Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Внутреннее вращение в молекулах Потенциальный барьер вращения

    Конформационные превращения в молекуле алкана определяются соотношением между потенциальным барьером внутреннего вращения (/ ) вокруг углерод — углеродной связи и кинетической энергией теплового движения. Значение энергетического барьера Е< кТ (при комнатной температуре энергии теплового движения молекул — 3,5 кДж/моль) соответствует свободному внутреннему вращению. Если Е кТ, то внутреннего вращения вокруг углерод — углеродной связи не происходит, а имеют место крутильные колебания. Барьер внутреннего вращения в этане составляет 12 кДж/моль [27]. В свободных молекулах изобутана барьер внутреннего вращения групп СН( равен 15 кДж/моль. [c.24]


    Взаимосвязь двух понятий — внутреннего вращения и поворотной изомерии — стала ясной в приложении ко многим низкомолекулярным веществам уже давно, особенно при использовании метода инфракрасной спектроскопии [47], Поворотная изомерия и заторможенность внутреннего вращения имеют одну и ту же причину— наличие потенциальных барьеров. На заторможенность внутреннего вращения указывает также факт, что теплоемкость молекул, содержащих единичные С—С-связи, находится между значениями, характерными для вращательных и колебательных степеней свободы. [c.135]

    В гл. 1 были описаны основные закономерности, связанные с внутренним вращением молекул. Можно ли величину и форму барьеров передать с помощью потенциальных функций, включающих невалентные взаимодействия, деформации валентных углов и валентных связей Ясно, что если какой-либо из этих трех членов потенциальной функции ответственен за торможение вращения, то это могут быть только невалентные взаимодействия. [c.116]

    Связь константы Генри с потенциальной функцией внутреннего вращения. При внутреннем вращении молекулы, в зависимости от угла поворота а ее фрагментов относительно друг друга, расстояния силовых центров молекулы от плоской поверхности адсорбента изменяются, что вызывает изменение потенциальной энергии межмолекулярного взаимодействия Ф молекулы с адсорбентом, а следовательно и константы Генри. Если внутреннее вращение фрагментов молекулы является свободным, т. е. оно не связано с преодолением потенциальных барьеров, то молекула стремится расположиться на поверхности неспецифического адсорбента по возможности (в зависимости от температуры) так, чтобы ее силовые центры находились на наименьших расстояниях от поверхности. Если же внутреннее вращение в молекуле не свободно, но заторможено внутримолекулярными потенциальными барьерами, то расположение на поверхности адсорбента соответствующих фрагментов молекулы связано не только с потенциальной функцией межмолекуляр- [c.189]

    Все сказанное лишь в известной мере может быть применено к макромолекулам. Если даже не учитывать влияние межмолекулярного взаимодействия и высокой вязкости полимеров на энергию активации (потенциальный барьер) вращения, то все-таки следует заметить, что поворот частей макромолекулы вокруг той или иной связи сопровождается большими затратами энергии именно вследствие большой массы макромолекул. Поворот вокруг одной связи в макромолекуле вызывает перемещение в пространстве значительного числа соседних атомов, так что все они в той или иной мере будут влиять на величину потенциального барьера. Различные формы одной и той же цепной молекулы, отличающиеся друг от друга не порядком расположения атомов, а только степенью свернутости, достигаемой путем обратимых внутренних вращений, получили название конформаций. [c.17]


    Составляющую энтропии внутреннего вращения молекулы метанола вычисляем по уравнениям (V.40) и (V.38). Примем, что внутреннее вращение группы ОН относительно группы СНз происходит свободно, т. е. энергия вращения превышает энергию потенциального барьера  [c.124]

