Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выделение компонентов раствора экстракцией

    Выделение компонентов раствора экстракцией [c.34]

    Чистота растворителя имеет большое влияние на состав продуктов, особенно рафината. Растворитель, выделенный из продуктов экстракции, например дистилляцией, и возвращаемый в экстракционную установку, всегда содержит некоторое количество компонентов исходного раствора. Основными примесями являются ком поненты экстракта, так как лишь незначительная часть растворителя переходит в фазу рафината, а основная его масса находится в фазе экстракта. [c.148]


    Выделение компонентов (рециркулята) из экстрактного раствора в результате межфазового обмена —один из важных факторов повышения эффективности очистки нефтяного сырья избирательными растворителями. Чем больше температурный градиент экстракции, тем больше рециркулята образуется в процессе экстракции, однако при чрезмерном увеличении температурного градиента нарушается нормальная работа экстракционной системы. Выделение рециркулята способствует снижению потерь ценных Компонентов с экстрактным раствором и, следовательно, увеличе-, нию выхода рафината. Вовлечение желательных компонентов в экстрактную фазу обусловлено в первую очередь растворяющей опособностью растворителя. Раствор 1 тель с высокой растворяющей способностью увлекает в экстрактный раствор больше ценных компонентов очищаемого сырья, чем растворитель с низкими растворяющими свойствами. Ниже приведены результаты противоточной очистки фенолом и фурфуролом в оптимальных условиях (температура, расход растворителя). дистиллята из восточной сернистой нефти  [c.98]

    При извлечении летучих веществ экстракция может успешно конкурировать с ректификацией в тех случаях, когда разделение ректификацией либо затруднено, а иногда и практически невозможно (разделение смесей, состоящих из близкокипящих компонентов и азеотропных смесей), либо сопряжено с чрезмерно высокими затратами (извлечение вредных примесей или ценных веществ из сильно разбавленных растворов). Так, например, извлечение уксусной кислоты из ее малоконцентрированных водных растворов экстракцией этилацетатом (или смесью этилацетата и бензола) является значительно более экономичным, чем выделение ректификацией, так как, несмотря на довольно большую разность температур кипения воды и кислоты, относительная летучесть их невелика. Кроме того, необходимость испарения очень больших количеств воды весьма удорожает ректификацию. [c.522]

    Экстрагирование. Коэффициент распределения является величиной, без знания которой невозможно точное решение разнообразных задач, связанных с извлечением (экстрагированием) вещества из раствора. Экстракцией называется физический процесс разделения гомогенной смеси (раствора) двух или более веществ на ее компоненты с помощью вспомогательного растворителя (экстрагента), добавление которого вызывает расслаивание раствора. Растворитель выбирается с таким расчетом, чтобы он по возможности не смешивался с исходным раствором, но в то же время растворял намеченный к выделению компонент. В соответствии с законом распределения переход этого компонента во вторую жидкую фазу будет тем полнее, чем больше коэффициент распределения отличается от единицы .  [c.201]


    На практике обычно используют относительный метод анализа, когда в одинаковых условиях облучают анализируемый образец и эталон с известным содержанием определяемого элемента, что существенно упрощает анализ. Во многих случаях образец после облучения переводят в раствор, производят химическое выделение интересующих компонентов путем экстракции, хроматографии, осаждения или другим методом и определяют активность продуктов разделения. Операции химического разделения значительно расширяют возможность метода, повышают селективность, однако это имеет реальное значение лишь для изотопов с не слишком малым периодом полураспада. [c.269]

    Концентрирование и фракционирование органических компонентов вод. Широко применяют также сочетание метода газовой хроматографии с традиционными приемами выделения и фракционирования органических веществ. Основные трудности при реализации этого направления связаны с возможными изменениями неустойчивых компонентов раствора в процессах выделения, фракционирования и необходимостью применять высокочистые реактивы. Наиболее широко используют для концентрирования экстракцию и сорбцию, а также вымораживание, низкотемпературное упаривание под вакуумом и сочетание описанных приемов. [c.180]

