Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения углерода с водородом и азотом

    СОЕДИНЕНИЯ УГЛЕРОДА, ВОДОРОДА, АЗОТА И КИСЛОРОДА [c.230]

    Соединения углерода, водорода, азота и кислорода [c.229]

    Представленные до сих пор номенклатурные правила не охватывают соединений, в которых органические остатки связаны С-атомами с атомами иными, чем углерод, водород, азот, галогены и халькогены. Некоторые соединения, содержащие связи с иными элементами, уже упоминались при обсуждении л-комп-лексов (см. с. 49). [c.192]


    Под теплотой сгорания понимают то количество теплоты, которое выделяется при полном сгорании одного моля вещества до высших окислов при данных условиях (Р, Т). Сгорание называется полным, когда углерод, водород, азот, сера, хлор и бром, входящие в соединение, превращаются соответственно в диоксид углерода, жидкую воду, молекулярный азот, диоксид серы и галогеноводородную кислоту. Теплоту сгорания веществ определяют сжи- [c.209]

    В зависимости от поставленной задачи, свойств анализируемого вещества и других условий состав веществ выражается по-разному. Химический состав вещества может быть охарактеризован массовой долей элементов или их оксидов или других соединений, а также содержанием реально присутствующих в пробе индивидуальных химических соедииений или фаз, содержанием изотопов и т. д. Состав сплавов обычно выражают массовой долей (%) составляющих элементов состав горных пород, руд, минералов и т. д. — содержанием элементов в пересчете на какие-либо их соединения, чаще всего оксиды. Наиболее сложен так называемый фазовый или вещественный анализ, целью которого является определение содержания в пробе индивидуальных химических соединений, форм, в виде которых присутствует тот или иной элемент в анализируемом образце. При анализе органических соединений наряду с определением отдельных элементов (углерода, водорода, азота и т. д.) нередко выполняется молекулярный и функциональный анализ (устанавливаются индивидуальные химические соединения, функциональные группировки и т. д.). [c.5]

    Реакция соединения углерода с азотом сильно эндотермична и частично протекает только при очень высоких температурах. Из простейших азотистых производных углерода наиболее важен цианистый водород (H N). Он может быть получен из СО и аммиака по реакции [c.496]

    В предыдущих разделах мы подробно рассмотрели углеводороды и их кислород- и азотсодержащие производные. Входящие в состав всех этих соединений углерод, водород, кислород и азот содержатся в подавляющем большинстве природных органических соединений. Эти элементы еще в начале возникновения органической химии были названы органогенами, т. е. элементами, порождающими органические молекулы. [c.302]

    Таким образом, для открытия отдельных элементов органического соединения необходимо. предварительно его разрушить путем полного сжигания, или окисления, или сплавления с металлическим натрием для того, чтобы превратить углерод, водород, азот и другие элементы в простые вещества, удобные для качественного открытия. [c.29]


    Вероятно, в дальнейшем радиоактивные нуклиды в качестве меченых атомов будут наиболее широко применяться в биологии и медицине. В человеческом организме содержится такое большое количество соединений, включающих многие элементы — углерод, водород, азот, кислород, серу и др., что состояние, в котором находится органическое вещество, определить крайне трудно. Однако если в состав того или иного органического соединения ввести радиоактивный нуклид, то за перемещением его в организме можно наблюдать путем измерения радиоактивности. Для этой цели особенно пригоден радиоактивный нуклид углерод-14, имеющий период полураспада около 5000 лет. Он подвергается медленному распаду с испусканием бета-лучей, и количество данного изотопа в образце можно определить, измеряя бета-активность. Большие количества С можно легко получить в ядерном реакторе при действии на азот медленных нейтронов uN-fJn- 1 с + 1Н [c.616]

    Под элементарным составом топлива обычно понимают содержание в его органической массе серы, углерода, водорода, азота и кислорода. Все эти элементы, кроме азота, могут входить и в состав минеральных примесей, что необходимо принимать во внимание при установлении истинного состава 0 рганической массы топлива. Так, углерод может встречаться в карбонатах минеральной массы топлива, водород в гидратной воде силикатов, кислород в целом ряде минеральных соединений, сера в виде сульфатов и колчедана. [c.142]

