Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение химических соединений из метана

    Метан составляет сырьевую основу важнейших химических промышленных процессов получения углерода и водорода, ацетилена, кислородсодержащих органических соединений — спиртов, альдегидов, кислот. Получаемый при термическом разложении метана (реакция 1) мелкодисперсный углерод (газовая сажа) используется как наполнитель при производстве резины, типографских красок. Водород используется в различных синтезах, в том числе в синтезе аммиака. При высокотемпературном крекинге метана (реакция 2) получается ацетилен, необходимая высокая температура (1400—1600 С) создается электрической дугой. Одной из важных областей применения метана является получение так называемого синтез-газа — смеси оксида углерода(П) и водорода (реакции 3 и 4), используемого в дальнейшем для получения многих органических соединений. [c.69]


    На газовых месторождениях добыча богатого метаном природного газа нередко сопровождается выходом небольших количеств смеси тяжелых углеводородов от этана, соединений С3/С4 (основных компонентов СНГ) до соединений с углеводородным числом С5/С7 — компонентов дистиллята ( естественного бензина ), Если они присутствуют в значительных количествах, то СНГ и дистиллят удаляют из природного газа во избежание технологических осложнений от конденсата при компримировании газа перед подачей его в трубопровод, а также для получения необходимых химических веществ или дополнительного топлива. Иногда СНГ, уловленные перед компримированием природного газа, дополнительно могут быть подвергнуты сепарации от охлажденного сжиженного природного газа. Только после этого их разрешается транспортировать к месту потребления или на регазификацию. [c.12]

    Характеристическим летучим водородным соединением углерода является метан. В обычных условиях водород с углеродом не реагирует. Синтез метана идет только при достаточно высокой температуре и в присутствии катализатора (мелкораздробленный никель). Применяются также и другие способы получения метана из сложных органических веществ. В лаборатории метан можно получить разложением карбида алюминия водой. В природе метан постоянно образуется при разложении органических веществ без доступа воздуха. Химическое строение метана определяется р -гибридизацией атома углерода. Молекула метана представляет собой правильный тетраэдр, в центре которого находится атом углерода, а по вершинам — атомы водорода. Метан — газ легче воздуха, почти нерастворим в воде, устойчив вплоть до 1000° С. Выше этой температуры разлагается с образованием ацетилена и водорода  [c.362]

    Нефть служит сырьем для получения растворителей, лаков, красок, а также смазочных масел. Она представляет собой сложную смесь химических соединений, основная масса которых — соединения -углерода и водорода в различных комбинациях (углеводороды). Простейшим углеводородом является метан СН4, в котором один четырехвалентный атом углерода С связан с четырьмя одновалентными атомами водорода Н. Углерод обладает особенностью связываться друг с другом в углеродные цепи (парафиновые углеводороды) и углеродные кольца (циклические углеводороды). [c.5]


    Нефтехимическая промышленность, занятая переработкой нефти, является важнейшей отраслью химического производства и дает в некоторых странах более половины всех производимых органических соединений, из которых на первом месте стоят простые непредельные и предельные углеводороды (этилен, пропилен, бутадиен, метан, пропан и т. д.). Природные газы (преимущественно метан) являются не только высококачественным топливом, но и источником получения ценных органических соединений. [c.16]

    Промышленность химической переработки нефти по существу возникла во время первой мировой войны. В этот период особенное развитие получило производство этиленгликоля и других веществ из окиси этилена, изопропилового спирта и ацетона. Низшие олефины и сейчас продолжают оставаться основным сырьем для получения многочисленных органических соединений, однако в последнее время подвергаются переработке также простейшие парафины, например метан, который используют для получения окиси углерода, ацетилена и формальдегида. [c.222]

    Таким образом, очевидно, что опыты Дальтона с метаном и этиленом произведены уже после того, как были установлены основные положения химической атомистики опыты лишь подтвердили полученные ранее выводы на основе анализов окислов азота и дали Дальтону новый пример существования простых кратных отношений между элементами в бинарных соединениях одинакового элементного состава. [c.39]