    Коэффициент распределения является величиной, без значения которой невозможно точное решение разнообразных задач, связанных с извлечением (экстрагированием) вещества из раствора. Экстракцией называется физический процесс разделения гомогенной смеси (раствора) двух или более веществ на ее компоненты с помощью вспомогательного растворителя (экстрагента), добавление которого вызывает расслаивание раствора. Растворитель выбирается с таким расчетом, чтобы он по возможности не смешивался с исходным раствором, но в то же время растворял намеченный к выделению компонент. В соответствии с законом распределения переход этого компонента во вторую жидкую фазу будет тем полнее, чем больше коэффициент распределения отличается от единицы. Например, коэффициент распределения иода между четыреххлористым углеродом и водой равен 85,5 (при 25° С). Следовательно, после добавления четыреххлористого углерода в раствор иода в воде, перемешивания и разделения фаз после отстаивания иод с большой полнотой перейдет из воды в четыреххлористый углерод. При этом другая фаза обогащается водой. [c.179]

    В состав экстракционной установки входят также аппараты для выделения растворителя из продуктов (рафината и сырого экстракта) и возвращения его в оборот в состоянии надлежащей чистоты. Очень существенно для хода экстракции удаление воды из оборотного фурфурола, так как с увеличением влажности уменьшается его способность растворять экстрагируемые компоненты, а. при этом снижается качество рафината. Схема чаще всего применяющей- [c.385]

    Те, Сз, Ва). С целью выделения неиспользованного топлива и удаления примесей, отравляющих цепную реакцию, облученный уран через определенные промежутки времени подвергается переработке его растворяют в азотной кислоте и экстрагируют образовавшиеся нитраты органическими растворителями. В исходном растворе содержатся также и вспомогательные компоненты топлива 2г, ЫЬ, Сг и А1. Путем подбора соответствующих условий экстракции получается полное отделение урана и плутония от продуктов распада, а затем разделение урана и плутония, которые служат дальше топливом в реакторах различного типа. [c.433]

    Жидкости, точнее жидкие растворы, концентрируются выпариванием растворителя, донасыщением раствора полезным компонентом, наконец, выделением каких-либо компонентов (примесей) в осадок (кристаллизация) или в газовую фазу (десорбция, испарение примесей). Для разделения жидких смесей применяется также жидкостная экстракция. [c.18]

    Анализ неуглеводородных компонентов нефти. Этот анализ также может проводиться газовой хроматографией. Так, определен состав фенолов, выделенных из нефтяных фракций экстракцией водно-спиртовым раствором щелочи 115],- [c.124]

    Для концентрирования и выделения полярных соединений помимо обращенно-фазовой применяется норма/тьно-фазовая экстракция, когда сорбент более полярен, чем раствор, в котором находится определяемый компонент. В качестве растворителей для матриц в этом случае используют гексан, циклогексан, хлороформ, дихлорметан, а в качестве сорбентов - силикагели, которые способны адсорбировать полярные соединения 1631. [c.215]

    Классические методы осаждения и фильтрования пригодны лишь в том случае, если в осадок выпадает только соединение выделяемого элемента, так как при осаждении основного компонента пришлось бы иметь дело с большими поверхностями фильтра и осадка. Кроме того, часть раствора, содержащего следовые количества элементов, включалась бы при этом в осадок за счет окклюзии. Для выделения следовых количеств элементов и концентрирования используют хроматографические методы, электролиз, соосаждение, адсорбцию и экстракцию. [c.421]


    Для полного выделения извлекаемого компонента из раствора обыч но бывает недостаточно провести однократную экстракцию, и ее следует повторять несколько раз. Пусть п означает число молей вещества, растворенного в и растворителя А, экстрагированное путем последовательного вымывания порциями т ял растворителя В, растворяющего вещество X значительно лучше, чем растворитель А. Если в растворителе А после первой экстракции останется молей рассматриваемого вещества, мы можем написать  [c.47]

    Экстракция относится к наиболее эффективным методам разделения веществ. Экстракщюнные методы используют при извлечении различных компонентов из растительного и минерального сырья, для выделения газов из металлов и сплавов при высоких температурах, для отделения одних компонентов раствора от других и т. д. Описаны случаи экстракции расплавами солей или металлов из расплавов. Экстракционные методы на практике использовались издавна. Так, еще несколько столетий назад некоторые препараты, парфюмерные вещества, красители готовили по методикам, в которых применялась экстракция. В 1825 г. была описана экстракция брома бензолом, в 1842 г. — экстракция урана из растворов азотной кислоты, в 1867 г. — предложено использование различий в экстрагируемости кобальта, железа, платиновых металлов из тиоцианатных растворов для их разделения. В 1892 г. описана экстракция хлорида железа(1П), в 1924 г. — хлорида галлия(1П). В 20-е годы показана возможность использования органических хелатообразующих реагентов (в частности, дитизона) для экстракционного извлечения металлов в виде комплексных соединений. [c.240]

