Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфокислоты структура

    Остатки, полученные при обработке дымящей серной кислотой, обладают особыми качествами. Дымящая кислота действует сильнее на углеводо(роды, и поэтому органическая часть этих остатков состоит в основном из сульфокислот. Структура этих сульфокислот чрезвычайно -разнообразна и находится в зависимости от состава исходного обрабатываемого дестиллата. [c.197]

    Сульфокислоты разделялись на основании различной их растворимости различные фракции затем десульфировались путем гидролиза водой с образованием органических веществ, которые в свою очередь по различной растворимости разделялись на углеводороды и окисленные соединения (нейтральные смолы и асфальтены). Полученные таким образом углеводороды изучались затем по методу Уотермана с целью общего определения структуры. Результаты рассматриваются более полно ниже, в разделе Сульфированные нефтяные фракции . [c.523]


    Существенное влияние на направление реакции сульфирования оказывает температура. Например, сульфирование нафталина при температурах до 60 С дает а-изомер, а при 120— 1бО°С — р-изомер. Если а-нафталинсульфокислоту нагреть с моногидратом до 160 °С, то из нее также получается -изомер. Как известно, а-положение в нафталине является более реакционноспособным, так как при образовании а-комплекса положительный заряд может рассредоточиться без нарушения ароматической структуры второго кольца. Поэтому при кинетическом контроле, т, е, при проведении реакции в ограниченное время и в мягких условиях, в преобладающих количествах образуется а-изомер. Обратная реакция — десульфирование — начинается с протонирования молекулы сульфокислоты  [c.365]

    По структуре и химическим свойствам сульфокислоты [c.81]

    Нефтяные сульфонаты, используемые в качестве детергентов в масле, имеют молекулярный вес в среднем от 450 до 500 (20 30 атомов углерода), и видимо, являются производными ароматических углеводородов с одним или двумя ароматическими кольцами на молекулу, с длинными парафиновыми цепями и сульфо-радикалом, связанным с ядром кольца. Типичные сульфонатные детергенты показаны на схеме 3. Сульфонаты более низкого молекулярного веса, имеющие одну или несколько коротких парафиновых цепей, или дисульфонаты входят, видимо, в состав растворимых в воде зеленых сульфокислот, в то время как очень сложные ароматические соединения, обладающие большим количеством конденсированных колец, составляют основную часть гудрона, образующегося при обработке масел дымящей кислотой. Хотя нефтяные сульфонаты могут значительно различаться по химической структуре, их состав соответствует общему типу, показанному на схеме 3. [c.182]

    Структура и номенклатура сульфокислот [c.667]

    Как и можно было ожидать на основании рассмотрения структуры, сульфокислоты обладают физическими свойствами, характерными для сильнополярных соединений. В целом они лучше растворимы в воде, чем органические соединения любых других типов. Действительно, ЗОдН-группу очень часто вводят в большие молекулы (например, красителей или лекарственных препаратов) для того, чтобы сделать их растворимыми в воде. Поскольку сульфокислоты являются сильными кислотами, они полностью ионизованы в водных растворах. [c.667]

    Концентрированная серная кислота (93—98%,-ная) при обычной температуре химически почти не действует на нормальные парафиновые и нафтеновые углеводороды, но они частично растворяются в ней. Поэтому их почти всегда обнаруживают в кислом гудроне. Углеводороды изостроения, содержащие третичный углеродный атом, легко сульфируются концентрированной серной кислотой и образуют сульфокислоты и воду. Ароматические углеводороды при взаимодействии с избытком такой кислоты подвергаются сульфированию с образованием сульфокислот. Как правило, ароматические углеводороды растворяются в концентри-р ованной серной кислоте, причем растворимость их зависит от структуры ароматических углеводородов и концентрации кислоты с повышением концентрации растворимость ароматических углеводородов увеличивается. [c.99]


    Имеюш иеся данные подтверждают заключение, что именно сульфокислота, а не углеводород, изомеризуется в перегруппировке Якобсена [230, 283, 284]. Группа сульфоновой кислоты характеризуется большим объемом и большими стерическими требованиями, вероятно, приближающимися к требованиям mjDe/ra-бутильпой группы. Напряжения, имеющиеся в структуре 2,б-диметил-/и/)ет-бутилбензола, очень велики—более 18 ккал [46]. Поэтому будет обоснованным заключение, что именно снятие этого напряжения объясняет необычное замещение при перегруппировке Якобсена. [c.444]