    Если потенциальная энергия взаимодействия волчка с остовом зависит от угла поворота волчка, вращение является заторможенным. Рассмотрим как пример внутреннее вращение в молекуле этана, две группы —СНз которой расположены весьма близко и интенсивно взаимодействуют друг с другом. Минимуму потенциальной энергии. молекулы отвечает траяс-конфигурация, максимуму — г ис-конфигу-рация (рис. 35), так что транс-конфигурация оказывается более устойчивой. Изменение потенциальной энергии молекулы этана в зависимости от угла поворота а одной группы —СНд (волчок) относительно другой (остов) показано кривой на рис. 35. Отсчет угла ведется от транс-положения. Внутреннее вращение группы —СНз в молекуле этана, таким образом, тормозится потенциалом, который достигает максимального значения Uo при углах поворота 60, 180 и 300° (цис-положение). В молекулах, для которых потенциальный барьер о высок, будут наблюдаться вращательные качания волчков около поло- [c.243]

    Вращение вокруг двойных связей (тг-связей) невозможно, так как значения потенциального барьера вращения в этом случае превышают энергию прочности связи. Такое вращение приводит к разрыву тг-связи и изменению стереохимической конфигурации молекулы. Поэтому при наличии в молекуле двойных связей С=С существуют устойчивые изомеры - цис- и ранс-конфигурации (см. 1.2), которые могут превращаться друг в друга только с помощью конфигурационного превращения. Подобным образом невозможно внутренним вращением превращать друг в друга О- и Ь-конфигурации. Молекула, имеющая определенную стерео-химическую конфигурацию, может принимать различные конформации. [c.120]

    Методы релеевской спектроскопии позволяют определять строение, конформации и ряд других свойств молекул, строение жидких фаз, в том числе структуру ассоциатов в чистых жидкостях, ассоциатов и комплексов в растворах [36]. С помощью этих методов можно изучать кинетику и механизм реакций образования наименее устойчивых ассоциатов и комплексов, распадающихся за 10 —- 10 с, которые не обнаруживаются многими другими методами [37—40]. Можно получать сведения о процессах колебательного возбуждения молекул, находить коэффициенты активности, теплоты смешения, энтропии смещения растворов [41, 42], определять сжимаемость жидкостей [36], теплоемкость 36], теплопроводность [43], коэффициенты диффузии растворов [44], скорость распространения продольного и поперечного звуков и коэффициенты их поглощения [45]. Исследования релеевского рассеяния света позволяют выяснить особенности строения вещества в окрестности критической точки жидкость — пар и критической точки расслаивания, изучать природу фазовых переходов [46, 47]. С их помощью можно, наконец, получать сведения о молекулярных массах полимеров и олигомеров, конформационных превращениях полимерных молекул, потенциальных барьерах внутреннего вращения, сольватации макромолекул [48, 49]. [c.73]

    Подробное исследование внутреннего теплового движения в молекулах низкомолекулярных веществ показало большое значение взаимодействия валентно несвязанных атомов в характере такого движения. Естественно, что эти исследования позволили внести существенные исправления в представления о характере формы цепных молекул полимеров с учетом потенциальных барьеров вращения звеньев относительно друг друга. [c.102]

    Внутреннее вращение. В сложных молекулах необходимо учитывать вращение одной группы атомов относительно другой (например, вращение группы СН вокруг связи С — С в этане). Внутреннее вращение может быть не только свободным, но и заторможенными, так как в молекуле существует силовое поле, стремящееся ориентировать ту или иную групп/ атомов в определенное положение относительно других групп. Энергия, необходимая для поворота данной группы из положения, в котором сила, тормозящая вращение, минимальна, в положение, где она максимальна (различие обусловлено изменением расстояния с изменением угла поворота), называется энергетическим или потенциальным барьером потенциалом торможения). [c.536]

    Для рассмотренных молекул потенциальные барьеры внутреннего вращения, по-видимому, пока не были определены экс- [c.138]

    При вращении метильных групп в молекуле этана вокруг связи С—С каждая из них при повороте на 360° (2я) по три раза проходит через заслоненное и заторможенное состояния. Вследствие тригональ-ной симметрии подобных групп три энергетических барьера, которые они преодолевают при своем вращении, одинаковы, т. е. неразличимы между собой. Остается говорить о двух отгороженных одним потенциальным барьером вращения конформационных изомерах, один из которых (заторможенный) более стабилен, так как ему соответствует минимум внутренней энергии. [c.156]


