Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности жидкостной хроматографии в применении

    Сущность хроматографии, ес физико-химические основы, история ее возникновения и развития, значение для науки и техники. Разновидности хроматографии. Виды хроматографии. Жидкостная и газовая хроматография, их отличительные особенности и области применения. Газовая хроматография как один из наиболее эффективных и -перспективных методов анализа и препаративного разделения сложных смесей. Варианты газовой хроматографии. Основные задачи газовой хроматографии. Предварительные сведения об аппаратуре, методике и примеры применения газовой хроматографии. Широкие и капиллярные колонки, заполненные и открытые. [c.296]


    Каковы особенности бумажной, газовой и жидкостной хроматографии и области их применения  [c.364]

    ОСОБЕННОСТИ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ В ПРИМЕНЕНИИ К НЕФТЕПРОДУКТАМ [c.5]

    За последние годы широкое применение для анализа газообразных и жидких смесей получил хроматографический газовый анализ. Для разделения сложных углеводородных и других органических смесей особенно широко применяют газо-жидкостную хроматографию. В результате особенностей адсорбционного действия цеолитов их можно эффективно использовать для диализа сложных углеводородных смесей в сочетании с разделением на обычных адсорбентах. Как известно, но мере увеличения углеродных атомов в молекуле растет число возможных изомеров углеводорода, например углеводороды Сд—Сц, входящие в состав керосинов, имеют десятки изомеров. Определить все эти компоненты обычным хроматографическим анализом не представляется возможным, тем не менее с помощью цеолитов подобные задачи можно решать. [c.115]

    В работах [16] описано применение жидкостной хроматографии высокого давления для определения полициклических ароматических углеводородов в дыме и воде, в выхлопных газах автомашин и табачном дыме. Метод особенно эффективен для анализа каменноугольных смол, продуктов углехимии и нефтехимии [17]. [c.324]

    Применение газовой, хроматографии имеет свои ограничения. Далеко не все вещества можно переводить в газовую фазу без разложения. В особенности это относится к сильно ассоциирующим, термически нестойким соединениям, в том числе ко многим биологически активным и высокомолекулярным веществам. Химическое модифицирование (дериватизация) молекул таких термически нестойких веществ для устранения или ослабления их способности к ассоциации лишь отчасти помогает обойти эти затруднения. Поэтому, начиная с середины 60-х годов, когда были преодолены трудности в разработке проточных детекторов для обнаружения компонентов в жидких растворах, началось бурное развитие жидкостной хроматографии (ЖХ), причем в основном адсорбционной жидкостной хроматографии, т. е. произошло второе рождение собственно хроматографии Цвета. В настоящее [c.9]

    Применение для анализа растворов метода жидкостной хроматографии позволяет продвинуться в сторону малых концентраций равновесных растворов. Однако это лимитируется чувствительностью детекторов жидкостных хроматографов, которая может быть недостаточной, особенно если компонент плохо поглощает в ультрафиолетовой области спектра (ультрафиолетовые детекторы широко используются в жидкостной хроматографии). Непосредственное определение адсорбции данного компонента из его хроматограммы, полученной на колонне с изучаемым адсорбентом при элюировании изучаемым растворителем, рассмотрено в конце этой лекции. [c.251]


    В настоящее время практически ни одно кинетическое исследование не обходится без применения хроматографических методов, особенно широкое распространение получила газо-жидкостная хроматография, обладающая высокой чувствительностью и большой универсальностью. Все более внедряются в кинетические исследования различные варианты термографических и калориметрических методов, которые практически незаменимы при исследовании реакций в твердой фазе и при низких температурах. [c.3]

    Применение современной техники разделения, особенно высокоэффективной жидкостной хроматографии, позволяет относительно хорошо очистить пептиды, содержащие 3—10 аминокислотных остатков. Для построения длинных полипептидов и небольших белковых молекул подходит только классический метод конденсации фрагментов. Синтез фрагментов производят либо в растворе путем ступенчатого удлинения пептидной цепи, либо [c.226]

    Недостатком метода является то, что зоны компонентов не разделены зоной чистого растворителя, поэтому всегда имеет место более или менее заметное наложение зоны одного вещества на зону другого. Этот недостаток особенно резко проявляется при анализе газов, поэтому вытеснительный анализ не нашел себе применения в газовой и газо-жидкостной хроматографии. [c.11]