    Массообменные процессы первой группы, в которых осуществляется непосредственное разделение компонентов раствора, обладают определенными преимуществами по сравнению с массообменнымн процессами второй группы. Присутствие дополнительного вещества, например избирательного растворителя (экстрагента) при жидкостной экстракции, приводит к усложнению процесса. Растворитель должен быть химически инертным и не вызывать коррозии аппаратов это затрудняет выбор конструкционных материалов для экстракционной аппаратуры.. Иногда приходится считаться с необходимостью иметь в распоряжении значительные количества растворителя, что связано с относительно большими затратами нужно также возмещать неизбежные потери растворителя в процессе. После экстракции извлекаемый компонент снова находится в растворе, и для его выделения необходима та или иная система регенерации экстрагента. Все это увеличивает стоимость процесса разделения. Кроме того, при разделении смесей с помощью массообменных процессов второй группы увеличивается вероятность загрязнения получаемых продуктов посторонними примесями. [c.16]

    Выделение из смеси одного компонента. Жидкостная экстракция может быть применена для отделения одного из компонентов от нескольких других компонентов исходного раствора. Это осуществляется путем экстрагирования целевого компонента, причем другие компоненты, в той или иной степени извлекаемые экстраген- [c.432]

    Классическим и традиционным методом извлечения кислых компонентов является экстракция водными и спиртовыми растворами щелоче при нормальных условиях или при нагревании [1, 2]. Чаще всего его применяют для извлечения кислых соединени из низко- и среднекипящих дистиллятов [3—5], значительно реже — для экстракции кислот и фенолов из нефтей [6, 7] вследствие образования сто11ких эмульси из-за сорбции на границе раздела фаз солей высокомолекулярных кислот. Поскольку метод базируется па реакции нейтрализации и в значительной степени зависит от кислотно-основного равновесия системы, положительный эффект достигается только для сильных кислот. Извлечение слабых кислот и фенолов достигает 10—20 % нри экстракции водной щелочью и 90 % при многократной экстракции спиртовой щелочью, при этом общее количество выделенных кислот на 40—50 % превышает их количество в исходной нефти [6, 8]. Менее расирострапены методы извлечения кислых компонентов экстракцией диметилформамидом [9], водным раствором фосфорнокислого натрия [10], серной кислотой [11], нине- [c.41]

    После разложения почвы и переведения полученного остатка в раствор извлекают микроэлементы. Эта операция преследует две цели отделение микроэлементов от других компонентов раствора, мешающих дальнейшему ходу анализа, и повышение концентрации микроэлементов для дальнейшего их определения. Для выделения и концентрирования микроэлементов применяют различные способы используют органические осадители и со-осадители, ионообменные смолы или извлечение экстракцией в форме внутрикомплексных соединений несмеши-вающимися с водой органическими растворителями (например, раствор дитизона в СС14, раствор диэтилди-тиокарбамата в ССи и т. п.). [c.33]

    Неочищенные продукты конденсации можно разделять также избирательными растворителями. Активная фракция продукта растворяется в наиболее распространенных жидкостях, применяемых для выделения твердых парафинов, значительно хуже, чем парафины. Поэтому, применяя многократную экстракцию, удается выделить не только низкокипящие масляные компоненты, но и большую часть не вступивших в реакцию парафинов. В качестве растворителей можно применять, например, спирты, кетоиы, углеводороды к хлористые алкилы. [c.245]

    Антибиотики. Пенициллин был первым антибиотиком, производство которого было осуществлено в промышленном масштабе. Он был открыт в 1928 г. А. Флемингом, а выпуск его начался лишь в 1939 г. после преодоления многих технических затруднений. Пенициллин образуется ферментативным путем, и на первой стадии производства получается раствор низкой концентрации. Дальнейшая переработка заключается в концентрировании раствора и выделении пенициллина в чистом виде. Большую трудность представляет низкая сопротивляемость пенициллина действию ряда соединений, присутствующих в растворе вместе с ним (кислоты, основания, вода, ионы тяжелых металлов, окислители, некоторые энзимы), и повышенной температуры. Эти соединения и условия приводят к потере биологической активности пенициллина. Гюэтому необходимо подобрать такие методы переработки, чтобы были удалены вредные компоненты или хотя бы сведено до минимума их действие. В производственном цикле применяется трехкратная экстракция, причем потери продукта сведены к минимуму [240, 257, 263, 268, 270, 273, 275, 277, 280, 281, 294]. [c.419]