    Иа ааре существования органической химии предметом ее изучения служили соединения, построенные только из углерода, водорода, азота и кислорода. Лишь немногие химики-органики, нередко объединявшиеся в отдельную группу, изучали соединения, содержаи ие неорганические элементы . По мере развития теоретической органической химии все яснее вырисовывалась роль гетероатомов в биологических процессах кроме того, число химиков-органиков значительно возросло. Вот почему в литературе стало появляться все больше и больше работ, которые нельзя уже было строго разграничить на органические и неорганические. [c.326]

    Почему при элементном анализе органических соединений непосредственно определяются количества углерода, водорода, азота, но не определяется количество кислорода в составе соединения  [c.462]

    Из бензола получите в три стадии соединение, содержащее только углерод, водород, азот и бром. Обязательно используйте две реакции, протекающие по механизму Sg. [c.442]

    Органические соединения обычно разлагают (минерализуют) при помощи окислительных методов сухим озолением, мокрым озолением или сплавлением. При сухом озолении анализируемое вещество нагревают на воздухе, в токе кислорода (например, в стеклянной илн кварцевой трубке) нли в закрытом сосуде (кислородная бомба). По мере сгорания пробы ряд интересующих элементов (углерод, водород, азот, кислород, галогены, сера) превращается в газообразные продукты. Продукты сжигания поглощают подходящим поглотителем или растворителем и затем анализируют тем нли иным методом (часто простым. взвешиванием), в том числе в автоматическом режиме, используя газоанализаторы. [c.66]

    В состав большинства органических соединений входит всего лишь несколько основных элементов углерод, водород, азот, кислород, сера и значительно реже другие элементы Таким образом, все многообразие органических соединений определяется, с одной стороны, их качественным и количественным составом, а с другой — порядком и характером связей между атомами [c.29]

    Существуют качественные реакции, позволяющие определить наличие элементов, кроме углерода и водорода, входящих в состав органического соединения, а именно азота, галогенов, серы. В настоящее время в аналитической практике используются автоматические анализаторы, определяющие количественный состав ряда элементов, главным образом углерода, водорода, азота. С помощью такого анализа можно составить формулу соединения. [c.481]

    Силы притяжения у ионных твердых веществ (например хлористого натрия) преимущественно кулоновского типа, т. е. сила притяжения изменяется обратно пропорционально квадрату расстояния между ионами разных знаков. Однако притяжение не является чисто кулоновским, в нем принимают участие также поляризационные силы и силы Ван-дер-Ваальса в некоторых случаях они проявляются в виде изменений решетки. Металлы характеризуются очень высокой проводимостью электричества и тепла и очень высоким коэфициентом отражения и поглощения света. Их можно рассматривать как решетку положительных ионов, заряд которых нейтрализован отрицательными электронами, равными по числу сумме зарядов этих ионов. Эти свободные электроны принадлежат всей решетке, а не какому-нибудь отдельному атому. По принципу Паули лишь два электрона (исключая спин) могут занимать один квантовый уровень и поэтому число уровней энергии огромно, так как оно равняется половине числа свободных или проводящих электронов. В неметаллических соединениях атомы связаны в молекулы ковалентными связями, образованными парами электронов. Этим типом связи соединены углерод, водород, азот и другие атомы в огромном числе органических молекул, он играет роль также в образовании многих Вернеровских координационных соединений, особенно металлов второй и третьей групп. Связь у электронной пары может быть слабой, как в Ja, поможет быть и более прочной, чем в—С —С—или—С — Н, или чем ионные [c.89]


    Ниже рассмотрены и сопоставлены величины энергий связи поверхности никелевых, железных, платиновых и палладиевых катализаторов с основными элементами органических соединений — углеродом, водородом, кислородом и азотом. [c.344]

    При анализе кремний-, фосфор- и металлоорганических соединений создаются благоприятные условия для задержания их окислов в слое окиси никеля, а следовательно, и определения без помех в указанных соединениях углерода, водорода и азота. [c.36]

