать увеличению скорости в 5—1000 раз по сравнению со скоростью реакции, протекающей в его отсутствие. В зависимости от типа мицелл создается повышенная концентрация ионов Н+ или 0Н в слое Штерна, что и обусловливает увеличение скорости реакции. Другие основные или нуклеофильные группы в мицелле также должны оказывать каталитическое действие. Гораздо более слабые взаимодействия между мицеллой и противоионами существуют в более широком слое Гуи — Чепмена, ширина которого (от поверхности мицеллы) составляет несколько сотен ангстрем в этом слое содержание ионов меняется плавно( плавный градиент ионов). [c.284]


    При введении в растворы ПАВ активных добавок поли-и электролитов снижаются поверхностное натяжение и показатель преломления растворов ПАВ. Мицеллы в водных растворах ком- [c.115]

    Разработаны и предложены различные механизмы защиты НПАВ от разрушения. Механизм стабилизации сводится к защите эфирных атомов кислорода оксиэтильной части молекул от воздействия компонентов пластовой среды. Добавка электронодонорных или электроноакцепторных соединений экранирует молекулы НПАВ от активных центров. Введение в качестве добавок спиртов в водный раствор неонола АФ,-12 стабилизирует мицеллы НПАВ за счет конкурирующей реакции комплексообразования с ионами металлов переменной валентности. [c.54]

    Дж/м , т. е. до значения поверхностного натяжения жидких углеводородов. Аналогичное явление наблюдается на границе водный раствор ПАВ — углеводородная жидкость, что создает предпосылки для образования мелкодисперсных систем за счет возникновения структур типа мицелл, микроэмульсий, бислойных мембран, везикул (пузырьков) и т.п. [c.268]

    Мицеллами называют ассоциат из молекул ПАВ (обычно в количестве от нескольких десятков до нескольких десятков тысяч), ориентированных, например, в водных растворах гидрофобными хвостами друг к другу (нормальные мицеллы). В гидрофобных (неполярных) растворителях образуются обратные мицеллы (рис. 14.4). [c.268]

    Фундаментальное свойство экстракционной модели, обусловленное самой природой гидрофобных взаимодействий, заключается в том, что инкремент свободной энергии переноса углеводородного фрагмента в молекуле лиганда из воды в органический растворитель практически не зависит от природы последнего [43—47]. Это связано с тем, что главный вклад в эту величину вносит свободная энергия сольватации углеводородного фрагмента в воде. Так, например, независимо от природы органического растворителя инкремент свободной энергии переноса СНа-группы из воды в органическую фазу составляет примерно 700 кал/моль (3000 Дж/моль) [45]. Приблизительно та же величина свободной энергии характеризует адсорбцию алифатических соединений на поверхности раздела фаз вода — масло или вода — воздух, адсорбцию их из водного раствора на поверхность ртутной капли или же процесс солюбилизации органических молекул мицеллами детергентов [45]. Значение этого факта трудно переоценить, поскольку именно поэтому (пользуясь сопоставлением термодинамики гидрофобного взаимодействия белок — органический лиганд с аналогичными данными для модельных процессов) можно выявить, в принципе, специфические свойства структуры или микросреды гидрофобных полостей в белках.  [c.27]

    В водном растворе молекулы ПАВ выше определенной концентрации (критическая концентрация мицеллообразования, ККМ) агрегируют, образуя так называемые мицеллы [98, 991  [c.114]

    Прежде чем приступить к изложению теории строения коллоидных частиц, необходимо отметить, что термин коллоидная частица носит неопределенный характер более правильным и более точным является термин коллоидная мицелла . Рассмотрение теории строения коллоидных мицелл рациональнее всего начать с лиофобных или (в случае водных растворов) гидрофобных коллоидных систем. [c.310]

    Определение ККМ методом титрования возможно при использовании индикатора, имеющего различную окраску в водной и углеводородной средах. При низких концентрациях ПАВ, когда мицеллы в растворе отсутствуют, краситель-индикатор имеет окраску, характерную для водной среды. При наличии мицелл происходит солюбилизация, т. е. поглощение красителя внутренней угле- [c.183]

