Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеофильное замещение карбонильных производных

    Хлорангидриды, подобно другим производным кислот, подвергаются типичным реакциям нуклеофильного замещения. При этом хлор удаляется в виде хлорид-иона или хлористого водорода и его место занимает другая основная группа. Вследствие наличия карбонильной группы эти реакции протекают гораздо быстрее, чем соответствующие реакции нуклеофильного замещения алкилгалогенидов. Хлорангидриды — наиболее реакционноспособные производные карбоновых кислот. [c.634]


    Сложные эфиры вступают в те же реакции нуклеофильного замещения, которые типичны для производных карбоновых кислот. Атака протекает по углероду карбонильной группы, имеющему дефицит электронов, и приводит к замещению ОЯ -группы на ОН, 01 и КНз [c.640]

    В этой книге, предназначенной прежде всего для студентов, изучающих органическую химию, предпринята попытка сравнительно доступно изложить современное состояние теории органических химических реакций. При этом автор не стремится охватить абсолютно все типы реакций, так как это является предметом современных учебников органической химии предполагается, что читатель уже знаком с этими учебниками. Казалось более целесообразным осветить в первую очередь влияния и взаимодействия, скрывающиеся за отдельными механизмами, причем рассмотреть вопрос под различными углами зрения (субстрат — реагент — растворитель). Прежде всего такого рода знание помогает правильно подобрать условия реакции и вообще планировать практическую работу. Далее, для учащихся особенно важно, чтобы теория помогала обобщить многообразие материала и рассмотреть его с единой точки зрения на наглядных примерах. Так, реакции азометинов, нитрилов, нитро- и нитрозосоединений обычно не относят к карбонильным реакциям, но в этой книге их рассматривают вместе с карбонильными реакциями (реакциями альдегидов, кетонов, карбоновых кислот и их производных). Кроме того, применяя принцип винилогии, здесь же рассматривают присоединение по Михаэлю и нуклеофильное ароматическое замещение. Электрофильное присоединение к олефинам и электрофильное замещение в ароматическом ядре также обсуждаются с общей точки зрения. Что касается других глав, то в них сохранена обычная классификация реакций по типа.м нуклеофильное замещение у насыщенного атома углерода, отщепление, секстетные перегруппировки и радикальные реакции. Первые три главы служат введением в них рассматривается проблема химической связи, распределение электронной плотности в молекуле и общие вопросы течения химических реакций органических соединений. [c.9]

    Химические свойства. Наиболее характерная реакция для к. и их производных (как и для их гетероаналогов) — нуклеофильное замещение у карбонильного углерода  [c.507]

    Причина того, что карбоновые кислоты и их производные вступают в реакции нуклеофильного замещения, состоит в том, что электроотрицательная группа, связанная с карбонильным атомом углерода в таких соединениях, может отщепляться как уходящая группа (рис. 8.7). Относительная реакционная способность имеет такой же порядок, как и стабильность замещаемого аниона, т. е. ацилхлорид> ангидрид кислоты >сложный эфир> >тиоэфир>амид. Сами карбоновые кислоты представляют собой аномалию, поскольку большинство нуклеофилов вызывает их депротонирование с образованием солей (разд. 8.5), которые нереакционноспособны. Однако в кислых условиях даже карбоновые кислоты вступают в нуклеофильные реакции. [c.176]


    Реакции нуклеофильного замещения при атоме углерода карбонильной группы могут осуществляться как по моно-, так и по бимолекулярному механизму более характерными являются реакции бимолекулярного замещения. В то время как реакции мономолекулярного замещения при атоме углерода карбонильной группы имеют очень много общего с реакциями SnI в алкилгалогенидах, реакции бимолекулярного замещения в кислотах и их производных протекают по несколько иному механизму, чем соответствующие реакции алкилгалогенидов. Специфика карбонильной группы состоит в том, что она, являясь ненасыщенной, проявляет склонность к реакциям присоединения При нуклеофильной атаке [c.191]