    Возникновение новых методов разделения и их применение для решения важных проблем каждый раз способствовали развитию химической науки. Так произошло в начале 1970-х гг., когда профессор Роберт Б. Вудвард из Гарвардского университета впервые использовал новый в то время метод современной жидкостной хроматографии (ЖХ) в работах по синтезу витамина В,2 [2]. В то время даже наиболее опытные химики-синтетики столкнулись с необходимостью решения проблемы разделения. Профессор Вудвард так описывал сложившееся положение ...в настоящее время перед нами возникла опасность потерять стереохимические особенности наших веществ в упомянутых трех центрах. И это ставит перед нами сложную задачу разделения... Если на стадии гептаметилбисноркобиринатов оставить неопределенной стереохимию трех упомянутых центров, то затем все равно возникнет проблема стереохимии, и конечно, связанная с ней проблема разделения очень близких по свойствам молекул [3]. Решение возникших проблем разделения стало возможным при использовании ЖХ. Процитируем опять слова Вудварда Здесь я должен сказать, что решающую роль во всей нашей дальнейшей работе имело использование жидкостной хроматографии высокого давления для очень трудных разделений, с которыми мы столкнулись, начиная с этого момента. Возможности метода жидкостной хроматографии высокого давления с трудом может оценить химик, который не использовал этот метод этот метод является относительно простым, и, я уверен, он станет необходимым в каждой лаборатории органической химии в очень недалеком будущем [4]. Очень скоро метод ЖХ стал основным в исследованиях профессора Вудварда. Степень его использования как стандартного метода видна из следующего высказывания Данная кобириновая кислота была [c.9]

    Однако наибольшее распространение, особенно для анализа низкомолекулярных фенолов, получил метод газо-жидкостной хроматографии. Несмотря на простоту и удобство метода, практическое его применение наталкивается на ряд серьезных трудностей. Основные из них заключаются в подборе селективных неподвижных фаз и инертных твердых носителей. Сложность состава фенольных смесей, наличие гидроксильных групп и других заместителей, определяющих полярность фенолов, обусловливают сложный характер сил взаимодействия разделяемых компонентов с неподвижной фазой. Это подтверждают данные [78— 80] по использованию неподвижных фаз различной полярности. Так, если при применении неполярных и слабополярных фаз разделение в основном проходит по молекулярному весу и температурам кипения, то на полярных фазах решающим фактором является уже не различие в давлении паров, а образование водородных связей между гидроксильными группами фенолов и функциональными группами неподвижной фазы. Последнее обстоятельство при соответствующем подборе фаз позволяет достигнуть изменения порядка выхода компонентов и в ряде случаев добиться разделения близкокипящих фенолов, в том числе изомерных. Таким образом, выбор неподвижной фазы в каждом конкретном случае должен определяться составом анализируемой смеси и поставленной задачей. [c.51]

    Особенно широкое распространение получил новый метод исследования— газо-жидкостная хроматография, явившийся результатом последовательного развития идеи хроматографического разделения М. С. Цвета. Благодаря таким особенностям, как высокая степень разделения, большая чувствительность, относительная простота оборудования и главным образом небольшое время, требующееся для проведения анализа, этот метод должен сыграть значительную роль в расширении знаний о составе нефтей. Со времени появления в печати работы А. Джеймса и А. Мартина в 1952 г. газо-жидкостная хроматография находит г.се растущее применение в исследовательской практике, в основном для разделения сложных органических смесей, успешно конкурируя с общепринятым методом разделения путем аналитической дистилляции [52]. [c.113]


    Во-вторых, это исиользование для определения образующихся продуктов комплекса хроматографических методов. В пиролитической газовой хроматографии целесообразно комплексно использовать колоночную жидкостную, тонкослойную и капиллярную газовую хроматографию. Особенно перспективно применение методов жидкостной хроматографии для анализа тяжелых продуктов, которые с большой (Вероятностью отвечают отдельным фрагментам пиролизуемого образца и которые, следовательно, представляют особую ценность для информации о структуре молекулы. [c.115]

