Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глава III. Химическая связь в молекулах. Строение и свойства молекул

    Теоретические основы химии Глава 1. Предмет химии. Важнейшие понятия и законы химии 1.1. Типовые задачи с решениями 1.2. Задачи и упражнения Глава 2. Строение атома и периодический закон. Радиоактивные превращения 2.1 Типовые задачи с решениями г 2.2. Задачи и упражнения Глава 3. Химическая связь, строение и свойства молекул 3.1. Типовые задачи с решениями 3.2. Задачи и упражнения Глава 4. Г азы, жидкости и твердые вещества 4.1. Типовые задачи с решениями 4.2. Задачи и упражнения Глава 5. Изменения энергии в химических реакциях 5.1. Типовые задачи с решениями 5.2. Задачи и упражнения Глава 6. Химическая кинетика и катализ [c.1]


    Глава 3. Химическая связь, строение и свойства молекул [c.29]

    В предшествующих главах было рассмотрено строение изолированных атомов и образование химических связей между атомами. Теперь мы перейдем от обсуждения того, что происходит внутри атомов и молекул, к выяснению общих свойств больших совокупностей молекул в газообразном, жидком и твердом состояниях вещества. Исторически изучение этих трех состояний вещества предшествовало появлению современных представлений о строении атома и о природе химической связи в молекулах. Накопленные при этих исследованиях знания послужили прочным фундаментом для последующего изучения строения атомов и молекул, а также для многих других разделов химии. [c.147]

    Методы выделения нуклеиновых кислот. При изучении химического состава и строения нуклеиновых кислот перед исследователем всегда стоит задача выделения их из биологических объектов. В главе 2 было указано, что нуклеиновые кислоты являются составной частью сложных белков — нуклеопротеинов, содержащихся во всех клетках животных, бактерий, вирусов, растений. Нуклеиновые кислоты обладают сильно выраженными кислыми свойствами (обусловлены остатками ортофосфорной кислоты в их составе) и при физиологических значениях pH несут отрицательный заряд. Этим объясняется одно из важных свойств нуклеиновых кислот—способность к взаимодействию по типу ионной связи с основными белками (гистонами), ионами металлов (преимущественно с М "), а также с полиаминами (спермин, спермидин) и путресцином. Поэтому для вьщеления нуклеиновых кислот из комплексов с белками необходимо прежде всего разрушить эти сильные и многочисленные электростатические связи между положительно заряженными молекулами белков и отрицательно заряженными молекулами нуклеиновых кислот. Для этого измельченный путем [c.96]

    В зависимости от механизма действия различают ферменты с относительной (или групповой) и абсолютной специфичностью. Так, для действия некоторых гидролитических ферментов наибольщее значение имеет тип химической связи в молекуле субстрата. Например, пепсин в одинаковой степени расщепляет белки животного и растительного происхождения, несмотря на то что эти белки существенно отличаются друг от друга как по химическому строению и аминокислотному составу, так и по физико-химическим свойствам. Однако пепсин не расщепляет ни углеводы, ни жиры. Объясняется это тем, что точкой приложения, местом действия пепсина является пептидная —СО—КН-связь. Для действия липазы, катализирующей гидролиз жиров на глицерин и жирные кислоты, подобным местом является сложноэфирная связь. Аналогичной групповой специфичностью обладают трипсин, химотрипсин, пептидазы, ферменты, гидролизующие а-гликозидные связи (но не 3-гликозидные связи, имеющиеся в целлюлозе) в полисахаридах, и др. Обычно эти ферменты участвуют в процессе пищеварения, и их групповая специфичность, вероятнее всего, имеет определенный биологический смысл. Относительной специфичностью наделены также некоторые внутриклеточные ферменты, например гексокиназа, катализирующая в присутствии АТФ фосфорилирование почти всех гексоз, хотя одновременно в клетках имеются и специфические для каждой гексозы ферменты, выполняющие такое же фосфорилирование (см. главу 10). [c.142]


    Содержание и цель. В рамках книги данного типа в одной главе удается дать лишь самое короткое представление о предмете. Обсуждение приходится ограничить качественным рассмотрением без математического описания. Материал данной главы нужно принять как основу, которую в дальнейшем необходимо расширить, насколько это будет возможно. В то же время овладение теорией связи и строения молекул не является самоцелью. Это только важное средство для понимания действительных свойств и реакций химических соединений. [c.113]