    Они устойчивы к действию большинства окислителей. Хлорируются по радикальному механизму, в результате чего образуются трудноразделимые смеси веществ. Химически инертными являются и производные этих углеводородов, особенно те из них, которые содержат заместитель у узлового атома углерода. Это объясняется тем, что нуклеофильное замещение в таких соеданениях по дг2-механизму невозможно, так как решетчатая структура исключает атаку нуклеофила с тыльной стороны атома углерода, а сложность образования плоского карбонильного иона препятствует 5 /1-реакции [37].  [c.97]

    В качестве ацилирующих агентов применяют производные дикарбоновых, реже — сульфокислот, фосфиновых и фосфоновых кислот. Ацилируемыми мономерами являются либо ароматические диамины и их производные, либо ароматические диоды. Реакции протекают по типу нуклеофильного замещения с атакой неподеленной пары электронов атома азота (в аминах) или кислорода (в диолах) на карбонильный атом углерода (в кислотной компоненте). Общая схема ацилирования имеет следующий вид  [c.42]

    Огромные, успехи теоретической органической химии за последние десятилетия позволили создать довольно стройную картину связи между строением и реакционной способностью различных классов веществ, а также подробно изучить механизмы многих реакций. Эти успехи связаны с плодотворным развитием электронных представлений в органической химии, которые наиболее подробно были развиты применительно к углеродсодержащим соединениям. Так, например, в классической органической химии механизм реакций ацилирования довольно подробно исследован на примерах производных алифатических и ароматических карбоновых кислот. Большие достижения в этой области способствовали тому, что в последующем механизм ацилирования производных кислот, центральный атом которых был иной, чем атом углерода, рассматривался по аналогии с реакциями нуклеофильного замещения у атома углерода карбонильной группы в производных карбоновых кислот. [c.459]

    О ТОМ, что механизм реакций нуклеофильного замещения у четырехкоординационного атома фосфора имеет существенные особенности по сравнению с механизмом нуклеофильного замещения у атома углерода карбонильной группы в производных карбоновых кислот. [c.460]

    В ЭТИХ соединениях по сравнению с механизмом нуклеофильного замещения у атома углерода карбонильной группы в производных карбоновых кислот. Представляет также интерес трактовка с этих позиций механизмов некоторых каталитических и биохимических реакций нуклеофильного замещения у тетраэдрического атома фосфора. Предлагаемый читателю обзор удачно дополняет фундаментальное исследование О Брайна по химии и токсикологии фосфорсодержащих соединений. [c.462]

    В настоящей работе сделана попытка кратко обобщить основные результаты физико-химических исследований последних лет, указывающие на различия в механизмах нуклеофильного замещения у тетраэдрического атома фосфора в производных кислот фосфора и атома углерода карбонильной группы в производных карбоновых кислот. Одно из основных различий этих процессов заключается в том, что переходные состояния при нуклеофильном замещении у тетраэдрического атома фосфора характеризуются 5р с(-гибридизацией электронных орбит, в то время как переходное состояние нуклеофильного замещения у атома углерода карбонильной группы в производных карбоновых кислот характеризуется 5р -гибридизацией. Таким образом, при нуклеофильном замещении у тетраэдрического атома фосфора вакантная З -орбита атома фосфора в переходном состоянии участвует в образовании а-связей. С другой стороны, известно, что Зй -орбиты атома фосфора способны участвовать в образовании дополнительных л-связей между заместителями и тетраэдрическим атомом фосфора. Поэтому, несмотря на то что в обзоре главным образом рассматриваются особенности переходного состояния нуклеофильного замещения у фосфора, в нем также кратко излагаются основные современные представления о строении соединений с четырехкоординационным атомом фосфора, а также наиболее важные доказательства наличия — -сопряжения в основном состоянии этих соединений. Вопрос осложнялся тем, что при исследовании соединений с четырехкоординационным атомом фосфора в основном состоянии были получены довольно противоречивые результаты, некоторые из которых излагаются в первой части обзора. Особое внимание на подобные противоречия было обращено в докладе академика М. И. Кабачника на юбилейной сессии химического отделения АН СССР в декабре 1962 г. [c.463]