    В процессах производства, капролактама, где исходным сырьем является циклогексан, получаемый гидрированием бензола, образуются в качестве промежуточных продуктов многокомпонентные смеси углеводородов, нитросоединений, кетонов, спиртов, моно- и дикарбоновых кислот и других органических соединений, состав которых и чистоту целевых продуктов, как правило, трудно определить классическими аналитическими методами. В этом случае наиболее эффективным методом является газо-жидкостная хроматография, особенно в сочетании с инфракрасной спектроскопией. Комбинированное применение указанных методов оказалось весьма полезным при исследовании состава продуктов производства капролактама, а для их количественного анализа и заводского контроля рекомендованы простые и надежные методы газовой хроматографии. [c.297]

    Автомобили с дизельными двигателями становятся все более популярными, что повышает вероятность появления еще одного источника загрязнения. Конгресс США поручил Управлению по охране окружающей среды изучить особенности выхлопных газов дизелей и их воздействие на здоровье человека ( Закон о чистоте воздуха , август 1977 г.). Результаты этого исследования легли в основу требований к выхлопным газам дизелей, обязательных для всех моделей автомобилей, выпускаемых с 1982 г. Соответственно исследователи интенсифицировали усилия, направленные на разработку методов, позволяющих охарактеризовать выхлопные газы дизелей [10—14]. Многокомпо-нентность образцов и необходимость их возможно более полной характеристики явились причиной использования таких чрезвычайно сложных аналитических систем, как газо-жидкостная хроматография — масс-спектрометрия (ГЖХ—-МС), газо-жидкостная хроматография с пламенно-ионизационным детектированием (ГЖХ — ПИД), высокоэффективная жидкостная хроматография (ВЭЖХ), газо-жидкостная хроматография — фурье-спектроскопия в инфракрасной области (ГЖХ — ИК—ФС). Для фракций, обладавших мутагенными свойствами, применялись также биологические методы анализа. Ряд компонентов удалось идентифицировать только благодаря применению взаимно дополняющих методов анализа, например ГЖХ —МС, ГЖХ —ПИД и ГЖХ —ИК —ФС. Методом ГЖХ —МС можно легко определить молекулярную массу компонента и получить данные о его структуре, но этот метод менее информативен при идентификации функциональных групп напротив, такая информация легко может быть получена методом ГЖХ — ИК — ФС. В то же время последний метод не позволяет различать гомологичные соединения [15]. Этот пример наглядно демонстрирует необходимость применения в ряде случаев наиболее совершенных и информативных инструментальных методов анализа, как бы дороги они ни были. Стоимость работ должна соответствовать важности объекта изучения. В частности, если объект связан с контролем загрязнения окружающей среды, которое может иметь очень серьезные экологические последствия, то при- [c.23]

    Если неподвижная фаза — жидкость, нанесенная на поверхность инертного носителя, то говорят о распределительной хроматографии. Хроматография в газовой фазе, особенно вариант газо-жидкостной распределительной хроматографии, благодаря своей эффективности получила широкое применение в анализе сложных смесей газов и паров. Газо-жидкостная распределительная хроматография обладает рядом преимуществ перед газо-адсорбционной хроматографией. В случае газо-жидкостной хроматографии получают узкие, почти симметричные прояйительные полосы (пики), что способствует лучшему разделению компонентов и сокращению времени анализа. Это можно наблюдать на примере разделения углеводородов. Если методом адсорбционной хроматографии разделяют главным образом низкокипящие газообразные соединения, то с помощью газовой распределительной хроматографии можно анализировать почти все вещества, обладающие хотя бы незначительной летучестью, подобрав соответствующую неподвижную жидкую фазу и условия разделения. [c.98]

    В связи с тем что применение газоадсорбционной хроматографии весьма ограничено, открытие газо-жидкостной хроматографии имеет особенное значение (Джеймс и Мартин, 1952). Исследователи разделяли смеси жирных кислот (от муравьиной до лауриновой кислоты и все изомерные валериановые кислоты) на колонках, заполненных твердым носителем, пропитанным силиконовым маслом с примесью стеариновой кислоты, и различные амины на других неподвижных фазах (полимер окиси этилена — луброл МО, парафиновое масло). В качестве детектора они использовали автоматическую бюретку. [c.24]