    Повышение температуры процесса в области, близкой к критической температуре пропана, приводит к последовательному снижению растворимости лрупя компонентов, что позволяет фракционировать гудроны с выделением групп углеводородов, различающихся по структуре и молекулярной массе. Следовательно, в этой температурной области пропан является фракционирующим растворителем. Высокомолекулярные смолы и полициклические ароматические углеводороды, выделяющиеся при высоких температурах, благодаря действию дисперсионных сил извлекают из раствора в пропане визкомолекулярные смолы и низкоиндексные углеводороды, повышая тем самым качество деасфальтизата. Таким образом, при температурах в области предкритического состояния пропана имеют место процессы фракционирования сырья пропаном и селективной экстракции, где роль избирательного рас- [c.76]

    Щелочная экстракция в течение более чем 100 лет [52, 53] служит одним из важнейших методов выделения из нефти соединений кислого характера — карбоновых кислот и фенолов. Стало традиционным выделять сумму карбоновых кислот и фенолов разбавленными (/ 1%-ными) водными или водно-этанольны-ми растворами ще.лочей с последующим разделением этих нефтяных компонентов на основе различий их растворимости в разбавленных (5%-пых) растворах Ма СОз. Для повышения степеня извлечения кислот из средних нефтяных дистиллятов предлага- [c.9]

    Назначение экстракционных процессов — деасфальтизации, селективной очистки, депарафинизации — выделение из перерабатываемого сырья асфальтов, экстрактов, парафинов и церезинов. Сырье (смесь углеводородов и с лементорганических соединений, содержащих серу, азот, кислород, металлы) разделяется на группы компонентов при помощи растворителя- растворимая часть образует фазу экстрактного раствора, нерастворимая — фазу рафинатного раствора. Целевой продукт может переходить как Б рафинатную (селективная очистка), так и в экстрактную (деасфальтизация, депарафинизация) фазы. В производстве масел применяются различные типы экстракционных процессов- экстракция неполярными (деасфальтизация) и полярными (селективная очистка) растворителями, экстрактивная кристаллизация с использованием полярных и неполярных растворителей (депарафинизация). [c.199]

    Толуол как высокооктановый компонент бензина вырабатывается из нефтяного сырья. Первой стадией его получения является каталитический риформинг прямогонной фракции, выкипающей в пределах 62- 105°С (или 62- 120°С). Полученный из этого сырья стабильный катализат содержит 35 -45% ароматических углеводородов. Разделипз катализат на отдельные углеводороды обычной ректификацией невозможно, так как ароматические углеводороды образуют с алканами и цикланами нераздельно-кипящие (азеотронные) смеси. Для выделения ароматических углеводородов применяется экстракция. В качестве экстр-агента используют водный раствор диэтиленгликоля или более эффективные растворы три- и тетраэтиленгликоля. На установке экстракции получают следующие продукты бензол, толуол, ксилолы, этилбензол, высшие ароматические углеводороды и деароматизированный бензин (рафинат). При этом выход толуола на исходное сырье составляет 16,5%, бензола — 11%, ксилолов и этилбензола — 4,5%. Рафинат (деароматизированный [c.38]

    Для выделения суперэкотоксикантов из жидкостей и газов широко применяют также сорбционные и ионообменные процессы, В последнее время их объединяют понятием твердофазная экстракция ( Solid-Phase Extra tion ), Как и в случае колоночной хроматофафии, метод основан на специфических взаимодействиях выделяемого компонента с сорбентом при пропускании раствора через патрон со сравнительно малым количеством твердой фазы, что в свою очередь требует меньшего расхода рас-212 [c.212]

    Полезный метод отделения следовых количеств веществ представляет перегонка с паром (кодистилляхщя). Этот метод, главным образом перегонка с водяным паром, используется, в частности, для разделения соединений на фуппы, например для отделения летучих веществ ог нелетучих (белков, жиров и т.п.) и выделения следовых количеств ХОП из природных вод. Предварительно следует выяснить, не разрушается ли определяемое вещество при температуре отгонки. В противном случае следует применять отгонку с паром при пониженном давлении. Отогнанные соединения обычно извлекают из конденсата жидкостной экстракцией. Иногда применяют перегонку с другими растворителями (метанол, циклогексанон и т.п.) (123 . В другом варианте добавляют растворитель, кипящий при сравнительна низкой температуре, но с которым совместно отгоняются определяемые компоненты, например дихлорметан. Этот прием даст хорошие результаты при отделении суперэкотоксикантов от веществ, содержащих природные липиды, которые хорошо растворяются в дихлорметанс(5  [c.230]