    Специфические особенности физики полимеров, позволяющие рассматривать ее как особую отрасль физики, связаны, как известно, с тем, что полимерные молекулы состоят из большого числа мономерных единиц и обладают большим числом внутренних степеней свободы. Гибкость макромолекул, объясняющая особые свойства полимерных веществ (и прежде всего, их высокоэластичность), в свою очередь, требует объяснения и детального описания в связи с химическим строением конкретных полимеров. Поэтому физика индивидуальных макромолекул становится важнейшей в принципиальном отношении главой физики полимеров, так как установление связи между физическими свойствами макромолекул и их химическим строением должно открыть путь к синтезу полимеров с заданным комплексом физико-механических характеристик, удовлетворяющих потребностям практики. [c.11]

    Вместе с тем следует подчеркнуть еще одну особенность кни гн Драго. На основании изучения физических свойств можно де лать различные выводы, но мы часто видим, что из сложных экспериментальных исследований (например, в области электронного парамагнитного резонанса) делаются только общие выводы физического характера (оцениваются лишь параметры спинового гамильтониана). Для химика такие исследования не представляют особенно большого интереса, поскольку он не может связать подобные данные с непосредственно волнующими его проблемами, касающимися строения и свойств молекул. Во многих книгах по электронному парамагнитному резонансу авторы-физики вообще не доходят до химических результатов. Драго, напротив, акцентирует именно химические выводы, уделяя основное внимание химическим приложениям физических методов. Большую часть главы, посвященной ЭПР, составляет рассмотрение сверхтонкой структуры, а главы, посвященной ЯМР, — анализ химических сдвигов, т. е. именно разбор тех особенностей спектров ЭПР и ЯМР, которые позволяют делать выводы, существенные для химии. [c.8]

    В классической органической химии молекула считается полностью охарактеризованной, если известна ее структурная формула, т. е. если известно расположение атомов в молекуле и химические связи, которыми эти атомы соединены. Это положение неверно в случае макромолекул. Так, могут быть две макромолекулы с одной и той же структурной формулой, но с совершенно различными физическими и химическими свойствами. Одна молекула, например, может быть вытянута в длинную цепь, а другая свернута в компактный клубок. В настоящей главе рассматриваются вопросы структуры молекул именно с точки зрения связи структуры с формой молекул. Следует подчеркнуть, что конфор-мационное поведение макромолекул в значительной мере определяется их химическим строением. В одном крайнем случае, когда имеются сильные внутримолекулярные взаимодействия, реализуется лишь одна конформация, которую принимают все макромолекулы. В другом крайнем случае, когда такие специфические взаимодействия полностью (или почти полностью) отсутствуют, любые возможные конформации имеют равную вероятность. [c.26]

    Полученные в главах 5, 6, 7 корреляционные уравнения и зависимости представляют интерес для прогнозирования строения и свойств фенолов. На основании уравнений, по известным значениям констант заместителей а, можно предсказывать спектроскопические и физикохимические параметры гидроксила — рКд, ЮН, уОН или, наоборот, по данным рКа, 50Н, уОН можно предсказывать значения а. Следовательно, результаты корреляционного анализа дают возможность делать структурные выводы, так как все эти параметры связаны со структурой молекул. Отсюда вытекает самостоятельное значение корреляционных исследований в соответствии с проблемами структурного анализа и установления строения и свойств соединений нефтехимического синтеза. Для характеристики антиокислительной активности фенолов имеют значение спектроскопические и физико-химические константы гидроксила — уОН, рКд, 80Н, поэтому результаты корреляционного анализа представляют интерес также и в связи с проблемой предсказания антиокислительной активности ингибиторов. [c.38]

    Проблема структурной организации пептидов и белков включает в себя две противоположные по постановке задачи. Первая из них (назову ее прямой структурной задачей) связана с установлением пространственного строения и конформационных, динамических свойств природных олиго- н полипептидов по известной аминокислотной последовательности. Анализу различных аспектов и оценке перспектив развития существующих подходов к решению этой задачи посвящены все предшествующие главы книги. Цель обсуждаемой в заключительной главе второй задачи, названной мной обратной, состоит в целенаправленном конструировании химического строения молекулы, обладающей наперед заданной пространственной структурой. [c.542]