    В то время как вращению метильной группы в этане сопутствует (вследствие симметрии молекулы) потенциальный барьер с тремя равновеликими максимумами и тремя минимумами, внутреннее вращение замещенного этана не обязательно симметрично и может иметь максимумы и минимумы различной высоты. Так, для н-бутана подлежат рассмотрению три конформации одна зигзагообразная /тг/ акс-форма IX, в которой метильные группы максимально удалены одна от другой, и две одинаковые конформации, образующиеся при вращении вокруг центральной связи в ту или другую сторону примерно на 120° (X и XI). [c.13]

    Составляющую энтропии внутреннего вращения рассчитываем по уравнению (УП1.42). В молекуле метанола группа атомов СН 3 вращает-ся относительно группы ОН. Можно считать, что вращение этих групп происходит свободно, так как С — О обладает о-связью. Отсюда энергия вращения превышает энергию потенциального барьера. Найдем приведенный момент инерции  [c.116]

    ПОТЕНЦИАЛЬНЫЕ БАРЬЕРЫ ВНУТРЕННЕГО ВРАЩЕНИЯ МОЛЕКУЛ [c.376]

    Наличие в молекуле внутреннего вращения, в особенности заторможенного вращения, требует существенного изменения в этом выражении. Соответствующая теория успешно разработана Питцероми др. [4, 81. Одна из основных трудностей в случае заторможенного вращения состоит в том, что в окончательное выражение входит значение тормозящего потенциала, а до настоящего времени отсутствует прямой путь для определения этой величины. В действительности имеется только один способ для определения величины потенциального барьера, состоящий в том, что, предполагая свободное вращение, вычисляют значения каких-либо термодинамических функций для ряда температур, определяют эти величины калориметрически, а затем подбирают такое значение для потенциального барьера, при котором будет достигнуто согласие между вычисленными и измеренными экспериментально величинами. [c.311]

    Молекулы этана и пропана рассматривались и как квазижест-кпе при незаслопенном положении метильных групп, и как имеющие заторможенное внутреннее вращение, которое будет рассмотрено позже. В случае адсорбции на ГТС обе модели молекул этих двух алканов дали близкие значения Ки Молекулы н-алканов с более длинной углеродной цепью, начиная с н-бутана, при внутреннем вращении вокруг связей С—С должны преодолевать достаточно высокие потенциальные барьеры и поэтому образуют поворотные изомеры. Так, например, у н-бутана при внутреннем вращении вокруг центральной связи С—С возможны три поворотных изомера один гранс-изомер Т и два энергетически одинаковых гош-изо-мера О (правый и левый). Общее число поворотных изомеров у н-алканов равно 3" , где п — число атомов С в молекуле. При расчетах термодинамических характеристик адсорбции н-бутан, н-пен-тан и н-гексан рассматривались как смеси их поворотных изомеров, находящихся в равновесии друг с другом. Статистические средние значения константы Генри К1 вычислялись по формуле [c.172]

    Рассмотрим теперь возможности хроматоскопического определения параметров И оь 02 и амин потенциальной функции внутреннего вращения молекул первой и второй групп на основе экспериментального определения констант Генри для их адсорбции на инертном неспецифическом адсорбенте с однородной плоской поверхностью (ГТС). Интегрирование по а для этих молекул в уравнении (10.1) велось от О до я/2. При независимом изменении угла амин от О до 90° и потенциальных барьеров и в достаточно широких пределах (от О до 200 кДж/моль) производился поиск такого сочетания этих трех параметров, для которого среднеквадратичное расхождение б [см. выражение (10.6)] минимально. [c.194]

    Остановимся сначала на результатах, полученных для молекул второй группы, т. е. для производных дифенила, замещенных в ор-го-положении к с язи между бензольными кольцами, для которых должны быть более высокие барьеры WQ, чем для первой группы молекул (самого дифенила и его замещенных в мета- и пара-положениях к этой связи). На рис. 10.7 приведены результаты расчетов для 2-метилдифенила. Каждая точка кривой на рис. 10.7, а (зависимость 6 ин от амин) — это наименьшее из всех значений б, полученных при данном значении мин (абсцисса точки) и при всех возможных сочетаниях и Ш ог- Значения 1 10 и ог, соответствующие этому значению бмин, являются ординатами точек с абсциссой мин на кривых рис. 10.7, б (зависимость Wol от Омин) и рис. 10.7, в (зависимость 02 от амин). Из рис. 10.7, а видно, что зависимость бмин от омин имеет явно выраженный минимум. Положение минимума позволяет найти значение параметра Омин, по которому из рис. 10.7, бив можно найти значения остальных двух параметров потенциальной функции внутреннего вращения молекулы — барьеров й 01 и 1 02. Для остальных молекул этой группы зависимости [c.194]