    При рассмотрении возможных механизмов, объясняющих высокую реакционную способность монопроизводных фосфорной кислоты в форме моноаниона, в одной из вышеприведенных схем было высказано предположение о возможности образования промежуточных соединений с пятиковалентным фосфором. Подобные схемы были предложены по аналогии с общепринятыми схемами, объясняющими механизм нуклеофильного замещения у атома углерода карбонильной группы в производных карбоновых кислот. Обсуждение этого вопроса тесно связано с рассмотрением особенностей нуклеофильного замещения у тетраэдрического атома фосфора по сравнению с нуклеофильным замещением у атома углерода в производных карбоновых кислот, а также структуры переходного состояния. [c.493]

    Как уже отмечалось выше, энергетически наиболее благоприятным направлением атаки нуклеофильного реагента при замещении у насыщенного атома углерода, например в алкилгалогенидах, является атака с тыльной стороны по отношению к уходящему заместителю. Однако переходное состояние при нуклеофильном замещении у атома углерода карбонильной группы в производных карбоновых кислот характеризуется некоторыми особенностями. [c.494]

    Таким образом, в отличие от нуклеофильного замещения у атома углерода карбонильной группы в производных карбоновых кислот при нуклеофильном замещении у тетраэдрического атома фосфора образование новой связи между приближающимся нуклеофильным реагентом и реакционным центром раскрытия фосфорильной группы не происходит. Это обусловлено в основном тем, что добавочная валентность у атома фосфора может образовываться за счет его вакантных Зй-орбит. Однако, как уже отмечалось ранее, эти же орбиты могут участвовать и в образовании л-связей между заместителями и фосфором (такими, как Н0 , НаН- и др.). Такое сопряжение приводит к большей занятости З -орбит фосфора, что в свою очередь приводит к затруднению нуклеофильной атаки на атом фосфора. [c.504]

    На стадии 2 электрофилом является протон. Почти во всех реакциях, рассматриваемых в данной главе, электрофильная атака происходит либо атомом водорода, либо атомом углерода. Отметим, что стадия 1 точно соответствует стадии 1 тетраэдрического механизма нуклеофильного замещения у карбонильного атома углерода (т. 2, разд. 10.9), поэтому можно ожидать, что замещение будет конкурировать с присоединением. Однако такое встречается редко. Если А и В — это Н, К или Аг, то субстрат представляет собой альдегид или кетон, а они почти никогда не вступают в реакции замещения, так как Н.КиАг — очень плохие уходящие группы. В случае кислот и их производных (Б = ОН, ОК, ЫНг и т. д.) присоединение происходит редко, так как перечисленные группы представляют собой хорошие уходящие группы. Таким образом, в зависимости от природы [c.322]

    При обработке основаниями а-дикетоны дают соли а-гид-роксикислот. Эта реакция называется бензильной перегруппировкой [131]. Хотя реакция обычно осуществляется на арильных производных, ее можно применить и к алифатическим ди-кетонам и а-кетоальдегидам. Использование алкоксид-ионов вместо ОН приводит к соответствующим сложным эфирам [132], хотя алкоксид-ионы, которые быстро окисляются (такие, как 0Е1- и ОСИМег ), здесь не используют, так как они восстанавливают бензил в бензоин. Ароксид-ионы (ОАг") для этой реакции не являются достаточно сильными основаниями. Механизм перегруппировки в основном аналогичен механизмам реакций 18-1—18-4, но есть и различия. Мигрирующая группа не двигается к углероду с открытым секстетом. Углерод имеет октет, но может принять группу с парой электронов за счет смещения я-электронов связи С = 0 к кислороду. Первой стадией будет атака карбонильной группы основанием, т. е. та же стадия, что и первая стадия тетраэдрического механизма нуклеофильного замещения (т. 2, разд. 10.9) и многих случаев присоединения по связи С = 0 (т. 2, гл. 16)  [c.141]

    Ацильные соединения (карбоновые кислоты и их производные) обычно претерпевают реакции нуклеофильного замещения, в которых группы ОН, С1, OO R, NHj или 0R замещаются на другие основные группы. Замещение протекает гораздо легче, чем замещение при насыщенном атоме углерода 8 действительности многие из этих реакций вообще не происходят в отсутствие карбонильной группы, как, например, замещение NHj на ОН. [c.630]