    Вторая часть книги, двадцать две ее главы (т. 2 и 3 в русском переводе), содержит систематическое описание строения молекул, молекулярных, олигомерных или бесконечно-полимер-ных ионов и кристаллов соединений разных химических классов. Очередность изложения материала можно назвать классической это именно тот порядок, который принят в большинстве учебников по неорганической химии. Просмотрев оглавление, читатель убедится, что автор движется по группам периодической таблицы Д. И. Менделеева последовательно рассматриваются соединения с участием водорода, галогенов, кислорода, серы и других халькогенов, азота, фосфора и их аналогов по группе и т. д. Такой порядок расположения материала делает монографию, с одной стороны, очень удобным и нужным дополнением к учебникам по неорганической химии (особенно полезным для аспирантов и соискателей степени кандидата наук), с другой стороны, хорошим источником сведений о структурных основах для научных работников — специалистов в той или иной области неорганической химии. Каждая глава (или группа глав) книги может служить фундаментом для разработки углубленных концепций о связи между реакционной способностью, строением и физико-химическими свойствами соответствующих классов соединений. [c.6]

    Классификация. Связь строения со свойствами. В предыдущих главах мы неоднократно упоминали о различных органических соединениях, отличающихся большим размером молекул к ним относятся каучуки, белки, полисахариды. Подобные соединения с молекулярным весом от нескольких тысяч до миллионов получили название высокомолекулярных полимерных). Некоторые из них выполняют важные функции в живых организмах, о чем уже была речь. В настоящее время научились синтезировать много разных высокомолекулярных соединений, нашедших применение для изготовления различных материалов пластмасс, волокон, эластомеров. Для этих материалов очень важны физико-механические свойства — их прочность, эластичность, термостойкость и др. В результате изучения высокомолекулярных соединений установлено, что их физико-механические свойства зависят прежде всего от формы молекул, химический состав играет подчиненную роль. [c.451]

    Глава I Стирка и очистка содержит некоторые формулировки основных понятий, обзор физико-химических процессов очистки, описание видов загрязнений и очищаемых предметов, рассматривает старые и новые представления о строении молекулы вещества и его связи со свойствами. [c.16]

    Данная глава посвящена физическим и химическим свойствам чистьк элементов и сходных с ними веществ. Строение этих веществ существенно отличается от рассмотренного нами ранее строения соединений с ионными и ковалентными связями. Металлические и неметаллические элементы существуют вследствие образования химической связи между одинаковыми атомами, что ограничивает число возможных молекулярных образований и способов расположения атомов в твердых веществах. Неметаллические элементы образуют неполярные ковалентные молекулы, начиная от двухатомных молекул типа Н2, О2, N2 или 2 и кончая гигантскими молекулами элементарного углерода и кремния. Ко всем этим системам вполне применимы те критерии, определяющие устойчивость молекул, которые были изложены в гл. 7 и 8. В этих системах все валентные атомные орбитали с достаточно низкой энергией заполнены связывающими или несвязывающими электронами а, геометрия молекул определяется отталкиванием валентных электронных пар. Поскольку атомы благородных газов обладают устойчивым электронным строением, эти элементы существуют в виде одноатомных молекул. Многие неметаллические элементы способны существовать в одной из двух или даже нескольких аллотропных форм в качестве примера можно привести углерод, существующий в виде алмаза и графита, а также кислород, элементарными формами которого являются О2 и О3 (озон). Размеры и строение молекул неметаллических элементов определяются теми же факторами, которые рассматривались в гл. 7 и 8. Некоторые из этих веществ будут подробно обсуждаться в разд. 22.5. [c.387]