    Высокоэластическое состояние полимеров обусловлено гибкостью длинных цепных молекул и характеризуется свойством цепных молекул быстро изменять свою форму под действием внешних сил. Изменения формы цепных молекул связаны как с изменением энтропии, так и внутренней энергии полимера. Гибкость полимерных молекул зависит от наличия в цепях главных валентностей простых связей, способных вращаться друг относительно друга. Число возможных конформаций цепных молекул, возникающих в процессе самодиффуз-ного перемещения участков молекул, ограничено взаимодействием молекул. Тепловое движение вызывает превращения одних конформаций в другие, причем частота этих превращений зависит от величины потенциальных барьеров вращения и интенсивности теплового движения. [c.111]

    Плоские (цис- и транс-) конфигурации молекулы Н2О2 должны быть нестабильными. На кривой потенциальной энергии внутреннего вращения существует два барьера V (цис) и v, [транс), причем г с-барьер более высокий. Соответственно этому существуют две изомерные гош-конфигурации Н2О2, переход между которыми может быть осуществлен благодаря туннельному эффекту через гранс-барьер Vj [1]. [c.150]

    Существование потенциальных барьеров вращения в молекуле любого вещества позволяет фиксировать ряд ее состояний с соответствующей для каждого из таких состояний внутренней (потенциальной) энергией. Это приводит к возникновению ряда стереоизомеров, называемых конформационными стереоизомерамм или просто конформациями молекулы. Такие изомеры не могут быть выделены, идентифицированы их удалось лишь обнаружить спектральными методами исследования с помощью инфракрасных спектров и спектров комбинационного рассеяния. Так, для молекулы этана установлено два конформационных изомера (рис. 106). Усложнение химического состава приводит к увеличению числа конформаций молекулы. Для олигомера, включающего шесть а-связей, в самой цепи возможно возникновение 16 конформаций, а для полимерной цепи возможно возникновение огромного числа конформаций. [c.354]

    Так в теории Лассетра и Дина [37,38 ограничившихся учетом дипольных и квадрупольных моментов связей, определяющую роль играло квадруполь-квадрупольное взаимодействие. При этом величины квадрупольных моментов связей, необходимые для объяснения наблюдаемых значений потенциальных барьеров, оказались значительно больше экспериментальных [ ]. В аналогичном расчете Остерхофа [З ], исходившего из несколько иного распределения зарядов в связи, для объяснения потенциального барьера этана оказалось необходимым постулировать аномально большой дипольный момент связи С—И. Наконец, Тан О-Цзинь рассмотрел мультипольное взаимодействие с учетом всех членов вплоть до октупольных и получил, что для молекул с симметрией потенциал внутреннего вращения определяется формулой (2.2), причем высота потенциального барьера пропорциональна произведению октупольных моментов взаимодействующ.1Х вращающихся связей и обратно пропорциональна седьмой степени длины оси вращения. Из работы [ ] следует, что электростатическое взаимодействие связей всегда приводит к скрещенным конформациям. Так как октупольные моменты связей неизвестны, то теория Тан О-Цзиня является полу-эмпирической, позволяя по значениям потенциальных барьеров в одних молекулах рассчитать их значения в других молекулах. Эти вычисления дают хорошие результаты, пргь чем величины октупольных мол ентов оказываются разумными по порядку величины. [c.57]