    Многие исторически сложившиеся названия органических ве-ш,еств (метан, ацетон, хлороформ, муравьиная кислота, изопрен и др.) до настоящего времени широко применяются химиками. Некоторые из этих названий являются случайными, другие связаны с химическими превращениями вещества или с методом его получения. Все эти названия органических соединений не связаны с их строением и являются тривиальными,т. е. не объединенными по определенному признаку в стройную систему номенклатуры. [c.5]

    В настоящее время разработаны процессы, позволяющие получать эти крайне важные химически активные вещества прямым окислением метана и, соответственно, этилена. Таким образом, из простейших углеводородов, какими являются метан, этан и этилен, прямым окислением получаются соединения, обладающие большой реакционной способностью и служащие исходным материалом для получения самых сложных синтетических продуктов — пластических масс, высококачественных смазочных масел, каучука, сахаров и др. [c.5]

    Процесс гидрогенизации позволяет путем изменения технологического режима (давления, температуры и др.) получать бензины и дизельное топливо различного качества, практически не содержащие сернистых соединений даже при наличии их в исходном сырье. Получаемые в процессе гидрогенизации газы, содержащие метан, этан, пропан и бутан, являются ценным сырьем для химической промышленности. Синтезом из газов, состоящих в основном из окиси углерода и водорода, в настоящее время получаются моторное топливо, парафин, спирты, альдегиды и другие продукты, имеющие широкое потребление получение их другими известными методами обычно значительно сложнее. [c.5]

    Газы с наибольшей теплотой сгорания образуются при нагреве нефтяного сырья и в результате различных деструктивных технологических процессов. В зависимости от процесса пере- аботки углеводородного сырья состав этих газов изменяется. Так, газ установок прямой перегонки нефти содержит 7—10% )Онана и 13—30% бутана, газ установок термокрекинга богат метаном, этаном н этиленом, газ установок каталитического крекинга — бутаном, изобутиленом и пропиленом. Многие из перечисленных газов служат ценным сырьем для химической н )омышленностн. Для нефтезаводских газов, полученных из сернистого сырья, характерно значительное содержание сернистых соединений и, в частности, сероводорода. Присутствие его в нефтяном газе крайне нежелательно, так как он вызывает интенсивную коррозию и очень токсичен. Поэтому на многих заводах газы подвергают мокрой очистке растворами этанолами-нов, фенолятов, соды и др. [c.110]

    Хотя масс-спектрометрию электронного удара применяют в. большинстве исследований углеводов, масс-спектры химической ионизации, полученные в присутствии таких ионизирующих газов, как аммиак, метан или изобутан, зачастую легче интерпретировать [370] и можно использовать для идентификации соединений, которые имеют сложный характер фрагментации под электронным ударом [374]. Поэтому наиболее полную информацию можно, очевидно, получить при помощи обоих этих методов взаимно дополняющих друг друга. [c.60]

    Калибровка значительно упрощается и чувствительность термических детекторов увеличивается, если все органические вещества, выходящий из хроматографической колонки, до их поступления в детектор переводят в какое-либо одно химическое соединение. Углеводороды и их производные можно сжиганием перевести в СОг и воду или каталитическим восстановлением — в метан и воду. Эти реакции проводят непосредственно в потоке газа-носителя. При поглощении воды в осушительной колонке только углекислый газ или метан поступает в детектор, где и определяется. Хлорированные углеводороды сжигают над платиновым катализатором и полученную соляную кислоту измеряют кулонометрически (см. раздел Г, V, г). Таким образом, единственными сведениями, необходимыми для калибровки, являются сигнал детектора на индивидуальное вещество и эмпирическая формула для негорючих элюируемых компонентов. Чувствительность термических детекторов несколько улучшается, поскольку через детектор проходит большее число молекул, чем имеется в исходной пробе, вследствие более низкого молекулярного веса продуктов реакции. Чувствительность, к сожалению, ловышается не прямо пропорционально числу новых молекул. Изменение тем не менее значительно и должно быть учтено при выборе этого метода. Кроме того, углекислый газ и метан являются постоянными газами, [c.68]