    Предлагается метод одновременного определения углерода, водорода, азота в органических соединениях с газо-хроматографическим окончанием анализа. Анализируемое вещество окисляется окисью меди при пиролитическом разложении навески в замкнутом объеме в среде гелия при 750—850 С, Продолжительность сожжения 30 мин. Продукты окисления вытесняются гелием через электролитическую ячейку, где происходит накопление и последующее электролитическое разложение воды. Продукты пиролиза и электролиза (N2, СО,, О...) идентифицируются газо-хроматографическим методом. [c.338]

    Главные компоненты органических соединений — углерод, водород и кислород второстепенные элементы — азот, фосфор, сера и некоторые металлы. Каж дый атом углерода имеет четыре ковалентные связи. Некоторые органические вещества — природного происхождения, например волокна растений и ткани животных другие могут быть получены в результате реакций синтеза (резина, пластмассы и т, д.) или процессов ферментации (спирты, кислоты, антибиотики и др.). В отличие от неорганических соединений органические веп ества обычно горят, имеют высокую молекулярную массу, в очень небольшой степени растворимы в воде, в реакции вступают чаще в молекулярной форме, чем в ионной, являются источником пищи животных и подвержены распаду под воздействием микроорганизмов. [c.20]

    Выбор защитной газовой среды для рабочего пространства печи обусловливается гл. обр. хим. составом нагреваемого изделия и целью нагрева металла. Газовую среду чаще всего создают частичным сжиганием высококалорийных природных газов с последующей очисткой (от сернистых соединений, углекислого газа и др.) и осушкой продуктов сгорания. Кроме того, в качестве газовой среды применяют продукты неполного окисления углеводородных газов, получаемые в спец. генераторах диссоциированный аммиак и продукты его неполного сгорания водород, полученный электролизом. При нагреве высокоуглеродистой стали газовая среда состоит из окиси углерода, водорода, азота и небольшого количества углеводородов, при нагреве мягкой и среднеуглеродистой стали — из продуктов неполного сгорания высококалорийного газа. Высокохромистую сталь нагревают в водородной среде, не допуская наличия кислорода даже в связанном виде. Безокислительной средой для [c.121]

    При работе с органическими соединениями обычно можно исключить атомы титана и цинка и ограничиться рассмотрением углерода, водорода, азота, кислорода, серы, галогенов и некоторых других элементов. Многоатомные, более чем двузарядные ионы встречаются сравнительно редко, что также ограничивает число вероятных эмпирических формул. [c.298]

    Если органическое соединение содержит атом хлора или брома, то относительные интенсивности изотопных пиков изменяются очень резко. Это объясняется тем, что хлор обладает двумя стабильными изотопами С1 и С1, соотношение которых составляет примерно 3 1 соотношение стабильных изотопов брома Вг и Вг — 1 1. Таким образом, положительно заряженные ионы, содержащие один или оба этих элемента, а также углерод, водород, азот и кислород, дают пики с массой X за счет ионов, содержащих Н,. [c.303]

    В настоящее время разработаны различные газохроматографические методы для определения содержания следующих элементов в органических соединениях углерода, водорода, кислорода, азота, серы, хлора, брома, фосфора, мышьяка. Не вызывает сомнений возможность применения газохроматографических методов для определения и других элементов, которые образуют летучие соединения в результате предварительных химических превращений. В частности представляет интерес определение металлов, образующих летучие хелаты. [c.185]

    Отношение значения ХПК сточной воды к содержанию в ней органического углерода (в мг/л) — характерный показатель загрязнения сточной воды органическими веществами. Отображая в известной мере соотношение между количествами углерода, водорода, азота и кислорода в молекулах органических соединений, этот показатель дает полезную и притом весьма доступную информацию о составе этих соединений. [c.79]

    НЫЙ анализ органических соединений с газохроматографичоским определепиел продуктов разложения. II. Метод одновременного определения углерода, водорода, азота // Методы анализа органических соединений, нефтей, их смесей и производных.— М. Наука, 1969.— С. 115—120. [c.209]

    Для соединений, которые не удалось идентифицировать по физическим константам, определяют молекулярную формулу, показывающую количество разли чных атомов в молекуле. Для этого сначала проводят качественный и количественный анализы. С помощью качественных реакций устанавливают, какиг элементы входят в состав анализируемого соединеиия. Затем по разработанным методикам определяют процентное содержание углерода, водорода, азота, серы, галогенов и других элементов. Обычно количество кислорода определяется косвенным образом по разности. В настоящее время в аналитическую практику внедрены автоматические анализаторы, на которых за несколько минут одновременно определяется процентное содержание углерода, водорода и азота. [c.500]