    Реакция Михаэля представляет собой очень эффективный способ удлинения углеродной цепи электрофила на три (и более) атома углерода. Читатель, конечно, обратил внимание на то, что типичные акцепторы Михаэля, как, например, (90), — это продукты конденсации карбонильных соединений, которые могут быть получены по схеме альдольной конденсации (см. 73, схема 2.26), реакции Виттига (см. 82, схема 2.28), реакции Перкина или Манниха (см. ниже). Подчеркнем также, что типичными нуклеофильными компонентами реакции Михаэля служат ионные еноляты, производные карбонильных соединений. Таким образом, условия, требуемые для получения акцепторов Михаэля, очень схожи или даже идентичны условиям проведения самой реакции Михаэля. Эти обстоятельства создавали предпосылки для того, чтобы состьпсовать обе реакции — получение акцептора Михаэля и присоединение к нему нуклеофильного реагента — в связанную последовательность превращений, проводимых в одной колбе без вьщеления промежуточно образующихся продуктов. Более того, можно было ожидать, что функционально замещенные карбонильные соединения, типичные аддукты, получающиеся в результате реакции Михаэля, в тех же условиях могут быть далее вовлечены в такие типичные для них превращения, как, например, внутримолекулярная альдольная конденсация. Первым примером подобного согласованного проведения последовательности реакций карбонильных соединений явилось аннелирование по Робинсону [14а,Ь], стандартный путь создания шестичленного цикла, — метод, широко применяемый в полном синтезе множества природных соединений. Типичный пример такой последовательности приведен на схеме 2.30. [c.114]

    Реакции нуклеофильного замещения характерны для ка б но-вых кислот и их функциональных производных (табл. 7.2). В дополнение к электрофильному (1), основному (2) и слабому СН-кислотному (3) центрам, имеющимся в альдегидах и кетонах, в молекулах карбоновых кислот и Их функциональных производных присутствует также связанный с атомом углерода карбонильной группы заместитель X (потенциальная уходящая группа, нуклеофуг), способный уходить в виде аниона Х или сопряженной кислоты НХ. [c.194]

    Взаимодействие а-кетонитрилов с соединениями, содержащими активные метиленовые группы, можно рассматривать как реакции нуклеофильного замещения. При этом сначала карбанион присоединяется к карбонильному атому углерода получающийся цианалкокси-анион в щелочной среде неустойчив и распадается с образованием ацильного производного и цианид-иона  [c.414]

    Моноядерные и конденсированные производные фурана широко распространены в природных объектах от одноклеточных до высших млекопитающих и выполняют важные функции в процессах нх жизнедеятельности. Соединения этого ряда являются ценными полупродуктами органического синтеза и представляют значительный интерес в поиске и разработках биологически активных веществ для медицины, биотехнологии, ветеринарии. Наиболее очевидным подходом к формированию фуранового цикла являются реакции внутримолекулярного нуклеофильного замещения у-нуклеофугзамещенных гидроксильных или карбонильных соединений структурного типа 1 (внутримолекулярные гетероцнклизацни), которые можно обобщить формализованной схемой 1. [c.67]

    Наиболее очевидным и используемым подходом к формированию пиранового цикла являются реакции, внутримолекулярной гетероцнклнзацнн 1,5-дикарбониль-ных соединений и их енольных производных или реакции внутримолекулярного нуклеофильного замещения со-нуклеофугзамещенных гидроксильных или карбонильных соединений типа 1, которые можно обобщить схемой. [c.152]

    Методики синтезов фторароматических соединений расположены в следующем порядке. Вначале приводятся несколько примеров введения атомов фтора в ароматическое ядро по реакции Бальца — Шимана. Далее даны синтезы о-нитро- и 2,4-динитро фторбензолов в качестве примера замены ароматически связанного атома хлора на фтор под действием фторидов калия и цезия в растворителе и в отсутствие растворителя. Во всех остальных методиках описаны синтезы полифторароматических соединенней. При этом сначала приведены синтезы ключевых соединений — полифторированных ароматических соединений и их галогенпроизводных. Далее идут полифторароматические соединения с алкильными и алкенильными. группами и их производные. Затем следуют соединения с карбонильной и карбоксильной группами и их производные, хиноны, оксисоединения и простые эфиры, соединения, содержащие серу, ароматические амины, гидразины и нитросоединения. В конце приведено несколько примеров синтеза полифторсодержащих гетероциклических соединений по реакции внутримолекулярного нуклеофильного замещения атома фтора. Для того чтобы найти методику синтеза конкретного соединения, необходимо пользоваться предметным указателем. [c.124]