    Вастола и Уайтман [39] попытались изучить процессы перегруппировки в химических соединениях, происходящие в СВЧ-разряде. Авторы обнаружили, что метан, этан и этилен разлагаются на водород и сажу при прохождении через зону разряда. Однако разложения ацетилена и бензола в таких же условиях не происходит. Эти же авторы изучали реакции графита с продуктами диссоциации водорода, кислорода и водяного пара, полученными в СВЧ-разряде 140]. Даже когда графит удаляли на 30 см от зоны разряда, СВЧ-мощность 17 вт при давлении 0,03 мм рт. ст. оказывалась достаточной для получения атомарного кислорода, необходимого для образования 27% СО и 14% СОг- [c.110]

    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]

    Интерпретация масс-спектров, зарегистрированных в режиме ХИ, часто вызывает меньше затрудне1шй, чем расшифровка масс-спектров, полученных в режиме ЭУ, поскольку химическая ионизация способствует уменьшению числа осколочных ионов и повышению их структурной информативности. Глубину фрагментации можно регулировать путем замены одного газа-реагента на другой. В общем случае как число протонируемых соединений, так и набл1одаемая глубина фрагментации уменьшается в ряду метан > изобутан > аммиак. Действительно, аммиак протонирует только сравнительно сильвоосновные соединения, например спирты и амины. [c.186]

    Для снижения энергии возбуждения ионизируемых молекул применяют методы мягкой ионизации. Одним из важнейших методов низкоэнергетической ионизации является химическая ионизация [38]. ХИ обычно осуществляется путем ионно-молекулярной реакции между нейтральными молекулами анализируемьгх веществ и ионами газа-реагента (реактанта), в качестве которого используют водород, метан, пропан, изобутан, аммиак и другие газы (табл. 7.5). Ионы газа-реагента получают бомбардировкой молекул газа электронами с энергией 100-500 эВ при давлении в источнике ионов 10-10 Па. Образовавшиеся ио-ны-реагенты взаимодействуют с нейтральными молекулами этого же газа, что приводит к образованию ионов типа СН5ИС2Н5 из метана, С Н, —из изобутана, МН —из аммиака. Эти ионы затем вступают в реакции с молекулами анализируемых веществ (М), протонируют их или образуют с ними ионы-аддукты, например СН + М -> СН4 + + (М + Н) СНз (М + СНз) . Количество М, как примесь в газе-реагенте, должно быть малым и составлять не более 0,1%. В этом случае можно пренебречь их ионизацией бомбардирующими электронами и считать, что ионы исследуемого газа (и протонированные, и аддукты) образуются только за счет ХИ. Результаты, полученные методами ХИ, показывают, что квазимолеку-лярные ионы не обладают большой избыточной внутренней энергией. Поэтому осколочных ионов в спектре очень мало или они вообще отсутствуют. Это является заметным преимуществом, особенно при анализе биологически важных соединений, таких, как терпены, стероиды, сахара и т.п., которые образуют ионы (М+Н)". В зависимости от газа-реагента можно изменять картину масс-спектра и наблюдать тонкие различия [14, 38]. [c.847]

    Применяя физико-химические методы разделения, из которых следует особо отметить хроматографию, легко выделить в индивидуальном состоянии первые члены ряда и в виде узх их фракций более тяжелые [30[. Вводя во время синтеза меченый этилен пли ряд меченых кислородных соединений к смесь СО— На легко получить смесь углеводородов, причем 0 концентрируется среди низкомолекулярных членов ряда, так как б этом случае наблюдается постоянство молярной, а не атомной активности [31 ]. Совсем легко из СО и СОг должны получаться с высокими выходами меченый метан, по Сабатье [32], и меченый эти.лен [33], меченый метиловый спирт и т. д. Большие возможности для ирртготовления различных кислородных соединений, меченных С , открывает оксосинтез, а для получения ут-леводородов — гидрокондепсация с олефинами- по Эйдусу, Зелинскому [341. [c.419]