    Крутой поворот в теории атома, химической связи и строения молекул последовал за открытием электрона. Но Штарк из первых электронных теорий упоминает только рассмотренную в предыдущей главе теорию строения атома, предложенную в 1904 г. Томсоном. Штарк ссылается на позицию Аррениуса, о которой мы уже упоминали (стр. 12), а также на бесперспективность применения атомной модели Томсона для объяснения строения многочисленных органических соединений. Химик-органик скорее откажется от всякой атомной модели, чем использует для теорий конституции малонаглядные динамические свойства атомной модели Томсона [там же, стр. 58]. Штарк далее пишет, что если Томсон и пошел дальше него, высказав соображения о природе внутренней части атомов, то это вовсе не преимущество, а недостаток взглядов английского физика. Штарк признает, однако, что опыт позволяет предложить [c.70]

    Главы 1—6 посвящены основам теоретических представлений и матема тическому аппарату квантовой химии. В гл. 7 и 8 обсуждается строение атома. В гл. 9—15 развивается теория электронного строения молекул. Большое внимание прн этом уделяется теории Хюккеля ввиду ее предельной простоты. (Она позволяет дать полуколнчественное описание химической связи без сложных математических вычислений интегралов или проведения итерационных процедур.) В гл. 16 рассматриваются колебания молекул, а в гл. 17 — их магнитные свойства (главным образом магнитный резонанс). Эти две главы иллюстрируют проблемы, не связанные с электронными волновыми функция.ми. Более того, если магнетизм рассматривается в чисто спиновом приближении, то базисный набор, являющийся полным в рамках этого приближения, может быть использован для построения волновых функций. Глава 18, посвященная химической кинетике, показывает, что многие важные сведения удается получить на основе чисто качественного применения кваитовохнмических представлений. [c.8]

    Если бы не было определенной закономерности, в соответствии с которой атомы различных элементов соединяются, образуя молекулы и кристаллические соединения, то приходилось бы запоминать формулы тысяч соединений. Однако формулы различных веществ в значительной мере поддаются систематизации, в основе которой лежит тот факт, что некоторые элементы имеют вполне определенную способность образовывать соединения или обладают определенной валентностью (от латинского слова valentia — сила или способность), определяющей число других атомов, с которыми может соединяться атом данного элемента. Другие элементы, более слон<ные по своему поведению, могут проявлять одну из двух или большего числа присущих им валентностей. Данная глава посвящена вопросам природы валентности, валентности элементов и ее связи со строением атомов, систематизации валентностей и других свойств элементов, достигаемой периодической системой все эти вопросы — очень важная часть химической науки. [c.159]

    Теория электронных смещений, как об этом очень определенно высказался Инголд (стр. 125) — это химическая теория электронного строения и реакционной способности органических соединений. Естественно сопоставить ее с физическими теориями, о которых также упоминает Инголд. Для этих теорий характерно — делать выводы о строении молекул, исходя из физических представлений о строении атома, о свойствах электрона, о природе валентности и химической связи. В главе И, а особенно в главе И1 мы уже встречались с примера.ми построения теории строения органических соединений поэтому принципу. Однако в то вре.мя физический фундамент подобных теорий не был разработан в достаточной степени. Иное положение создалось после возникновения квантовой механики. Теории, построенные на ее основе, продолжают успешно развиваться и в наши дни, оказывая глубокое влияние на всю теоретическую органическую химию. Этим теориям посвящены следующие главы. В заключительной главе физические теории сопоставлены с химической теорией электронных смеп1еннй, рассмотренной в настоящей главе, чтобы сделать выводы о перспективах развития современной электронной теории строения и реакционной способности органических соединений. [c.155]