    Коснувшись вопроса о природе барьера, мы должны еще упомянуть, что при внутреннем вращении молекула может этот барьер, собственно, и не переходить. Эксперименты с использованием методов магнитного резонанса дали существенные доказательства того, что заторможенное вращение метильной группы в молекуле вещества, находящегося в твердом состоянии при низкой температуре, может рассматриваться как туннелирование [55]. Туннельной спектроскопии высокосимметриодых молекул посвящена работа [56]. Чайлд [57] предложил полуклассическую теорию, позволяющую решать довольно широкий круг задач, включая туннелирование и внутреннее вращение, без решения уравнения 1федингера. Модель явления туннелирования развивается в работах [55, 58]. Частота квантовых переходов через потенциальный барьер пропорциональна следующему выражению  [c.12]

    Большой интерес для химиков представляет, как уже отмечалось в гл. V, явление заторможенного внутреннего вращения молекул вокруг одинарных связей. Это движение, приводящее к изменению конформации молекул и переходу от одной устойчивой, т. е. отвечающей минимуму энергии, конформации к другой, сопровождается преодолением потенциального барьера. Потенциальная функция внутреннего вращения (ПФВВ) может иметь несколько разных по высоте максимумов и разных по глубине минимумов. [c.238]

    Соответствующую заторможенному внутреннему вращению составляющую энтропии для уравнения (VIII.32) можно найти с помощью таблиц, дающих значения Аыт Для органических молекул во-многих случаях известно и лежит в пределах 2—3 ккал. Однако для неорганических веществ имеется еще мало данных относительно высоты потенциального барьера. На основании недавно измеренной крутильной частоты в молекуле N2O4, равной 70 см , была сделана приближенная оценка У=3,5 ккал. Впрочем, хотя и представляется несомненным, что внутренние вращения комплекса являются заторможенными, при расчетах их рассматривали как свободные, полагая 1 0=0. Таким образом, предэкспоненциальные множители табл. VIH.3 определены с использованием i4fir. Наибр-лее существенное основание к тому — отсутствие надежных дан- [c.212]

    Для вычисления потенциального барьера по частоте торсионного колебания необходимо знать геометрию молекулы, а также сделать некоторые допущения. Потенциальная энергия торсионных кoлeiбaний, которая входит в волновое уравнение, может быть представлена разложением в ряд Фурье по углу внутреннего вращения а  [c.88]

    Наблюдение чисто вращательного спектра позволяет определять барьеры внутреннего вращения молекул двумя способами, в зависимости от того, какие по величине барьеры — малые или большие — подлежат определению. Метод сравнения интенсивностей вращательных полос, применяющийся для измерения сравнительно больших барьеров (порядка нескольких ккал/моль) аналогичен методу, использующемуся в ИК- и КР-спектроско пии [см. выражения (1.36), П.53)]. Отличие состоит лишь в том что переходы между торсионными уровнями энергии не обнару живаются в миллиметровом диапазоне — это область длинновол новой колебательной спектроскопии. Однако чисто вращатель ный спектр молекулы бывает разным для различных торсионных состояний, поскольку усредненные за время движения моменты инерции подвергаются небольшому изменению. Интенсивные вращательные полосы имеют сателлитов, которые соответствуют возбужденным торсионным состояниям. Сравнение интенсивности главной полосы с интенсивностью самого сильного сателлита позволяет определить заселенности основного и возбужденного торсионных уровней, после чего вычисление разности энергий между этими уровнями и высоты потенциального барьера не представляет трудностей. [c.45]

    На рис. 2.15 приведены потенциальные кривые внутреннего вращения молекулы СРаВг—СНВгС , рассчитанные для тетраэдрических и оптимальных углов. Интересно, что если при тетраэдрических валентных углах барьер для формы цис-1 больше, чем для цис- , то в результате минимизации все оказывается наоборот. И вообще, как показывают результаты расчетов для различных молекул, оптимизация более эффективна для заслоненных связей С—Вг, чем С—С1, и еще более эффективна для связей С—1. [c.120]