    В учебном пособии рассмотрена роль основных видов межмолекулярных взаимодействий в растворах неэлектролитов, методы экспериментального определения и расчета величин коэффициентов активности компонентов неидеальных систем. Изложены результаты исследований автора с сотрудниками, касающиеся зависимости селективности растворителей по отношению к углеводородным системам от химического строения растворителей. Установленные закономерности облегчают обоснованный выбор эффективных разделяющих агентов в процессах экстракции, абсорбции, экстрактивной и азео-тропной ректификации, которые широко используются в промышленности для выделения ароматических, ацетиленовых, MOHO- и диолефиновых углеводородов из смесей с насыщенными углеводородами. [c.2]

    В работе [7] предлагается технология выделения металлов из раствора выщелачивания жидкостной экстракцией. Общая схема переработки гальванического шлама сложного состава, содержащего 2п, Ре, Си, N1 и Сг, представлена на рис. 28. Шлам и серная кислота зафужаются в реактор выщелачивания. Образующуюся после выщелачивания суспензию отфильтровывают, твердые компоненты выводят из процесса, а раствор-фильтрат направляют в экстрактор. Экстракторы обычно состоят из смесительной камеры и сепаратора. В смесителе происходит перемешивание раствора выщелачивания с органическим растворителем, а в сепараторе — расслаивание и разделение двух жидких фаз. Экстракторы могут состоять из нескольких смесительных и сепараторных камер. [c.103]

    Основными полисахаридами гемицеллюлоз исследованных поверхностных тканей зерен являются глюкуроноарабоксилан, глюкуроноксилан и арабоксилан. Эти полисахариды были выделены из предварительно обезжиренных пленок овса, проса, риса, пшеницы, ячменя и ржи экстракцией раствором щелочи. Выделенные загрязненные полисахариды очищались путем четырехкратного пере-осаждения реактивом Фелинга. Из гемицеллюлоз овса, проса и риса были получены три фракции (А, В, С), различные по составу. Характеристика выделенных полисахаридов приведена в табл. 54. Как видно из этой таблицы, в состав гемицеллюлоз пшеницы, ржи и проса входит полисахарид глюкуроноарабоксилан. В состав его молекул входят остатки D-ксилозы, -арабинозы и D-глюкуроновой кислоты. Пленки риса и ячменя содержат арабоксилан, состоящий из остатков D-ксилозы и -арабинозы. Из гемицеллюлоз пленок овса выделены три различных по составу полисахарида глюкуроноарабоксилан, глюкуроноксилан и арабоксилан. Полисахариды фракций А, В, С различаются неодинаковым составом и различным соотношением компонентов, входящих в состав молекул. [c.266]

    Пиридин и меченую СН СООН удаляют путем экстракции эфирного раствора продуктов реакции сначала разбавленной соляной кислотой, а затем разбавленным NaOH. Если требуется определить полное содержание гидроксильных групп в пробе, то этот способ экстракции можно применять для очистки продукта ацетилирования с целью получить постоянное значение удельной радиоактивности при этом не должно быть потерь меченых и немеченых компонентов первоначальной смеси. Механические потерн допустимы, если они не изменяют относительного состава продукта ацетилирования. Необходимость выделения части полного продукта ацетилирования отличает данный метод определения полного содержания гидроксильных групп от метода определения числа ацетильных групп, в котором требуется очистка лишь одного производного. Содержание (Е) ацетильной группы в полном продукте количественного ацетилирования пробы дается формулой [c.76]


Смотреть страницы где упоминается термин Выделение компонентов раствора экстракцией: [c.91]    [c.217]    [c.189]    [c.27]    [c.141]    [c.103]    [c.85]    [c.546]    [c.284]    [c.468]    [c.65]    [c.169]    [c.250]   
Смотреть главы в:

Новый справочник химика и технолога Процессы и аппараты Ч1 -> Выделение компонентов раствора экстракцией




ПОИСК





Смотрите так же термины и статьи:

Растворов компоненты

Экстракция из растворов



© 2025 chem21.info Реклама на сайте