    Как уже отмечалось, повышенная растворимость олеофильных веществ в водных растворах ПАВ обусловлена связыванием этих веществ мицеллами. При этом истинная растворимость в водной (межмицеллярной) фазе практически не изменяется по сравнению с таковой в чистой воде. Для понимания механизма процессов, протекающих в системах раствор ПАВ — солюбилизат (эмульсионная полимеризация, мицеллярный катализ и др.), важно знать, где располагаются и как ориентируются солюбилизированные молекулы в мицеллах. Для выяснения этого вопроса привлекались данные рентгенографии, УФ- и ЯМР-спектроскопии, электронного парамагнитного резонанса и других физических методов исследования. [c.70]

    И насыщенных солюбилизатами водных растворов олеата натрия. Наличие ветви аномальной вязкости на реологической кривой 10%-ного раствора олеата без добавок (начало ее отмечено стрелкой) свидетельствует о присутствии в растворе асимметричных (пластинчатых) мицелл Солюбилизация углеводородов, кривые 2—4) вызывает разжижение системы (кривые идут круче) и исчезновение аномалии вязкости. Эти аффекты объясняются, по П. А. Ребиндеру и [c.75]

    Процес солюбилизации обычно рассматривают как самопроизвольное распределение олеофильного вещества между двумя фазами Одной из них является истинный водный раствор ПАВ (макрофаза), а другая представляет собой коллоидную микрофазу — мицеллы. Состояние равновесия [c.76]


    Развитие представлений о мицеллярной структуре и солюбилизации в водных растворах поверхностно-активных веществ привело к выводу, что полимеризация коллоидно-растворенного мономера начинается в мицеллах мыл и затем протекает в полимер-мономерных частицах [28—31]. Эти представления легли в основу математической модели и теории эмульсионной полимеризации, развитой Смитом и Эвартом [32, 33]. [c.147]

    Медведев на основании большого экспериментального материала и имеющихся опубликованных данных о роли коллоидной растворимости мономеров в процессе полимеризации предложил его топографию в зависимости от природы изученных к тому времени мономеров [34, 35—37]. Под действием инициатора, растворимого только в мономере, независимо от растворимости последнего в воде, полимеризация начинается в мицеллах эмульгатора, содержащих и мономер и инициатор. То же относится и к мономерам, нерастворимым в воде (бутадиен, изопрен, стирол, винилхло-рид, винилиденхлорид и др.). При полимеризации мономеров, хорошо растворимых в воде (например, таких, как акрилонитрил), или частично растворимых в воде (метилакрилат, метилиетакря-лат и др.) процесс может начинаться в водной фазе в присутствии водорастворимых инициаторов процесса и частично, в зависимости от полярности мономера, в мицеллах эмульгатора. Для мономеров с высокой растворимостью в воде преобладающим является образование растущих полимерных цепей в водном растворе. [c.147]

    Образование мицелл характерно для водных растворов моющих веществ (нанрнмер, мыл — щелочных солей выс1них жирных кислот) и некоторых органических красителей с большими [c.313]

    Коллоидные растворы представляют собой гетерогенную (двухфазную) систему, в которой одной фазой является коллоидно-раздробленное вещество (дисперсная фаза), другой — растворитель (дисперсионная среда). Коллоидное состояние вещества характеризуется определенной степенью раздробления этого вещества. В коллоидных растворах частицы представляют собой скопления многих молекул, составляющие целые агрегаты — мицеллы. Коллоидные растворы аэ.гъгваж) мицеллярными золями, а их водные растворы — гидрозолями. Для получения мицеллярных растворов и их длительного существования требуются некоторые непременные условия наличие двух взаимно нерастворимых компонентов и достижение коллоидной степени дисперсности вещества дисперсной фазы (размалывание, растирание, распыление и другие механические приемы дробления вещества). [c.34]

    Однако в некоторых случаях мицеллярный катализ может наблюдаться. Например, аликват 336 (метилтриоктиламмонийхлорид) является очень эффективным липофильным МФ-катализатором (см. ниже). Сам по себе он мицеллы не образует. В водных растворах в отсутствие органических растворителей он суш,ествует в виде масляной суспензии. Однако, если добавить в смесь какой-либо неионный мицеллообразующий агент (например, полиоксиэтиленгликоль), аликват уходит внутрь или на поверхность неионной мицеллы. Образующийся таким способом катализатор оказывается очень эффективным во многих процессах [39]. В воде при очень низких концентрациях (10 —10 М) аликват 336 образует самоассоциаты. И хотя они существенно меньше, чем обычные глобулярные мицеллы, они катализируют нуклеофильный гидролиз и реакции декарбоксилирования 40]. Совершенно ясно, что механизм гидролиза нуждается в дальнейшем тщательном изучении. [c.66]