    Молекула может переходить из одной конформации в другую путем внутреннего вращения (по причинам, которые станут ясными далее, это вращение нельзя больше называть свободным). Некоторые конформации обладают минимумами энергии в том смысле, что в какую бы сторону не происходило внутреннее вращение, сумма энергий несвязанных взаимодействий растет, т. е. увеличивается потенциальная энергия молекулы в целом. Все конформации этого типа обладают известной устойчивостью однако минимумы энергии у разных конформаций одной молекулы могут быть неодинаковой глубины, поэтому различаются и их устойчивости. Самую выгодную из таких конформаций какой-либо молекулы часто называют обычной конформацией, или просто конформацией, данной молекулы. Конформации, обладающие максимумами энергии (внутреннее вращение в любую сторону только уменьшает их энергию), неустойчивы. Переходы из одной относительно выгодной конформации в другую путем внутреннего вращения обязательно проходят через конформации с максимумами энергии эти невыгодные конформации часто называют барьерами вращения. Следовательно, можно сказать, что легкость перехода из одной относительно выгодной конформации в другую определяется высотой разделяющих ее барьеров. При вращении одной части молекулы относительно другой ее части вокруг соединяющей их связи происходит поочередное преодоление ряда барье- [c.16]

    Конформационные переходы цепи с кинк-изомерамп, свободная энергия которой при наличии напряжения представляется сплошной линией (рис. 5.1), термодинамически необратимы, а внутренняя энергия переходит в тепло. Представляет интерес постоянная времени процесса перехода если она мала по сравнению со временем, в течение которого происходит растяжение цепи, то кривая напряжение—деформация не слишком сильно отличается от кривой, соответствующей сплошной линии на рис. 5.1, а если постоянная времени слишком велика, то переходы могут быть запрещены и цепи деформируются эластично. Однако при промежуточных значениях постоянных времени наибольшие напряжения не полностью вытянутых цепей будут зависеть от скорости, с которой происходят конформационные переходы, снимающие напряжение. Детальное рассмотрение данного явления потребовало бы изучения формы и взаимодействия цепных молекул, основ термодинамики необратимых процессов [15] и анализа потенциала вторичных, или вандерваальсовых, связей между сегментами [16]. Это привело бы к рассмотрению неупругого деформирования полимеров, которое не является предметом данной книги. Тем не менее все же представляет интерес некоторая информация относительно скорости переходов между различными кинк-изомерами, сопровождающихся релаксацией напряжения в системе. Так как любые переходы, приводящие к движению только одного кинк-изомера, обычно не вызывают удлинения цепи вдоль ее оси, то приходится учитывать по крайней мере одновременную активацию н аннигиляцию двух кинк-изомеров. Подобный процесс состоит из поворота четырех гош-связей и передачи поворота сегмента между кинк-изомерами можно оценить энергию связи, необходимую для преодоления потенциального барьера, которая должна составлять 33,5 кДж/моль для поворота гош-связи [7] и (2,1—5) кДж/моль для вращения СНг-группы [17, 18]. Следовательно, чтобы преобразовать весь кинк-изомер tgtgttgtgt в транс-конформацию, необходима энергия активации 46—63,6 кДж/моль. Можно предположить, что подобные преобразования напряженных цепей ПЭ к состоянию, свободному от напряжений, действительно происходят при скорости деформирования по крайней мере 1 с при температуре ниже точки плавления, т. е. при 400 К. Теперь мол<но рассчитать скорость данного процесса при 300 К с помощью выражения (3.22), которая оказывается равной 0,0018 с . При деформировании цепи энергия активации вращения сегмента только убывает, а скорость переходов, сопровождающихся ослаблением напряжения, возрастает [19]. С учетом подобного [c.130]


Смотреть страницы где упоминается термин Внутреннее вращение в молекулах Потенциальный барьер вращения: [c.139]    [c.447]    [c.486]    [c.486]    [c.209]    [c.397]    [c.133]    [c.94]    [c.94]    [c.308]    [c.129]    [c.135]    [c.70]   
Смотреть главы в:

Физикохимия полимеров -> Внутреннее вращение в молекулах Потенциальный барьер вращения

Физикохимия полимеров -> Внутреннее вращение в молекулах Потенциальный барьер вращения




ПОИСК





Смотрите так же термины и статьи:

Барьер

Вращение молекулы

Потенциальная яма

Потенциальные барьер



© 2025 chem21.info Реклама на сайте