    Недавняя работа Сперлинга [96] представляет собой первую попытку разрешения этой трудной задачи. Сульфокислоты разделялись на группы на основании различной их растворимости различные фракции их затем десульфировались методом гидролиза водой с получением исходных органических молекул эти последние на основании различной растворимости в свою очередь подвергались разделению на углеводороды и окисленные соединения (нейтральные смолы и асфальтены). Углеводородные фракции изучались по методу Уотермана с целью общего Определения структуры. [c.537]

    Важным результатом применения Сперлингом этих и других методов было установление, что кислый сульфокислотный слой представляет собой смесь, состоящую из трех типов сульфокислот растворимые в масле моносульфокислоты, дисульфокислоты с короткими парафиновыми цепями и высокоароматизированные дисульфокислоты, причем было такгке показано, что растворимые в масле вещества состоят исключительно из моносульфокислот. Хотя сульфонаты кислотного слоя были охарактеризованы как смесь, однако было найдено, что вся эта группа в целом резко отличается по своим свойствам от сульфонатов масляного слоя. Эти различия, включая метод получения, циклическую структуру и степень окисления, приведены в табл. 11. [c.537]

    Следует далее, отметить, что когда образуются сульфокислоты из асфальтовых продуктов, то кальциевые соли кислот, ползп1ен-ные из веществ с различным молекулярным весом, сильно напоминают друг друга по мыльным качествам и по высокой растворимости в воде. Эти указания следует добавить к заключениям, во-первых, о том, что асфальтовые ядра не являются полностью ароматическими по структуре и, во-вторых, —что они, возможно, построены из повторяющихся простых соединений, связанных между собой так же, как и аминокислоты в протенах. [c.544]

    Хорошо известны моющие средства на базе нефтяных сульфокислот. Их получают сульфированием алкилированных бензинов. Алкилирование достигается обработкой ароматического сырья мо-нохлорированной керосиновой или лигроиновой фракцией, или же олефиновым полимером (например, тримером бутена или тетрамером пропилена) в присутствии безводного хлористого алюминия для полимеризации необходим кислотный катализатор. Число, размер и структура боковых алкильных цепей существенно важны для предопределения свойств получаемого моющего средства. Сульфирование производится при обычных температурах. [c.572]

    Семиполяркая связь. Для окисей аминов, сульфоксидов, сульфокислот и многих других молекул. можно написать предельные структуры следующего типа  [c.57]

    Являясь элементом второго малого периода, сера способна образовать более четырех связей, так как у нее возможно заполнение Зй -со-стояний (ср., например, ЗРе, имеющую шесть ковалентных связей). Несмотря на это, сульфоксиды по своей электронной структуре ближе к (I), чем к (II), на что указывает, в частности, величина парахора. Они имеют пирамидальное строение, причем неподеленная пара электронов атома серы играет роль четвертого заместителя. Этим объясняется оцтичёская активность несимметрично замещенных сульфоксидов. В Сульфокислотах атом серы образует, по-видимому, пять или шесть ковалентных связей, так как иначе неизбежно накопление формальны.ч зарядов  [c.58]

    После получения нами указанных результатов появилось сообщение й] о значительном -влиянии природы эмульгаторов—натриевых солей сульфокислот, отличающихся строением и молекулярным весом углеводородного радикала, на структуру лолиизопрена, получаемого при эмульсионной полимеризации. Авторы объясняют указанное влия-ние. различной полярностью эмульгаторов. Таким образом, -нами подтверждена принципиальная. возможность влияни-я природы эмульгатора на структуру полимера, получаемого в процессе эмульсионной пол-имеризаци-и. [c.113]

    Сульфокислоты КУ-2, СДВ и дауэкс-50 по свойствам и структуре незначительно отличаются друг от друга. Высокая скорость установления сорбционного равновесия, даже для образцов с малой набухаемостью, высокая химическая стойкость и достаточная механическая прочность ставят их в число лучших сульфокатиони-тов для хроматографических исследований в лабораторной практике. Однако пределы применения сульфокатионитов обусловлены высокой энергией связи фиксированного иона — ЗОз многими катионами, что затрудняет как хроматографическое разделение некоторых смесей катионов, так и регенерацию отработанной смолы. [c.64]


    Структура химическая 429 Ступенчатая диссоциация 187 сл. Ступенчатый гидролиз 210 сл. Сульфирование 455 Сульфобензол 501 Сульфогруппа 455 Сульфокислоты 455 Цуперфосфат 404 Сурьма 377 Суспензии 221 [c.710]

    С целью выявления зависимости биологических свойств от структуры, был осуществлен синтез ряда азолидов алифатических и ароматических сульфокислот и установлена взаимосвязь между строением и биологическими свойствами молекул. [c.73]