    Исследована [167] возможность применения метода обратного осмоса для разделения растворов различных ПАВ, а также растворов, содержащих смесь поверхностно-активиых веществ с неорганическими солями. ПАВ, присутствующие в различных промышленных стоках, образуют в водных растворах необычные системы, так как в зависимости от концентрации и температуры эти вещества могут присутствовать в растворе или как простые молекулы, или как ионы, или как смесь мономеров и коллоидных агрегатов-мицелл. Поэтому характеристики разделения ПАВ будут в значительной степени определяться структурой растворов. А именно, мономеры, по-видимому, будут задерживаться мембраной в меньшей степени,, в то время как мицеллы задерживаются полностью и затрудняют прохождение мономера через мембрану. [c.320]

    Так, термин мицелла впервые был введен Мак-Бэиом в 1913 г, для обозначения агрегатов дифильных электролитов в водных растворах. Как известно, фундаментальной характеристикой мицеллообразующих веществ является дифильность их молекул, т, е, наличие в молекуле полярной и неполярной частей. В основе современных представлений о структуре мицеллы лежит модель Дж. Хартли, согласно которой мицеллы имеют жидкоподобное ядро, образованное из полярных головок или углеводородных хвостов (в зависимости от типа мицеллярного раствора). Граничный слой образован соответственно углеводородными частями или полярными группами тех же самых молекул, что формируют ядро мицеллы. Процесс мицеллообразования носит кооперативный характер и начинается по достижении критической концентрации мицеллообразования. Сегодня же понятие мицелла используют не только в его первоначальном смысле, но и более широко для обозначения упорядоченных областей в полимерах, органических коллоидных частиц, обнаруженных в угле, глинах и т. д. Такая трансформация термина мицелла не оправдана. Именно поэтому на Международном симпозиуме по мицеллообразоваиию, солюбилизации и микроэмульсиям было предложено применять его в первоначальном смыс.ш Г1191. [c.71]

    На процесс м1щеллообразования в водных растворах существенно влияет структура воды, которая способствует выталкиванию углеводородных радикалов из раствора одновременно частично разрущается структура воды. Благодаря дифильному строению молекул ПАВ углеводородные радикалы, взаимодействующие между собой в мицеллах, экранируются полярными гидрофильными группами. Поэтому происходит самопроизвольное мицеллообразование с минимальным поверхностным натяжением на границе раздела мицелла—вода, сопровождающееся умень-и]ением энергии Гиббса системы. Эффектом экранирования объясняется уменьщение энтальпии в процессе мицеллообразования. Взаимодействие отдельных частей молекулы ПАВ в молекулярном растворе с растворителем характеризуется различным изменением энтальпии лиофильная часть взаимодействует с выделением теплоты, лиофобная — с поглощением теплоты. Именно поэтому энтальпия растворения ПАВ имеет небольшие положительные илн отрицательные значения (чаще всего для водных растворов она положительна). В мицеллярном растворе экранирование лнофоб-ных групп приводит к уменьшению поглощения теплоты, т. е. н снижению энтальпии системы по отношению к энтальпии образования истинного раствора. Так как мицеллообразование является процессом возникновения новой фазы, то его можно сравнить с расслоением системы, т. е. с процессом ее упорядочения. Для таких процессов характерно уменьшение энтропии. Таким образом, самопроизвольное мицеллообразование по сравнению с образованием молекулярного раствора обусловлено уменьшением энтальпии [см. уравнение (УГ25)]. [c.297]

    При концентрациях ПЛВ а водном растворе, несколько превышающих ККМ, согласно представлениям Гартли образуются сферические мицеллы (см. рис. VI. 5). Эти мицеллы обычно называют мицеллами Гартли. Внутренняя часть мицелл Гартли состоит из переплетающихся углеводородных радикалов, полярные группы молекул ПАВ обращены в водную фазу. Диаметр таких мицелл равен удвоенной длине молекул ПАВ. Число молекул в мицелле быстро растет в пределах узкого интервала концентраций, а при дальнейшем увеличении концентрации практически не изменяется — увеличивается чи vTO мицелл. Сферические мицеллы могут содержать от 20 до 100 молекул. Например, по данным светорассеяния, мицелла додецилсульфата натрия состоит в среднем из 73 молекул. Число агрегации увеличивается при добавлении в раствор ПАВ электролитов. Размер мицелл иоиогенных ПАВ постепенно уменьшается с иовышением температуры. Размер же мицелл неионогенных ПАВ возрастает с температурой. [c.298]