    Из данных табл. 2 следует, что наибольший выход синтетической нефти наблюдается по месторождению Шиликты, а выход газа и кокса — по месторождению Мортук. Состав газообразных продуктов, полученных из нефтебитумных пород, представлен в табл,3, Из данных табл. 3 видно, что в составе газов крекинга преобладают метан, этан, пропан, изопентан. Полученные газы, очищенные от соединений серы, могут использоваться в качестве дополнительного источника углеводородного сырья и в химической промышленности. Синтетическая нефть и газообразные компоненты иа процесса термокаталитичео-кого крекирования НБП, являются ценными продуктами для нефтехимического синтеза. [c.6]

    Более низкая реакционная способность (м7= ,28), определяющая трудную горючесть соединения при пониженной устойчивости, характерна для дихлорметана. По-видимому, замена двух атомов водорода в метане хлором способствует ослаблению связей в веществе и пониженная горючесть обеспечивается большей химической устойчивостью промежуточных продуктов (а не исходного соединения) и защитными свойствами хлора. Величины т/Ша и Е, полученные для 1,1,2-трихлоралканов и 1,1,2,2-тетрахлоралканов (см. рис. 37 и 38), показывают, что дальнейшее увеличение числа атомов хлора в молекуле с одним и тем же значением пс приводит к еще большему уменьшению их химической устойчивости и реакционной способности, причем к наименее реакционноспособным ве- [c.96]

    Несмотря на большое распространение метода Дюма— Прегля И хорошие результаты, полученные для большинства соединений, при анализе некоторы веществ этим методом получаются пониженные результаты [114, 580]. К таким соединениям относятся производные хлорофилла, некоторые гетероциклические соединения, как, например, производные пиримидина, имидазола [476], пурина, птериновые соединения. Такие трудносжигаемые соединения при сгорании образуют кокс, содержащий химически связанный азот. Соединения с длинной углеродной цепью при сожжении образуют метан, который сгорает е полностью и, шопадая вместе с азотом в азотометр [336, 337, 338, 674], повышает результаты анализов. Хорошие результаты для таких соединений можно получ1Ить, смешивая их перед введением в трубку для сожжения с окисью меди, к которой добавляют V2O5 [559], Нд(ООССНз)2 или Си(ООССНз)2 [250]. [c.69]

    Полученные двумя методами (СКШ0/2 и выравнивания. электроотрицательностей) данные о распределении электронной плотности сопоставлены с химическими сдвигами Н и С в ЯМР-спектрах широкой серии замещенных метанов и сходных соединений. Изменения о-электронной плотности наиболее адекватно отражают химические сдвиги, наблюдаемые для метильной, метиленовой и метиновой групп. [c.95]

    Из 10 изученных фосфорорганических соединений бидрин [0,0-диметил-5-(карбэтоксиметил)тиофосфат] извлекается на 65-78 % азодрин [0,0-диметил-0-метил (2-метилкарбамоил)винилфосфат], паратион и другие соединения — на 34—57 % байтекс и метафос — менее чем на 10 %. Карбофос, этион[бис(0,0-диэтилпитиофосфорил)метан], тритион и метилтритион вообще не извлекаются. Полученные результаты авторы исследования объясняют возможностью химических превращений препаратов после их адсорбции на угле. [c.34]