    Все возрастающее значение физических методов исследования в неорганической химии — в настоящее время общепризнанный факт. Сейчас почти ни одна работа по синтезу новых неорганических соединений не обходится без изучения таких свойств полученных веществ, как их электронные и колебательные спектры, магнетизм, электронный парамагнитный, ядерный магнитный или квадруполь-ный резонанс и т. п. Постоянно растет число примеров, когда строение молекул устанавливается не только на основании химических данных, но и с помощью прямых физических методов (дифракционных или каких-либо других). Этим определяется появление большого числа книг, посвященных физическим методам исследования или физическим свойствам неорганических соединений. Вслед за появившейся сравнительно недавно книгой Драго Физические методы в неорганической химии [1 ] в Англии вышла еще одна книга под тем же названием, состоящая из ряда статей, написанных разными авторами — специалистами по отдельным физическим методам, под общей редакцией Дэя и Хилла и книга Новые пути неорганической химии под редакцией Эбсуорта, Меддока и Шарпа, в которой также существенная часть объема уделяется физическим свойствам неорганических соединений. Обе последние книги отличаются от книги Драго и других аналогичных книг прежде всего тем, что в них наряду с методами, по которым имеется достаточная монографическая или обзорная литература, представлены и те методы, которые начинают развиваться только в последнее время и пока мало известны химикам-неорганикам или просто еще недостаточно используются. С другой стороны, эти книги включают отдельные главы, посвященные более строгому определению некоторых понятий, уже широко (но часто без должного анализа и обоснования) применяемых в неорганической химии в связи с исследованиями соответствующих физических свойств. [c.5]

    Молекулярные силы, обусловливающие явления капиллярности, тождественны с силами, вызывающими как явления адгезии и когезии, так и химическое взаимодейс вие и растворение. В большинстве случаев силы молекулярного притяжения в жидкостях принадлежат к типу ван-дер-ваальсовых сил на них, однако, нередко налагаются чисто электростатические силы притяжения и отталкивания — в особенности в тех случаях, когда в молекулах присутствуют электролитически диссоциированные группы. В случае твёрдых поверхностей, как природа, так и величина когезионных сил определяются главным образом силами типа ковалентной связи. Величина и распределение всех этих сил вокруг молекул зависят не только от формы молекул, но также и от природы и расположения различных химических групп в молекулах. И поскольку выражение форма молекул является лишь удобным условным термином для передачи, например, понятия контура поля сил отталкивания, связанных с атомами, образующими молекулы, то в конечном итоге в законченной теории химических свойств поверхности следует учитывать все виды силовых полей вокруг молекул. В настоящее время структурная тсория органической химии является источником ценных сведений по этому вопросу, так ка с можно считать установленным, что структурные фо мулы, вошедшие в употребление в течение последних рёх четвертей столетия, определяют с большой точностью не только химические свойства, но и истинную форму и механические свойства молекул. Явления, рассматриваемые в следующей главе, особенно ясно показывают связь м жду некоторыми капиллярными свойствами и химическим строением. [c.30]

    В главе I этой книги уже было рассказано об энтропийной природе упругости полимеров в каучукоподобном состоянии. Реальный полимер представляет собой сложную сетку переплетенных цепей для проявления высокоэластичности без течения необходимо наличие поперечных связей между цепями. Прежде чем исследовать особенности поведения такой сетки, следует рассмотреть растяжение изолированных цепей. Первые работы Куна, Марка и других ученых, посвященные молекулярной теории упругости каучука, целиком основывались на таком рассмотрении и не учитывали явлений, возникающих вследствие объединения цепей в единую сетку. Для построения подлинной теории упругости каучука, связывающей физико-механические свойства материала с химическим строением его молекул, необходимо изучить наряду со свойствами отдельных цепей их поведение в сетке. Однако изучая растяжение изолированных цепей, мы приходим к пониманию и основных особенностей растяжения сетки. Как указывал П. П. Кобеко [ ], равновесные механические свойства каучука и других эластомеров в первую очередь определяются внутримолекулярными свойствами цепей полимера и структурой сетки, образованной из этих цепей. Однако межмолекуляриое взаимодействие ответственно не только за временной и температурный интервалы, в которых проявляется высокоэластичность, но и за струвтуру сетки и гибкость цепей. [c.364]

    Первые главы книги, в которых излагаются основы теории строения молекул, природа химической связи, электронные эффекты, физические свойства молекул, представления об ароматичности и классификация реагентов и реакций, принципиально не отличаются от первого издания. Последующие главы, связанные с механизмами органических реакций, существенно изменены и дополнены. Так, сильно расширена глава, посвященная замещению в ароматическом ряду, в результате включения в нее реакций нуклеофильного и радикального замещения в бензольном ядре. Естественно, что основная часть этой главы посвящена электрофильному замещению в бензольном кольце. Этот раздел также существенно расширен за счет новых данных, полученных в 1953—1969 гг. В первом издании основные закономерности в ароматическом ряду (природа электрофильного агента, механизм реакции, правила ориентации) разбирались на примере реакции нитрования. Во втором издании эти вопросы оказалось более удобным разбирать на примере галогенирования, поскольку большинство имеющихся в настоящее время данных получено именно для этой реакции. Кроме классических реакций электрофильного ароматического замещения, где уходящей группой является протон, рассмотрена большая группа реакций протодеметаллирования ароматических производных элементов IV группы АгЭАШз (Э = 31, Ое, 8п, РЬ). [c.6]