    Мицеллообразование а неводных средах, как правило, является результатом действия сил притяжения между полярными группами ПАВ и взаимодействия углеводородных радикалов с растворителем. Образующиеся мицеллы обращенного вида содержат внутри негидратироваиные или гидратированные полярные группы, окруженные слоем из углеводородных радикалов. Число агрегации (от 3 до 40) значительно меньше, чем для водных растворов ПАВ. Как правило, оно растет с увеличением углеводородного радикала до определенного предела. [c.299]

    Введение электролитов в водные растворы неионогеиных ПАВ слабо влияет на ККМ и размер мицеллы. Для ионогенных ПАВ это влияние существенно. Сравнение свойств ионогенных и неионогенных ПАВ, имеющих одинаковые углеводородные цепи, показывает, что мицеллярная масса ионогенных ПАВ намного меньше, чем для неионогенных, причем с ростом концентрации электролита [c.301]

    Введение неэлектролитов (органических растворителей) в водные растворы ПАВ также приводит к изменению ККМ. При наличии солюбилизации устойчивость мицелл повышается, т. с. уменьшается ККМ. Если молекулы растворителя не входят внутри мицелл, то они, как правило, увеличивают ККМ илн за счет повышения растворяющей способности, или благодаря уменьшению диэлектрической проницаемости и увеличению силы отталкивания между органическими ионами. С уменьшением диэлектрической проницаемости растворителя снижается диссоциащ1я ионогенных ПАВ, что увеличивает способность ПАВ к образованию мицелл. [c.302]

    Типичными представителями лиофильных дисперсных систем я1зля-ютс я растворы коллоидных ПАВ (ассоциативные коллоиды) и растворы полимеров (молекулярные коллоиды). В растворах коллоидных ПАВ мицеллы (частицы) образуются вследствие ассоциации дифильных молекул. При ассоциации лиофильные части молекул ПАВ (имеющие большее сродство к растворителю) располагаются на периферии мицеллы, внутри ее находятся лиофобные части молекул. Так, в водных растворах неполярные углеводородные радикалы молекул ПАВ образуют ядро мицеллы, а полярные группы обращены к воде. В неполярных средах образуются обратные мицеллы, т. е. внутри мицеллы располагаются полярные группы. [c.130]

    Значение ККМ уменьшается также с уменьшением гидратации (ги-дрофильности) противоионов. Введение электролитов (индифферентных) снижает ККМ у ионогенных ПАВ и слабо влияет на ККМ неионогенных ПАВ. Введение неэлектролитов (органических растворителей) при наличии солюбили.зации приводит к повышению устойчивости мицелл, т. е. к уменьшению ККМ в водных растворах ПАВ. При отсутствии солюбилизации, как правило, ККМ увеличивается за счет усиления растворяющей способности среды. [c.131]

    В водных растворах коллоидных ПАВ при очень низких концентрациях, соответствующих ККМ, образуются сферические мицеллы, которые содержат от 20 до 100 молекул и характеризуются узким распределением чаетиц по размерам. При увеличении концентрации ПАВ происходит переход мицеллы из одной формы в другую (цилиндрическую, дискообразную и т. д.) при соответствующей критической концентрации — KKMs, ККМз и т. д. [c.132]

    Поверхностное натяжение водных растворов ПЛВ уменьшается с ростом концентрации вплоть до ККМ. Изотерма ст = /(1пс [дд (рис. 39) в области низких концентраций ПАВ имеет криволинейный участок, на котором в соответствии с уравнением Гнббса адсорбция Г на межфазной Гранине возрастает с ростом концентрации. При определенной концентрации Ст криволинейный участок изотермы переходит в прямую с постоянные значением da/dln , т. е. адсорбция достигает постоянного и MaK HMaj[bHoro значения. В этой области на меж([)азной границе формируется насыщенный мопомолекулярный адсорбционный слой. При дальнейшем увеличении концентрации ПАВ (с д, >ККМ) в объеме раствора образуются мицеллы и поверхностное натяжение практически не изменяется. ККМ определяется по излому изотермы при выходе ее на участок, параллельной оси In . [c.133]