    Ряд интересных вопросов привел нас к исследованию пентана в адсорбированном состоянии. Первым из них является рассмотрение возможности образования углеводородов нефти в результате облучения некоторых органических веществ. Ранние наблюдения Линда и Бардуэлла [4] показали, что при облучении органических соединений образуются углеводороды, подобные по своему составу имеющимся в нефти. Вычисления Белла, Гудмэна и Уайтхеда [5] и дальнейшие опыты [6, 7] показывают, что жидкие и газообразные углеводороды могут образоваться путем облз чения сложных органических веществ в нефтеносных осадках. Во всех этих исследованиях полученное отношение водорода к метану, образующемуся при облучении органическмх соединений в объеме, очень велико, в то время как газы нефти содержат фактически много метана и мало водорода. В связи с этим мы пытаемся выяснить влияние диспергирования на минеральных поверхностях органического соединения на отношение количеств водорода и метана. Другим доводом в пользу постановки этого исследования было предположение о том, что если распределение органического соединения на минеральном порошке вносило бы существенные изменения в продукты радиолиза, то это исследование могло бы открыть новые пути к практическому химическому синтезу. Более отдаленным соображением было желание пролить свет на основные процессы, заключающиеся в переносе энергии от твердой поверхности к жидкости. [c.135]

    В настоящее время теория ионных соединений разработана очень грубо. В развитии этой теории весьма большую роль сыграло изучение химических свойств благородных газов, открытие их инертного характера, невозможности получения их солей и окислов. Теперь известно, что ионы элементов главных рядов периодической системы имеют такое же строение электронной оболочки, как и атомы благородных газов. Теория молекулярных соединений, напротив, еще далеко не разработана. Известны сотни соединений, которые принято называть молекулярными, так как объяснить их образование за счет ионной или атомной связи не представляется возможным. Считают, что эти соединения обусловлены ван-дер-ваальсовыми силами сцепления, которые складываются из сил взаимодействия постоянных диполей, или постоянного и индуцированного диполя и квантово-механических сил взаимодействия, так называемого дисперсионного эффекта. Однако теория во многих случаях еще бессильна предсказать новые соединения, координационное число образующихся комплексов, свойства известных соединений. С одной стороны, сама теория ван-дер-ваальсовых сил в том виде, в котором ее развил Лондон, может быть приложима только в самых простейших случаях с другой стороны, экспериментальный материал, относящийся к химии молекулярных соединений, очень разрознен, не систематизирован, а нередко и просто случаен. Почему одна пара веществ дает молекулярное соединение, а другая пара не дает Почему двуокись серы дает с метиловым спиртом соединение ЗОз СН.,ОН, а сероводород с метиловым спиртом не дает соединений Почему метан и этан дают соединения с водой — шестиводные гидраты, а для метилового и этилового спиртов они не известны На эти, как и на многие другие вопросы мы пока еще не имеем ответа химия молекулярных соединений находится в стадии созидания. [c.116]

    Одним из перспективных процессов биотехнологии является промышленное культивирование метилотрофов, которые уже сегодня рассматриваются как важный источник белка одноклеточных, а в дальнейшем, очевидно, могут найти еще более широкое применение. Известно, что метилотрофы способны утилизировать таг называемые одноуглеродные соединения, т. е. производные метана — метанол, формальдегид, метиламины и т. д. Важнейшим из этих веществ является метанол, поскольку это один из крупнотоннажных продуктов химической промышленности и, что особенно важно, может быть получен как из нефтехимического метан), так и из углехимического (кокс) сырья. Ряд авторов высказывают точку зрения, что метанол является своего рода веществом будущего , так как позволяет в принципе перестроить многие нефтехимические процессы, основанные сейчас на использовании все более дефицитного этилена. [c.44]


Смотреть страницы где упоминается термин Получение химических соединений из метана: [c.225]    [c.187]    [c.257]    [c.551]    [c.449]    [c.75]    [c.242]    [c.78]    [c.21]    [c.257]   
Смотреть главы в:

Химическая термодинамика органических соединений -> Получение химических соединений из метана

Химическая термодинамика органических соединений -> Получение химических соединений из метана




ПОИСК





Смотрите так же термины и статьи:

Метан получение

Получение пз соединений

Химическое соединение



© 2025 chem21.info Реклама на сайте