    Заместители, находящиеся в а- или -и-положении по отношению к атому азота, реагируют так же, как заместители, находящиеся в положениях 2 и 4 молекулы пиридина (ср. стр. 73—104). Влияние второго атома азота в диазинах заключается в повышении реакционной способности в сторону сходства с соответствующими карбонильными соединениями (см. обсуждение на стр. 73). Например, нуклеофильные замещения типа (228 229) и (230->231) не известны для пиридиновых производных, но они имеют аналогию в реакциях соединений типа ЙСОУ. [c.136]

    Азометиновую группировку пиридина и других, подобных ему гетероциклов, при изображении их структуры по Кекуле можно сравнить с карбонильной группой и на этом основании предсказать существование электронного дефицита в а- и у-положениях этих соединений. Кроме того, можно ожидать, что поведение заместителей в этих положениях и в сходно построенных карбонильных производных должно быть до известной степени одинаковым. Примером может служить замещение аминогруппы, происходящее под действием всевозможных нуклеофильных реагентов. Так, 2-окси-хинолин может быть получен гидролизом 2-аминохннолина  [c.341]

    В тоже время неподеленная пара карбонильного кислорода антрахинона легко вовлекается в образование внутримолекулярной водородной связи, имеющейся в а-окси- и а-аминоантрахинонах. Мы предположили, что если возникновение подобной водородной связи возможно уже при протонировании производных антрахинона, содержащих акцептор протона в пери-положении к карбонильной группе, то оно должно приводить к делокализации положительного заряда, активируя нуклеофильную атаку в сопряженные с СО-группой положения. Гипотеза о замыкании хелатного кольца при протонировании была использована ранее для объяснения способности к солеобразованию и трудности полярографи ческого восстановления а-метоксиантрахинонов, а также интерпретации ИК-спектров их солей , но так и не была строго доказана. Делока.йизация положительного заряда в солях а-мётоксиантрахинонов будет лишь содействовать кислотному гидролизу и нуклеофильному замещению метоксигруппы, но в случаях, когда акцептор lipoTona не способен к нуклеофильному замещению, можно ожидать нуклеофильной атаки в другие положения антрахинонового ядра. . .  [c.20]

    Реакция ацилирования по конечным результатам является нуклеофильным замещением (в случае кислот равновесная) и ускоряется небольшим количеством концентрированных минеральных кислот. Протон, присоединяясь к кислородному атому карбонильной группы, превращает органическую кислоту в карбокатион, облегчая тем самым нуклеофильную атаку этиловым спиртом (кислота в избытке блокирует неподеленную пару электронов спирта, понижая его нуклеофильную активность). Продукт присоединения выделяет воду и через ониевое производное превращается в сложный эфир  [c.166]

    Эта книга адресована прежде всего студенту-органику. В ней сделана попытка возможно доступнее изложить современную теорию органических реакций. При этом автор не стремился подробно рассмотреть все множество органических реакций этот материал — неотъемлемая часть современных курсов органической химии, знание которых является предпосылкой для работы с данной книгой. Автор считает целесообразным главное внимание уделить влияниям и взаимодействиям, которые обусловливают существование определенных механизмов, всесторонне обсудить роль субстрата, реагента, растворителя. Именно понимание упомянутых влияний и взаимодействий позволяет правильно выбрать условия реакции и разумно планировать эксперимент. Для учащегося важно также, чтобы теория позволяла обобщить материал, представить его в единой удобообозримой форме. По этой причине в данной книге совместно представлены реакции карбонильных соединений (альдегиды, кетоны, карбоновые кислоты и их производные) и таких веществ, как азометины, нитрилы, нитро- и нитро-зосоединения. С опорой на принцип винилогии в это рассмотрение включено также присоединение по Михаэлю и нуклеофильное замещение в активированных ароматических соединениях. С общей точки зрения обсуждены также электрофильное присоединение к олефинам и электрофильное замещение в ароматическом ядре. [c.6]

    Главное место занимают методы, основанные на реакциях нуклеофильного замещения в молекуле карбонильного соединения производными аммиака и гидразина. К таким реагентам относятся гидроксиламин NH2OH, гидразин и его производные— диметилгидразин, фенилгидразин и 2,4-динитрофенилгид-разин общего строения R —NH2. [c.105]

    Известно, что соли нитроалканов при взаимодействии с алкил-галогенидами по механизму нуклеофильного замещения образуют в случае С-алкилирования замещенные нитросоединения, а в случае 0-алкилирования — карбонильные производные, получающиеся в результате распада промежуточных нитрониевых эфиров. Алкилирование солей нитроалканов галогеналкенами изучено в меньшей степени. [c.40]

    До некоторых пор такая аналогия была полезной. Однако за последнее десятилетие накопилось значительное число фактов, свидетельствующих о том, что, естественно, полной аналогии в том смысле, как это предполагалось в свое время, быть не может. На различия в нуклеофильном замещении у атомов углерода карбонильной группы в производных карбоновых кислот и элементов третьего периода в производных кислот этих элементов указывают результаты многочисленных физико-химических исследований последних лет. Квантовомеханические расчеты показали, что эти различия, возможно, объясняются различиями в гибридизации атомных орбит атома углерода — элемента второго периода периодической системы Менделеева и в гибридизации атомных орбит элементов третьего периода, таких, как 51, Р, 5, С1, где в гибридизации наряду с 5- и р-орбитами могут принимать участие также и Зсг-орбиты. Все эти обстоятельства, которые в настоящей работе будутрассмотрены более подробно, свидетельствуют [c.459]

    И еще одно небольшое, но существенное замечание, которое необходимо сделать, прежде чем перейти к рассмотрению геометрии переходного состояния нуклеофильного замещения у тетраэдрического атома фосфора. Это замечание касается направления атаки нуклеофильного реагента молекулы субстрата. В отличие от рассмотренного выше механизма нуклеофильного замещения у атома углерода карбонильной группы производных карбоновых кислот, когда нуклеофильный реагент приближается по линии, почти перпендикулярной к плоскости, в которой находится КСОХ, при нуклеофильном замещении у тетраэдрического атома фосфора наиболее часто, по-видимому, наблюдается более общий для 5лг2-механизма случай, когда нуклеофильный реагент подходит к молекуле фосфорсодержащего соединения с тыльной стороны по отношению к отходящей группировке. Подобный механизм, как уже отмечалось выше, был довольно четко продемонстрирован вальденовским обращением при нуклеофильном замещении у тетраэдрического атома фосфора на многочисленных примерах с оптически активными фосфорсодержащими соединениями.  [c.497]

    Однако подобное сопряжение между реакционным центром и алкоксигруппой при нуклеофильном замещении у тетраэдрического атома фосфора проявляется в значительно меньшей степени, чем -в случае нуклеофильного замещения у углерода карбонильной группы производных карбоновых кислот. Так, например, если в фосфорсодержащих соединениях введение алкоксигрунпы приводит к снижению константы скорости нуклеофильного замещения в десятки раз, то ацетилхлорид гидролизуется примерно в 10 раз быстрее, чем этилхлорформиат 1205, 206] (см. табл. 8 на стр. 483), причем энергия активации для первого соединения на 9 ккал]моль ниже, чем для второго соединения [207]. Такое изменение энергии активации является величиной такого же порядка, как энергия [c.515]


Смотреть страницы где упоминается термин Нуклеофильное замещение карбонильных производных: [c.219]    [c.114]    [c.45]    [c.141]    [c.72]    [c.107]    [c.310]    [c.72]    [c.219]    [c.494]    [c.526]    [c.543]   
Смотреть главы в:

Курс теоретических основ органической химии -> Нуклеофильное замещение карбонильных производных




ПОИСК





Смотрите так же термины и статьи:

Замещение нуклеофильное

Карбонильные производные



© 2025 chem21.info Реклама на сайте