    Напишите формулу мицеллы олеата натрия в водном растворе, если число агрегации равняется 60. Как изменится строение мицеллы при введении в раствор больших количеств Na I  [c.157]

    Зол1, Ай1 получен при добавлении 8 мл водного раствора К1 концентрацией 0,05 моль/л к 10 мл водного раствора Ag NOз концентра-ЦПе1 0,02 моль/л. Напишите формулу мицеллы образовавшегося золя. Как заря/1с( н 1 частица золя Каким методом можно определить этот заряд  [c.181]

    Чаще всего мицеллы имеют сферическую форму. В полярном растворителе, таком, как вода, гидрофобные углеводородные цепи поверхностно-активных веществ сосредоточены внутри сферы, по поверхности которой распределены полярные или ионные головки , ориентированные в направлении противоионов, находящихся в водном растворе. Объединяясь вместе, гидрофобные группы обеспечивают благоприятное изменение энтропии, так как при этом молекулы воды уходят из водноорганической интерфазы и гидрофобные группы приобретают значительную свободу движения внутри мицеллы. Именно это увеличение энтропии приводит к благоприятному изменению свободной энергии при мицеллообра-зовании. [c.283]

    Мицелла - агрегат из длиноцепочечных дифильных молекул или ионов ПАВ, образующийся самопроизвольно в их растворах при определенной концентрации, зависящей от природы полярной группы и, особенно, от длины углеводородной цепи молекулы. В водных растворах ассоциация части молекул (ионов) происходит в результате сцепления углеводородных цепей, а в неводных (неполярных) средах - за счет полярных функциональных групп. [c.67]

    Уже дав но было высказано предположение, что детергенты образуют мице.плы в неводных растворителях. Доказательства, приводившиеся в пользу этого предположения, были хотя и косвенными, ио вполне правдоподобными. Мицеллы встречаются в водных растворах детергентов и приводят к явлению, именуемому растворением. Это же явление наблюдается в неводных растворах (см. ссылку 140). Следовательно, вывод о том, что мицеллы образуются также и в последнем случае, вполне логичен. Более прямое доказательство наличия мицелл в неводных растворах детергентов приводят Аркин и Синглтерри (см. ссылку 141). Эти исследователи использовали очень остроумный прием, основанный на наблюдениях KoppiHHa (см. ссылку 142), который установил, что определенные красящие вещества начинают флуоресцировать после, а не раньше наступления критической концентрации мицелл. Аркин и Синглтерри показали, что раствор из красящего вещества [c.174]

    Успешная перекачка высоковязких и высокозастывающих нефтей по трубопроводам совместно с водными растворами ПАВ в виде прямых эмульсий бывает лишь при определенной концентрации ПАВ, которая должна быть не ниже некоторой предельной величины, обеспечивающей эффективную стабилизацию прямых эмульсий. По Ребиндеру для ионогенных ПАВ эта концентрация должна быть не ни е ККМ (критическая концентрация мицелло-образования). Для сеионогенных ПАВ это не является необходимым условием. [c.97]

    Значительные размеры мицелл (30 А и более) позволяют рассматривать их (ио крайней мере геометрически) как некоторую псевдофазу, которая, однако, не отделяется от водного раствора в виде макрофазы, а существует в диспергированном состоянии, образуя устойчивый изотропный раствор. [c.115]

    Согласно общепринятым представлениям в водных растворах мицеллярных ПАВ вначале возникают сферические мицеллы (мицеллы Хартли), которые затем переходят в пластинчатые мицеллы (мицеллы Мак-Бэна). [c.180]


Смотреть страницы где упоминается термин Мицеллы ПАВ в водных растворах: [c.324]    [c.357]    [c.324]    [c.287]    [c.301]    [c.130]    [c.139]    [c.184]    [c.58]    [c.139]    [c.99]   
Смотреть главы в:

Курс коллоидной химии 1984 -> Мицеллы ПАВ в водных растворах

Курс коллоидной химии -> Мицеллы ПАВ в водных растворах




ПОИСК





Смотрите так же термины и статьи:

Мицеллы



© 2025 chem21.info Реклама на сайте