    Еще одним многообещающим реагентом, если не для амидов алкил-сульфокислот, то по крайней мере для амидов арилсульфокислот является, по-видимому, натрий-нафталин в 1,2-диметоксиэтане (пример В.З). В некоторых весьма специальных случаях для удаления бензоил-ь-фенилаланильной группы, а возможно, и других групп, входящих в структуру амина, может применяться фермент химо-трипсин [31]. [c.501]

    Если обработка поверхности растворами щелочей и кислот не дает качественной очистки, то к дезактивирующим растворам добавляют поверхностно-активные или комплексообразующие вещества. Поверхностно-активные вещества понижают поверхностное натяжение жидкости, увеличивают смачиваемость поверхности водой, способствуют процессам суспензирования, эмульгирования и пенообразования. Эти вещества по химической структуре делятся на две группы ионогенные, образующие при растворении в воде ионы неиоиоген-ные, не образующие при растворении в воде ионов. К ионогенным поверхностно-активным веществам относятся обычные жировые мыла (имеют недостатки и для дезактивации применяются редко) соли сернокислых эфиров жирных спиртов— алкилсульфаты, например препарат Новость — моющее средство, содержащее от 38 до 50% натриевых солей сульфоэфиров жирных спиртов, устойчивое в щелочной и слабокислой средах, обладающее хорошей смачивающей способностью алкиларилсульфонаты, к которым относится сульфонол, содержащий не менее 40% натриевых солей сульфокислот нефтяные сульфокислоты, к которым относится контакт Петрова, или, как он иначе называется, керосиновый контакт (ГОСТ 463—53) это густая прозрачная жидкость, которая получается при обработке ди- [c.31]

    Для отечественных рецептур битумных растворов Л. К. Мухин предложил в качестве стабилизаторов мыла на основе жирных кислот, парафинов невысокой степени окисления, окисленного петролатума или нафтеновых сульфокислот (НЧК). Омыление рекомендуется производить при нагревании и перемешивании в полном объеме дизельного топлива, что позволяет лучше и быстрее диспергировать образующиеся мыла. При достаточной концентрации натриевого или кальциевого мыла в дизельном топливе, перед введением в него битума могут быть достигнуты приемлемые прочности структур, но лишь после диспергирования окисленного битума обеспечивается практически нулевая фильтрация. Типовой, рецептурой является 70—85% дизельного топлива, 15—20% порошкообразного окисленного битума, 1% окисленного парафина и 1% каустика [19]. Еще эффективнее стабилизируют добавки 0,75—1,5% анионогенных ПАВ — азолата или сульфонола, обеспечивающих устойчивость раствора даже при попадании 50% воды, а также катионогенные ПАВ (этаноламиды карбоновых кислот). Менее пригодны неионные оксиэтилированные продукты. [c.379]

    Легко реагируют с SO3 и его комплексами алкены, которые образуют в зависимости от структуры и условий р- или 5-сультоны (см. Сультоны) либо а,Р- или р,7-ненасыщ. сульфокислоты, а также р-гидроксисульфокис-лоты, напр.  [c.463]

    Соли сульфокислот. Орг. соед., содержащие одну или неск. групп SO3M, где М-обычно катион металла, аммоний, замещенный аммоний. В зависимости от величины и структуры радикала, типа катиона и числа сульфогрупп представляют собой твердые или жидкие в-ва. Многие р-римые в воде и орг. р-рителях сульфокислоты выделяют и идентифицируют в виде солей. [c.468]

    На рис 5 3 представлены карты электростатического потенциала, создаваемого ядрами атомов и электронным зарядом в окрестности молекул бензола и нитробензола в плоскости молекул Проведены также расчеты потенциалов для сечений, поднятых над плоскостью молекул Поскольку эти расчеты приводят к аналогичным результатам, соответствующие карты не приводятся Видно, что потенциал вокруг молекулы бензола близок к нулю и быстро спадает, в то время как вокруг ароматического кольца молекулы нитробензола создается значительно больший по величине положительный потенциал (на сопоставимых расстояниях он приблизительно на 1-2 порядка превышает потенциал бензола и медленнее спадает) Обратим внимание на то, что изменение внешнего электростатического поля несравненно сильнее зависит от дальних заместителей, чем изменение электронной плотности То же наблюдается и в случае других полярных заместителей Расчеты показывают, что и введение фтора в молекулу бензола сильно изменяет внешнее электростатическое поле кольцо окружено областью интенсивного положительного потенциала Присутствие сульфогруппы в бензольном ядре приводит к появлению интенсивного положительного потенциала в пространстве вокруг молекулы Это не может не отражаться на реакционной способности бензол-сульфокислоты, как и более сложных по структуре органических соединений, какими являются органические аналитические реагенты, многие из которых содержат сульфогруппы Этот качественный вывод и подтвеж-дается экспериментом [c.181]