    В жидкостной хроматографии применяют селею-ивные детекторы (амперометрический, флуориметрический и др.), способные детектировать очень малое количество вещества. Очистка образца до ввода в жидкостной хроматограф минимальна, Циередко его вводят без предварительной обработки, и без получения производных, что часто невозможно при применении других методов анализа. Наконец, в жидкостной хроматографии возможно создание уникального диапазона селективных взаимодействий за счет изменения подвижной фазы, что значительно улучшает разрешающую способность всей хроматографической системы. Работа с микропримесями налагает ряд требований на весь процесс разделения. Особенное значение имеет разрешающая способность колонки, выбор детектора, предварительная обработка образца и построение калибровочного графика. Правильный выбор условий хроматографирования позволяет повысить чувствительность, надежность и воспроизводимость результатов, что очень актуально при работе с микропримесями. [c.84]

    Наиболее важный и универсальный способ ввода вещества осуществляется посредством сочетания масс-спектрометра с хроматографом. Особенно широко используется сочетание газовой хроматографии и масс-спектрометрии (ГХ-МС) в режиме on-line. Этот метод используют для рутинного анализа во многих областях аналитической химии. За последние десять лет в массовом масштабе стал доступен метод, сочетающий в режиме on-line жидкостную хроматографию и масс-спектрометрию (ЖХ-МС). Разработка >1<Х-МС и способов ионизации в этом методе произвели революцию в масс-спектрометрии и областях ее применения. Учитывая важность методов ГХ-МС и ЖХ-МС, разберем более подробно экспериментальные и инструментальные аспекты этих методов. [c.279]

    Что касается сорбента и растворителя, то факторы, ответственные за разделение в плоскостной жидкостной хроматографии под давлением, точно те же, что и для обычного варианта тонкослойной хроматографии (под действием капиллярных сил). Различия лищь в постоянных и оптимизированных скоростях потока, а так же возможности использовать длинные пути разделения в случае разделений под давлением. В сочетании эти отличительные особенности дают возможность прогнозируемым образом повышать разрешающую способность на всех участках пластинки без каких-то изменений селективности. Поэтому не представляется слишком целесообразным и осмысленным пытаться воспроизвести какие-то разделения, получавшиеся ранее с использованием обычного варианта ТСХ, или попытаться получить какие-то необычные данные при работе с камерой под давлением лишь затем, чтобы посмотреть, что из этого выйдет и впоследствии опубликовать результаты. Если обнаружатся разительные изменения (а подобные изменения могут быть направлены и в худшую сторону), они не будут (и совершенно точно, что не будут) обусловлены созданием потока под давлением, а будут объяснимы применением сложной подвижной фазы, которая способна разлагаться в ненасыщенной сэндвич-камере (работающей под давлением) и приводить к таким последствиям, при которых получаемая в системе селективность выходит из-под контроля результат оказывается случайным и не заслуживающим публикации. Подобные эффекты расслоения подвижной фазы могут наблюдаться в любой ненасыщенной сэндвич-камере (при давлении или без давления). Не стоит пытаться пользоваться рассмотреннЬ1м Снайдером треуголь- [c.272]

    ГОСТ 11244—65 предусматривает однократное адсорбционное разделение нефтяных фракций прямой перегонки с началом кипения 300 °С и выше методом жидкостной хроматографии, а также определяет пределы изменения дисперсии пр—пс) и показателя преломления (по") для отдельных групп углеводородов. Для повышения четкости разделения углеводородов на отдельные группы (парафинонафтеновые, одно-, двух- и многоядерные ароматические с алифатическими и алициклическими заместителями) нефтяные фракции подвергают многократному хроматографированию с применением различных адсорбентов [27, 28]. При первичном хроматографировании высокомолекулярных нефтяных фракций используют крупнопористый силикагель, при разделении промежуточных фракций первичного хроматографирования, содержащих парафино-нафтеновые и моноцикличе кие ароматические углеводороды, — мелкопористый силикагель. Применейке окиси алюминия [29] и особенно окиси алюминия, модифицированной пикриновой кислотой [30], способствует повышению эффективности разделения ароматических углеводородов различного строения. [c.17]