    Цель 1-ой главы (Ю.А. Ершов) — определение границ применимости методов термодинамики к живому организму на основе системных знаний по этому разделу физической химии. Рассматриваются принципы биоэнергетики. Гл. 2 и 3 (А.З. Книжник, A. . Берлянд) связаны с широким применением знаний по растворам в практической медицине (растворимость лекарств, изотоничность, буферные системы). Систематизация этих знаний проводится на основе строгих термодинамических положений гл. 1. В гл. 4-ой (Ю.А. Ершов) изложены принципы, на основе которых химические свойства вещества можно прогнозировать, исходя из строения атомов и молекул. В 5—8-ой гл. (А.З. Книжник, A. . Берлянд, Ю.А. Ершов) даны сведения по химии биогенных [c.3]

    Структурные формулы органической химии изображают последовательность свя.зи атомоп в молекуле и являются графическим выражением идей теории строения, полно и цоследовательпо развитой А. М. Бутлеровым к 1861 году. А. М. Бутлеров — профессор Казанского университета, впоследствии профессор Петербургского университета, академик, глава крупнейшей школы русских химиков. Согласно теории строения, химическое строение вещества (т. е. последовательность связи атомов в молекуле) выводится из его химических свойств и определяет химические свойства. Одному веществу соответствует единственная структурная формула. Предшествующая созданию теории строения ступень — установление способности углеродных атомов образовывать цени — принадлежит А. Кекуле.— Прим. ред. [c.23]

    Одним из наиболее выдающихся достижений биохимии за последние годы является установление того факта, что от структуры молекулы в здачительной степени зависят ее свойства. Вы уже видели (глава 18), что химические свойства соединений с общей формулой СгНеО зависят от их строения. Например, диметиловый эфир СНд- —СНд по свойствам сильно отличается от изомерного спирта СНдСНаОН. Вы знаете также, как взаимодействие между молекулами влияет на свойства воды (разделы 17-2.5 и 17-2.6). В результате этого взаимодействия молекулы воды занимают наиболее выгодные положения вокру иона Н (рис. 17-13). Структура биохимических соединений определяется как ковалентным строением молекул, так и наличием водородных связей между ними. Рассмотрим некоторые примеры. [c.638]

    Таким образом, во Введении к полному изучению органической химии А. М. Бутлерова особый инте эес представляет прежде всего изложение основ теории химического строения, включая представление о взаимном влиянии атомов в молекулах. Последнему вопросу посвящен Очерк химического значения элементарных паев в частицах углеродистых соединений , являющийся заключит( льным разделом книги. Внимание современного читателя привлекает также глава книги Отношения меяоду физическими и химическими свойствами веществ . По мысли А. М. Бутлерова, исследование физических свойств имеет огромное значение для уяснения взаимных отношений, в которых находятся в органических веществах их составные части. Таким образом, с удивите.льной для тогдашнего состояния науки прозорливостью он ставит вопрос о связи между физическими свойствалга и строением веществ. Важность этой проблемы, особенно актуальной в наш1 дни, уже в то время была осознана [c.4]


Смотреть страницы где упоминается термин Глава III. Химическая связь в молекулах. Строение и свойства молекул: [c.389]    [c.389]    [c.95]    [c.187]    [c.108]    [c.161]    [c.434]   
Смотреть главы в:

Курс химии -> Глава III. Химическая связь в молекулах. Строение и свойства молекул




ПОИСК





Смотрите так же термины и статьи:

Молекула строение

Молекулы связь

Строение химическое

Химическая связь

Химическая связь связь

Химический связь Связь химическая

Химическое строение и химические свойства



© 2024 chem21.info Реклама на сайте