    С и сульфита натрия при сплавлении со щелочью б) образования пиримидина (115) после обработки натрием в жидком аммиаке структура (115) подтверждена синтезом в) кислотного гидролиза, приводящего к третьему пиримидину (116), структура которого также была подтверждена синтезом. Второй компонент расщепления сульфитом натрия был идентифицирован как тиазол (117). Окисление этого соединения азотной кислотой приводило к потере одного атома углерода и образованию известной тиазол-карбоновой кислоты (118). Наличие в (117) гидроксильной группы было доказано ацилированием и замещением на хлор при обработке хлороводородной кислотой при 150 °С. Тиазол, следовательно, содержал а- или р-гидроксиэтильный заместитель в положении 5. Последний вариант более вероятен, поскольку а) витамин был оптически неактивен б) тест (117) с йодоформом был отрицателен. Положение присоединения тиазольного цикла к пиримидиновому установлено после определения положения остатка сульфокислоты в пиримидине (114) и позднее было подтверждено синтезом. [c.628]

    К этим эфирам близко примыкают по структуре более сложные вещества, образованные в результате этерификации хлорангидри-дом 5-сульфокислоты 2-диазо-1-нафталинона (или сульфокислот других диазидов) динатриевых солей продуктов конденсации адипиновой (или другой дикарбоновой) кислоты с бисфенолом Аг [c.77]

    В качестве модельного соединения фрагмента Л использовали пинорезинол ХП1 и его метиловый эфир ХП1а. Кислую сульфитную варку осуществляли при pH 1,5 и 135 С. Из варочного щелока выделены с выходом 43 и 17 и индентифицированы две стереоизомерные сульфокислоты циклолигноновой структуры XIV (см. схему 5.8). Диметиловый эфир пинорезинола ХШ приводит к метилированным тем же стереоизомерным кислотам с выходом 11 %. В хлороформенном экстракте были обнаружены пинорезинол и эпинорезинол. [c.244]

    Из ИК-спектров кажется очевидным, что атомы серы и кислорода присутствуют в виде сульфонатной группировки [v(S02) антисимм. при 1370 см и v(S02) симм. при 1190 см с дополнительной сильной полосой при 1000 которую можно приписать v( — 0)1. Тогда искомая структура должна быть метиловым эфиром п-толуол-сульфокислоты (VI). Но две другие структуры VII и VIII тоже представляются вполне возможными. ИК-спектр позволяет [c.241]

    Ализарин является классическим протравным красителем. Он содержится в виде генциобиозида руберитриновой кислоты в корнях краппа (Rubia tin torum), и его получали оттуда примерно до 1875 г. Структуру ализарина установили Гребе и Либерман (1868 г.). Решающим для доказательства строения оказалось восстановление ализарина при перегонке с цинковой пылью до антрацена. Промышленный метод синтеза был разработан Гребе, Либерманом и Каро (1869 г.). Антрахинон сульфируют, натриевую соль сульфокислоты нагревают с гидроксидом калия и хлоратом калия при 200 °С, при этом одновременно проте кают нуклеофильное замещение и окисление  [c.758]

    Новыми для электроосаждения железа являются борфтористоводород-ные [28, 293, кремнефторйстоводородлые [2бЗ и органические растворы [31., 32]. Из них осаждаются более дисперсные покрытия с высокой твердостью (до 700 кгс/мм ) при достаточно высокой скорости осаждения (i = 15...20 А/дм ) (табл. I.I). Эти электролиты отличаются повышенной стабильностью в работе. Однако они более сложны в приготовлении (борфторид можно получать через промежуточные реакции с карбонатными солями)и обладают высокой химической активностью.Орга->гические электролиты готовят на основе органических сульфокислот (метилсульфатный, сульфосалициловый, фенолсульфоновый и др.). При растворении они диссоциируют на катион металла и весьма сложный комплексный алион. Состав и структура последнего, вероятно, оказывают влияние на кинетику электродных процессов (качество осадков) и электрохимические свойства растворов (устойчивость злектролитов). [c.8]


Смотреть страницы где упоминается термин Сульфокислоты структура: [c.197]    [c.83]    [c.53]    [c.8]    [c.136]    [c.420]    [c.54]    [c.222]    [c.8]    [c.720]    [c.242]    [c.118]   
Органическая химия (1974) -- [ c.667 ]




ПОИСК







© 2025 chem21.info Реклама на сайте