    Газовая и в особенности газо-ншдкостная хроматография — наиболее молодая отрасль классической хроматографии, разработанной М. С. Цветом в 1903 г. Значение газо-жидкостной хроматографии особо выявилось в 1952 г. в результате работы Джеймса и Мартина, которые применили инертный пористый носитель с нанесенной на него высококипящей органической жидкостью и этим существенно ускорили десорбцию веществ с высокой температурой кипения. Разделение на такой насадке оказывалось более полным. Это значительно расширило возможности применения хроматографии на практике. С тех пор количество работ по газо-жидкостной хроматографии резко растет и область применения этого метода непрерывно расширяется. Наибольших результатов газо-жидкостная хроматография достигла в анализе органических веществ, в области органического синтеза, нефтеперерабатывающей и нефтехимической промышленности. [c.5]

    Соединения кремния часто могут быть легко идентифицированы по тяжелым изотопам 51 и 51, обладающим распространенностью в несколько процентов. Ранее упоминалось, что пик ионов (51Рз) с массой 85 часто наблюдается в спектре фторсодержащего соединения благодаря взаимодействию его со стеклянными стенками резервуара идентифицировать эти ионы можно по изотопам с массами 86 и 87. Широкое применение силиконов в вакуумной технике и газо-жидкостной хроматографии приводит к тому, что пики, отвечающие кремнийсодержащим ионам, часто появляются в качестве фона и удаляются с большим трудом. Подобные пики могут быть использованы как эталоны масс в том случае, когда их состав известен. Особенно часто наблюдается пик с массой 207, отвечающий ионам [c.436]

    Принципиальный интерес представляет фотометрическое детектирование при А, = 195 нм. В этой области спектра все молекулы с гетероатомами и ненасыщенными группами сильно поглощают УФ-излучение благодаря п о - и я -> я -переходам. Особенно сильно при X = 195 нм поглощают ароматическиэ соединения. УФ-детектор при X = 195 нм можно считать универсальным детектором для жидкостной хроматографии, подобно рефрактометрическому, однако в отличие от него УФ-детектор позволяет работать в условиях градиента растворителя, кроме того, он быстрее выходит на рабочий режим и обладает большей чувствительностью, чем рефрактометрический детектор. Указанный детектор нашел применение при анализе сахаров, липидов, ненасыщенных углеводородов и полиэтиленгликолей. [c.97]

    Широкое применение в промышленности органического синтеза углеводородов, содержащихся в газообразных и жидких продуктах переработки нефти, требует все более и более детального исследования этих продуктов. Индивидуальные углеводороды, содержащиеся в газах, получающихся в процессах переработки нефти, в бензинах и прямой гонки и бензинах вторичного происхождения являются прекрасным сырьем для нефтехимического синтева. Определение углеводородного состава сложных продуктов даже с применением такого эффективного метода,каким является газо-жидкостная хроматография, является достаточно сложной проблемой. Особенно большое значение имеет определение таких компонентов, как изопрен, цис- и 7иракс-пиперилены, 2-метилбутен-2 и др. [c.162]

    Ряд авторов проводил исследования эфирных масел методом газо-жидкостной хроматографии на различной аппаратуре. Особенно много работ по применению газо-жидкостной хроматографии для количественного определения отдельных компонентов по оценке качества масел и детальному изучению состава принадлежит Наву и сотр. [1, 2]. [c.279]


Смотреть страницы где упоминается термин Особенности жидкостной хроматографии в применении: [c.221]    [c.6]    [c.426]    [c.459]    [c.42]    [c.175]    [c.92]    [c.176]    [c.6]    [c.6]    [c.175]    [c.54]    [c.5]    [c.9]    [c.170]    [c.109]    [c.239]   
Смотреть главы в:

Жидкостная хроматография нефтепродуктов -> Особенности жидкостной хроматографии в применении

Жидкостная хроматография нефтепродуктов -> Особенности жидкостной хроматографии в применении




ПОИСК





Смотрите так же термины и статьи:

Жидкостная хроматография хроматографы

Особенности жидкостных хроматографов

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматография особенности

Хроматография применение

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте