Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория гибридизации орбит

    Часто в образовании нескольких химических связей участвуют различные атомные орбитали одного и того же атома. Например, в молекуле метана четыре химические связи образованы путем перекрывания трех р- и одной -орбитали атома углерода с четырьмя -орбиталями атомов водорода. Так как энергия и форма - и р-орбиталей различны, то можно было бы ожидать, что одна из четырех связей в молекуле метана будет отличаться от других связей по прочности и по характеру направленности. Однако эксперименты показали, что все четыре связи в молекуле метана равноценны. Этот и другие подобные факты удалось объяснить при помощи теории гибридизации атомных орбиталей. [c.49]


    Согласно теории гибридизации в частице АВ те валентные орбитали центрального атома А, которые участвуют в образовании а-связей А—В или содержат неподеленные пары электронов (для радикалов— неспаренные электроны), не сохраняют своей индивидуальности (т. е. не являются чистыми пз-, пр- или -АО). Они гибридизуются (изменяют свою симметрию) и получают точное направление в пространстве, причем их взаимная направленность максимально симметрична (для данного числа АО) относительно центра атома А. При этом перекрывание гибридных орбиталей центрального атома с АО партнеров по а-связям усиливается, прочность химической связи возрастает и частица получает оптимальную для нее устойчивость. [c.162]

    Причины этих отклонений вызваны изменениями в типе орбита-лей центрального атома, образующих связи с галогенами, переходом от 5р-типа к 5 /-типу по мере возрастания порядкового номера элемента и электроотрицательности лиганда. Теория ОЭПВО в отличие от представлений ЛМО и теории гибридизации АО не учитывает прямо тип орбиталей электронных пар, что и не позволяет учесть отдельные тонкие различия. [c.158]

    Для объяснения пространственной конфигурации молекул существует ряд теорий (моделей). Рассмотрим модель гибридизации орбита-лей. [c.83]

    НОСТЬ вращения вокруг связи, известно >же в течение двадцати одного года. Однако построение удовлетворительной теории потенциальных барьеров для простых связей встретило препятствия всего год назад Уилсон показал, что ни об одной из предложенных теорий нельзя сказать, что она удовлетворительно согласуется с экспериментальными данными [8]. Привлекательна идея, согласно которой орбиты, образующие связь, не обладают цилиндрической симметрией, но имеют зубчатую форму поперечное сечение такой орбиты для случая углерода в метиле будет иметь вид трилистника. Максимум перекрывания и, следовательно, максимальная энергия связи будут соответствовать ориентации, при которой трилистники противостоят друг другу. Однако такая ориентация приводит в случае этана к затененной конформации, которая, как известно, является неустойчивой кроме того, теория гибридизации орбит связи приводит к выводу, согласно которому наилучшими орбитами связи для ненапряженных простых связей являются те, которые обладают цилиндрической симметрией относительно оси связи. [c.9]

    Чтобы ответить на этот вопрос, химикам пришлось выполнить множество экспериментов, на основании которых они пришли к выводу, что эти четыре связи атома углерода одинаковы. Теория о тетраэдрическом атоме углерода была разработана в 1931 г. В соответствии с этой теорией, теорией орбиталей гибридной связи или теорией гибридизации, одна 25-орбиталь и три 2р-орбитали атома углерода гибридизуются (сочетаются) с образованием четырех тетраэдрических орбиталей. Они вполне эквивалентны друг другу и направлены к углам правильного тетраэдра, как показано на рис. 6.9. Кроме того, природа 5- и /)-орбиталей и их гибридов [c.149]


    Для объяснения этого противоречия теория валентных связей вводит понятие о гибридизации связей. Согласно идее о гибридизации, орбитали комплексообразователя, участвующие в образовании двухэлектронных связей с лигандами, должны претерпевать определенные изменения. Действительно, до координации лигандов распределение электронной плотности этих орбиталей определяется тем, что они принадлежат к системе с одним атомным ядром. После координации орбитали, осуществляющие химические связи, принадлежат к системе с несколькими атомными ядрами. Такие изменения в системе, конечно, должны отражаться на распределении электронной плотности орбиталей, участвующих в образовании связи. Поэтому при координации происходит гибридизация все орбитали электронов комплексообразователя, осуществляющие химические связи, становятся совершенно одинаковыми, за исключением их направлений. Образуются гибридные орбитали, характерной особенностью которых является растянутость электронного облака в направлениях, обусловленных расположением лигандов. Точнее, гибридные орбитали направлены к лигандам. При этом растянутая форма этих орбиталей способствует большему перекрытию при взаимодействии с орбиталями лигандов, т. е. способствует упрочнению связей. Другими словами, гибридизация упрочняет связи в комплексных соединениях. [c.88]

    Однако к ароматичности ведет не только секстетная конфигурация л-электронов. Согласно правилу 4п + 2 Хюккеля относительно устойчивыми плоскими моноциклическими системами атомов с тригональной гибридизацией являются только системы, содержащие 4л -f 2 электронов. Это правило следует из простой теории МОХ, в которой для л-электронной циклической системы низшая связывающая орбиталь всегда заполняется двумя электронами, а все более высокие связывающие орбитали дважды вырождены и заполнены четырьмя электронами. Если число таких орбиталей п, то л-электрон-ная оболочка заполняется 4л + 2 электронами. Следовательно, ароматическими будут плоские моноциклические соединения, содержащие 2, 6, 10, 14 и т. д. л-электронов. Правило Хюккеля хорошо подтверждается на опыте. [c.119]

    Поэтому шесть электронов попарно занимают оставшиеся < й(-орбитали, вследствие чего неспаренных электронов больше не остается, что и обусловливает диамагнетизм системы. Кроме того, теория показывает, что возможная здесь гибридизация типа (1 р обладает октаэдрической симметрией, что полностью подтверждается исследованиями структуры [Fe( N)в] . Однако эти представления недостаточны для того, чтобы объяснить все свойства комплексов. На основе представлений Полинга, например, невозможно правильное истолкование спектров большинства комплексов металлов. [c.128]

    Для образования донорно-акцепторных связей в комплексах могут использоваться не только 5- и р-орбитали, но и /-орбитали. В этих случаях согласно теории валентных связей происходит гибридизация с участием /-орбиталей. [c.130]

    При образовании донорно-акцепторных связей в комплексах могут использоваться не только 5- и р-орбитали, но и -орбитали. В этих случаях согласно теории валентных связей возникает гибридизация с участием -орбиталей. В табл. 18 приведены некоторые виды гибридизации и соответствующие им структуры. В последней графе этой таблицы указаны ионы-комплексообразователи, в комплексах которых метод валентных связей предполагает наличие данного типа гибридизации. " [c.218]

    Согласно этой теории, при образовании молекул происходит изменение формы и энергии атомных орбиталей. Вместо неравноценных, например 5- и р-орбиталей, образуются равноценные гибридные орбитали, имеющие одинаковую энергию и форму, т. е. происходит гибридизация (смешение) атомных орбита-лей. При образовании химических связей с участием гибридных орбиталей выделяется больше энергии, чем при образовании связей с участием отдельных 5- и р-орбиталей, поэтому гибридизация атомных орбиталей приводит к большему понижению энергии системы и соответственно повышению устойчивости молекулы. На рис. 11.8 представлена форма гибридной орбитали, возникающей при комбинации атомных 5- и р-орбиталей. [c.43]

    Орбитали выбирают так, чтобы отталкивание между электронными парами было минимальным. Идея гибридизации в сущности является продуктом синтеза концепций структурной теории с принципами квантовой механики. Квантовая теория не предусмотрела равноценности валентных сил в таких молекулах, как, например, молекула метана ее тетраэдрическая структура тоже не была этой теорией предсказана. Концепция гибридизации разрешила эти затруднения, не войдя в противоречия ни с химией, ни с квантовыми законами. [c.114]

    Иногда связь между атомами прочнее, чем этого можно было ожидать, на основании расчета возможного перекрывания их орбиталей, формы которых находят из уравнения Шредингера (см. рис. 5—8). Чтобы объяснить такое расхождение экспериментальных фактов с теорией, предположили, что атомная орбиталь принимает форму, позволяющую ей более полно перекрываться с орбиталью соседнего атома. Изменить свою форму атомная орбиталь может, лишь комбинируясь с другими атомными орбиталями иной симметрии этого же атома. В результате комбинации различных орбиталей ( , р, и т. д.) возникают новые атомные орбитали промежуточной формы, которые называются гибридными. Перестройка же различных атомных орбиталей в новые орбитали, усредненные по форме, называется гибридизацией. Естественно, что число атомных орбиталей, несмотря на их видоизменение, сохраняется. [c.55]


    Атом лития на 25-подуровне имеет один неспаренный электрон и, следовательно, соединение должно иметь состав LiH. У атома бериллия этот подуровень заполнен и нет ни одного неспаренного электрона, следовательно, бериллий не должен образовывать ни одной химической связи. У бора и следующих за ним элементов (С, N, О, F) происходит последовательное заполнение 2р-подуровня, и атомы этих элементов будут иметь определенное число неспаренных электронов. Если при образовании связей учитывать только наличие неспаренных электронов, то для этих элементов должны образоваться следующие водородные соединения ВН, СН , NH3, Н7О, HF. Отсюда видно, что, применяя только обменный механизм образования химической связи, можно вступить в противоречие с экспериментальными данными бериллий образует соединение с водородом состава ВеНг, водородные соединения бора также имеют другой состав, а простейшее соединение углерода с водородом имеет состав СН4.Устранить это противоречие можно, предположив, что атомы элементов второго периода в образовании молекул участвуют в возбужденном состоянии, т.е. происходит распаривание 5-электронов и переход их на р-подуровень. Но тут возникает другое несоответствие с опытными данными. Поскольку энергии 5- и р-электронов различны, то и энергии образуемых ими химических связей должны отличаться, а, следовательно, подобные связи Э-Н должны иметь разную длину (в зависимости от того, орбитали какого типа принимают участие в их образовании). Согласовать теорию и эксперимент можно, введя предположение об усреднении энергий 5- и р-подуровней и образовании новых уровней, на которых энергии электронов, находящихся уже на орбиталях другого типа, одинаковы. А раз это так, то по правилу Хунда, в атоме появляется максимальное число неспаренных электронов. Эта гипотеза получила название явления гибридизации, а орбитали, образующиеся в результате усреднения энергий подуровней, называются гибридными. Естественно, что при этом меняются и форма электронных облаков, и их расположение в пространстве. В зависимости от того, какие орбитали участвуют в образовании гибридных орбиталей, рассматривают различные типы гибридизации и пространственные конфигурации образовавшихся гибридных орбиталей (см. рис. 14.). Число получившихся гибридных орбиталей должно быть равно общему числу орбиталей, вступивших в гибридизацию. В зависимости от того, какие орбитали взаимодействуют между собой, рассматривают несколько типов гибридизации  [c.48]

    МЕТАН (СН4), гибридизация и теория отталкивания электронных пар валентно оболочки. Для того чтобы воссоздать картину атома углерода, удерживающего при себе четыре группы, необходимо обратиться к его возбужденному электронному состоянию. Возбужденное состояние атома включает.образование четырех новых внешних орбиталей путем гибридизации 25-орбитали и всех трех 2р-орбиталей. (Квантовая механика постулирует, что мы должны создавать столько же новых орбиталей, сколько вступает в гибридизацию.) Четыре гибридные орбитали обладают одинаковой энергией, и каждая из них обозначается 2 вр (2 означает главное квантовое число, а зр указывает на то, что орбиталь является гибридной и состоит на одну четверть из -орбитали, а па три четверти из р-орбиталей). [c.49]

    Влияние несвязывающей электронной пары центрального атома на строение молекул. Выше мы рассмотрели правильные геометрические формы молекул и комплексов с валентными углами 180, 120, 109,5, 90°. Однако, согласно экспериментальным данным, значительно чаще встречаются молекулы и комплексы с несколько иными значениями валентных углов. Валентные углы в молекулах НзЫ и НгО, например, составляют /1НЫН =107,3° и .НОН =104,5°. Согласно теории гибридизации центральные атомы этих молекул образуют химические связи за счет электронов хр -гибридных ор-бита/ ей. У атома углерода на четыре ар -гнбридиые орбитали приходится четыре электрона  [c.71]

    Напомним, что ЛМО — это орбитали молекулы, их не надо смешивать с гибридными орбиталями в методе ВС. В методе ВС часто объясняют геометрию и другие свойства молекул, используя гибридизацию связей. Как показал Йоргенсен, применение гибридизации в методе ВС во многих случаях неоправданно, именно в атомах с зарядом ядра 7> 13,, так как при этом не учитывается, что ns-, пр-к (п—1) г-орбитали у элементов бо льших периодов часто сильно отличаются радиальными составляющими волновых функций максимумы последних далеко отстоят друг ог друга, что делает линейную комбинацию неэффективной. Так, для металлов группы железа средние радиусы атомов для 311-, 4.у- и 4р-состояний относятся, как 1-,3 4. Подробно см. статью Йоргенсена Крах теории гибридизации [30]. [c.253]

    Главные оси четырех sp -орбиталей углерода в метан направлены к вершинам тетраэдра, и валентные углы рав ны 109,5° Таким образом, теория гибридизации дала тео ретическое обоснование тетраэдрической модели атома уг лерода Вант-Гоффа и Ле Беля, предложенной ими в 1874 г Что дала гибридизация в итоге" Во-первых, несмотря н сохранение общей энергии системы (атома), гибридизац дала sp -гибридные орбитали, лучше приспособленные перекрывания, то есть образуются более прочные связи со гласно принципу максимального перекрывания (рис 111) Во-вторых, sp -гибридные орбитали с углами 109,5° обеспечивают минимальное отталкивание между четырьмя связывающими парами электронов [c.71]

    Хотя сравнительные достоинства этих двух моделей были предметом многих споров, между ними есть и много общего, что, правда, редко замечают. В модели межэлектронного отталкивания ошибочно предполагается, что 2s- и 2р-орбитали полностью эквивалентны, т. е. что S- и р-орбитали в первом приближении для всех молекул полностью гибридизованы. Вероятно, теория гибридизации орбиталей несколько переоценивает разницу в энергиях s- и /7-орбиталей и поэтому ведет к недогибридизации . Однако оба эти представления включают предположение о смешении s- и / -орбиталей при образовании связей. Если бы мы знали, где находятся большую часть времени валентные электроны в HgO и если бы мы попытались описать распределение в виде разложения в ряд по водородоподобным орбиталям атома водорода, то такое разложение, несомненно, включало бы преимущественно вклад от 2/ -орбиталей с некоторой примесью вклада 25-орбиталей. И схема отталкивания электронов, и модель гибридизации орбиталей — это просто различные приближения для определения величины такой примеси s-орбиталей. [c.185]

    Следует отметить, что при соответствующем подборе параметров для взаимодействий неэлектростатической природы все модели приводят к относительно хорошему согласию рассчитанных свойств с опытными. Наилучшей из них, по нашему мнению, является четырехполюсная модель Бьеррума [326], согласно которой электрические заряды молекулы воды расположены в вершинах тетраэдра. Два отрицательных полюса созданы избытком электронной плотности в местах расположения неподеленных пар электронов, а два положительных созданы ее недостатком в местах расположения протонов. При этом строение электронного облака молекулы воды не зависит от ее изотопного состава. Указанная модель согласуется с моделями, полученными на основе теории молекулярных орбита-лей, распределения электронной плотности и других. Тетраэдрическая направленность в размещении электрических зарядов связана с распределением электронной плотности на четырех гибридных 5/ -орбиталях. В подобной тетраэдрической конфигурации угол Н—О—Н должен быть равен 109°. Уменьшение этого угла примерно на 4° обусловлено различием в отталкивании электронных пар на связывающих и несвязывающих орбиталях. 8/) -Гибридизация изменяет также пространственное расположение тех пар электронов кислорода, которые не принимают непосредственного участия в образовании химической связи в молекуле воды. Они располагаются на противоположной стороне атома кислорода таким образом, что в целом заряды расположены в вершинах тетраэдра. [c.160]

    Из ковалентных нитридов наибольшее практическое значение имеет нитрид водорода H3N — аммиак. В обычных условиях это бесцветный газ с резким удушаюш,им запахом. Молекула H3N имеет форму тригональной пирамиды ( nh — 0,1015 нм, HNH = 107,3°). Согласно теории валентных связей атом азота в молекуле H3N находится в состоянии sp -гибридизации. Из четырех sp -гибридных орбита- [c.346]

    ВзН см. разд. 13-2). В этой молекуле к центральному атому бора присоединены три атома водорода. Согласно теории локализованных молекулярных орбиталей, связь в этой молекуле осуществляется в результате гибридизации 2х-орбитали и двух 2р-орбиталей атома бора с образованием трех эквивалентных хр -гибридных орбиталей (рис. 13-3). Каждая гибридная орбиталь имеет на одну треть 5-характер и на две трети р-характер. Поскольку любые две р-орбитали лежат в одной плоскости, а х-орбиталь не имеет пространственной направленности, три хр -ги-бридные орбитали лежат в одной плоскости. Эти три хр -гибридные орбитали, перекрываясь с тремя водородными 1х-орбиталями, образуют три эквивалентные локализованные связывающие орбитали. Каждая из таких связывающих (хр -ь 1х)-орбиталей занята в молекуле ВН3 парой электронов, как это схематически показано на рис. 13-4. На основании представления о гибридньгх орбиталях можно предсказать, что молекула ВН3 должна иметь плоскую тригональную структуру. Угол между межъядерными осями Н—В—Н, называемый валентным углом Н—В—Н, должен составлять 120°. [c.553]

    Все связи в комплексных соединениях являются равноценными. Математически по теории валентных связей это можно описать как смешение з-, р- и /-орбиталей и образование так называемых гибридных орбиталей. В координационных соединениях переходных металлов (с незаполненными -орбиталями) большое значение имеет гибридизация с участием -орбиталей. Так, например, шесть связей между ионом Ре + и шестью ионами Р в комплексном ионе [РеРв] " согласно теории валентных связей следует рассматривать как образованные шестью гибридными орбиталями 3 /Ч 4р ( зр -орбитали), а шесть связей между ионами Ре + и ионами СЫ — как образованных шестью орбиталями (яр й -орбитали). [c.45]

    Интересно отметить, что гибридные 5р с -орбитали по теории валентной связи направлены к вершинам тригональной бипирамиды, и они не являются эквивалентными, как, ианример, 5р -орбитали. И действительно, для этой гибридизации было пoкaзaнo что максимальное перекрывание орбиталей окружающих атомов с экваториальной орбиталью центрального атома происходит на несколько меньшем межъядерном расстоянии, чем с полярной орбиталью. Однако следует еще раз подчеркнуть, что это просто удобное описание, а не объяснение различия в длине между полярной и экваториальной связями. [c.221]

    Среди различных подходов к объяснению образования комплексного иона наиболее общий дает теория молекулярных орбиталей. Впервые она была применена к комплексным ионам Ван-Флском Ч В методе используются те же орбитали центрального атома, что и в методе Полинга, но, кроме того, и орбитали N координирующихся лигандов М — число лигандов), направленных к центральному атому. Таким образом, для построения молекулярных орбиталей при наличии шести лигандов пригодными будут пятнадцать атомных орбиталей. При октаэдрическом расположении лигандов это будут три вырожденные несвязывающие -орбитали (1 , йу ) каждая с четырьмя долями, направленными между лигандами, шесть связывающих, происходящих от гибридизации, и шесть соответствующих им разрыхляющих орбиталей. По аналогии с методом Полинга, конфигурацию молекулярных орбиталей можно представить следующим образом [жирные линии разделяют орбитали с различной энергией (см. рис. 7-4), а отдельные клетки изображают молекулярные орбитали]  [c.265]

    Молекула BeHj имеет четыре внешних электрона. Им для размещения нужны две орбитали. Как видно из рис. 83, энергия на орбиталях 2oj и 1g ниже, чем на 2а и За, (или на 2ау и Ibj), значит, в основном состоянии молекула BeHj — линейна. Молекулы BHj (пять внешних электронов), Hj (шесть) NHj (семь) и.ОНд (восемь) должны быть, согласно диаграмме Уолша, нелинейными. Например, семи внешним электронам NHj в линейной молекуле отвечала бы конфигурация (2ст ) (1 ) (1 ) , а в нелинейной (2аi) (1 2) (3oi) (l i) В линейной молекуле три электрона находятся на орбитали самой высокой энергии, а в угловой — только один. Поэтому молекула NHj в основном электронном состоянии нелинейна. Однако даже лучшие обобщения, не обоснованные строгой теорией, могут подвести при предсказании неизвестных фактов. Это относится и к предсказаниям в методе ВС, основанном на электронной конфигурации центрального атома в молекулах (см. 42), Здесь также предполагается определенная гибридизация АО и отвечающая ей равновесная конфигу рация (табл. 23). [c.202]

    Вопрос о возможном наличии эквивалентных орбиталей у атома, имеющего в основном состоянии электроны на определенных атомных орбиталях, помогает решать теория групп. Мы видели, что у атома с з-, р -, р -, р -орбиталями могут быть четыре эквивалентные орбитали, приводящие к зр -гибриднзации. зр -Гибридизация имеет место в молекуле СН4 с группой симметрии Т . То, что у электронных-облаков атома углерода возможна такая симметрия, можно установить исходя из данных теории групп. [c.88]

    Для расчета химических связей в комплексах и объяснения их свойств используют различные модели метод валентных связей теорию кристаллического поля и метод молекулярных орбиталей Метод валентных связей (ВС). Согласно этому методу (см гл. II), при образовании комплексов между комплексообразова телем и лигандами возникает ковалентная связь по донорно акцепторному механизму. Комплексообразователи имеют ва кантные орбитали, т. е. играют роль акцепторов. Как правило в образовании связей участвуют различные вакантные орбитали комплексообразователя, поэтому происходит их гибридизация (см. И.З). Лиганды имеют неподеленные пары электронов и играют роль доноров в донорно-акцепторном механизме образования ковалентной связи. Например, ион имеет электронную конфигурацию 3 " 45Чр  [c.293]

    В качественной теории МО получаемые в результате приближенных решений уравнения Шрёдингера молекулярные орбитали многоатомных молекул являются в общем случае многоцентровыми функциями — линейными комбинациями АО нескольких атомных центров. Такое описание не связано прямо с понятием химической связи в структурной теории, где связь представляет собой локальное свойство, относящееся к двум соседним атомам. Можно преобра 5овать атолшые орбитали таким образом, чтобы придать им направленность, характерную для конфигурации образуемых данным атомом химических связей, и на основе этих новых (гибридных) АО подойти к описанию и прогнозированию геометрии молекул. Представления о гибридизации атомных орбиталей были введены в 30-х годах нашего столетия Л. Полингом. Понятие о гибридизации орбиталей тесно связано с понятием [c.381]

    Чаще всего пользуются последней из них, которая по идее наиболее проста (так как отвлекается от рассмотрения межатомных взаимодействий), а потому и наиболее удобна для описательных целей. Она объясняет различие углов при центральном атоме —например, 112° в (СНз)20, 110° в IjO, 104,5° в Н2О, 103° в I2S, 99° в (СНз)23, 92° в H2S — только разной степенью участия в гибридизации его s-орбитали. Однако по существу такой подход дает лишь видимость объяснения ведь эта степень оценивается не на основе параметров взаимодействующих атомов, а по фактической величине угла (т. е. он сам себя определяет). Итак, нельзя сказать, что из теории направленных валентностей вытекает именно одна геометрическая конфигурация (Я, К. Сыркин), [c.545]

    Степень окисления —3. Аммиак молекула ЫНз имеет форму тригональной пирамиды НЫН=107°, ее дипольный момент равен 1,460. Согласно теории валентных связей (ВС) атом азота в ЫНз находится в состоянии 5/ -гибридизации связующими являются три гибридные орбитали, четвертая — несвязующей. Энергетическая диаграмма молекулярных орбиталей ЫНз приведена на рис. 17.9. [c.438]

    В пределах валентного электронного слоя в атоме кислорода еще имеются две неподеленные электронные пары. В соответствии с теорией полной гибридизации (стр. 108) все валентные орбитали атома кислорода (орбитали с неподеленными электронными парами и орбитали со спаренными электронами) могут участвовать в гибридизации., Таким образом, в, гибридизацию, вступает однд S- и три р-орбитали, т. е, образуются четыре гибридные орбитали типа sp . Как известцо , орбитали [c.186]

    Рассмотрим природу связей в молекуле С2Н4 с позиций современной электронной теории. В атоме углерода, находящемся в возбужденном состоянии (С 15225 2р ), гибридизации могут подвергаться не все, а только три орбитали внешнего уровня одна 5- и две р-орбитали. Третья р-орбиталь с неспаренным электроном остается в неизменном виде. [c.315]

    Рассмотрим природу связей в молекуле ацетилена в соответствии с электронной теорией. При образовании химических связей в молекуле ацетилена гибридизации подвергаются только две орбитали внешнего энергетиче ского уровня атома углерода одна 5- и одна р-орбиталь Этот тип гибридизации называется хр-гибридизацией Две р-орбитали углеродного атома остаются в неизмен ном виде. Расположение двух гибридных орбиталей ато ма углерода в пространстве показано на рис. 20.4 он1 направлены вдоль одной оси под углом 180° друг к другу [c.328]

    Первое существ, достижение теоретич. К. расчет энергии иоиных кристаллов, выполненный в 1918-19 М. Борном и А. Ланде. В 1926-27 были созданы системы кристаллохим. ионных и атомных радиусов (В. Гольдшмидт, Л. Полинг). На основе концепции ионных радиусов В. Гольдшмидт в 1925-32 объяснил явления морфотропии, изоморфизма и полиморфизма. В 1927-32 Полинг сформулировал осн. принципы строения ионных кристаллов, ввел представления о балансе валентных усилий связей, понятия атомных орбита-лей и гибридизации, развил теорию плотной упаковки атомов в кристаллах. [c.536]


Смотреть страницы где упоминается термин Теория гибридизации орбит: [c.70]    [c.161]    [c.9]    [c.45]    [c.232]    [c.249]    [c.38]    [c.377]    [c.264]   
Смотреть главы в:

Механизмы органических реакций -> Теория гибридизации орбит




ПОИСК





Смотрите так же термины и статьи:

Гибридизация

Орбита

Теория гибридизации



© 2025 chem21.info Реклама на сайте