    Соедииение I содержит углерод, водород, азот, кислород, ие растворяется в разбавленных щелочах и кислотах. При нагревании в течение некоторого времени с соляной кислотой из соединения I получается кристаллическая кислота (II) с эквивалентом иейтрализации 180+1. При окислении вещества I бихроматом калия и серной кислотой образуется кристаллическая, содержащая азот кислота(III) с эквивалентом иейтрализации 166+1. Соединение I реагирует с бензальдегидом в присутствии щелочей с образованием бензального производного. [c.559]

    В каменных углях сера обычно присутствует в трех основных формах в виде сернокислых соединений железа, кальция, магния и щелочных металлов, которая носит название сульфатной серы в виде сернистых соединений с металлами, главным образом с железом (пирит), — колчеданная сера iFeSa, а также в виде различных соединений с углеродом, водородом, азотом, кислородом — органическая сера. [c.139]

    Химики-органики используют для сравнения с углеродом, водородом, азотом и кислородом также массы других элементов. Подходящие для этой цели соединения могут быть выбраны по эмпирической формуле. Примером может служить упомянутый выше дублет Сз — Н С1, обнаруживаемый при массе 78 в смеси бензола (СеНв) и изопропилхлорида (С3Н7С1). Этот дублет использовался в лаборатории автора для изучения разрешающей способности масс-спектрометра. Керр и Дакворт рассматривали дублет СО СЬ— У2 Hg [1097]. Для изучения масс тяжелых изотопов применяются дублеты, включающие фтор. Так, например, ион СзР с массой 169, один из наиболее интенсивных в масс-спектре перфтортрибутиламина, может быть использован для непосредственного измерения массы Ти, которая не так давно была опре-делена масс-спектрометрически. [c.63]

    Допустим, что масс-спектр органического соединения дает нам отчетливый пик, принадлежащий молекулярному иону, и лишь малые пики ионов, на одну или две массовые единицы меньшие молекулярного, образующиеся вследствие отрыва водорода от молекулярного иона. При этом наложение на молекулярные ионы осколочных, обедненных водородом, содержащих тяжелые изотопы, будет незначительным. Элементарный состав такого иона может бьггь получен путем измерения его массы с достаточной точностью. В приложении 1 собраны массы различных комбинаций атомов углерода, водорода, азота и кислорода. Каждому массовому числу, приведенному в таблице, соответствуют комбинации не только целых молекул, но и осколков, и ниже описан способ, позволяющий различить молекулярный и осколочные ионы. То, что состав ионов может быть получен на основании измерения масс, указывалось выше, но следует рассмотреть точность, необходимую в тех случаях, когда присутствуют только атомы углерода, водорода, азота и кислорода, поскольку эти элементы являются основными в органической химии. Точность, необходимая при измерении масс синглетных ионов, может быть установлена на основании изучения дублетов, поскольку разделение компонентов дублета характеризует требуемую точность измерений. Дублеты, перечисленные в приложении 3, показывают, что пики с одинаковыми массовыми числами, не содержащие тяжелых изотопов, могут отличаться по массам на одну из следующих разностей  [c.308]

    Расширение приложения 1 путем включения всех комбинаций атомов углерода, водорода, азота и кислорода с ограничением числа присутствующих элементов и наличием гипотетической формулы, удовлетворяющей правилам валентности, потребовало бы включения многих дополнительных комбинаций. Некоторые из них не будут содержать углерод, в других будет отсутствовать водород ни одно из таких соединений не приведено в справочнике Бейльштейна. Из оставшихся 23 комбинаций девять (С2Н4Кю02, СзН4Ы80з, СзНвЫюО, [c.313]

    В настоящее время серу определяют на коммерческих автоматических анализаторах наряду с углеродом, водородом, азотом. Эти методы определения основаны на окислительной деструкции [26—30]. Одно из затруднений, возникающих в этом методе, состоит в том, что при 450—600 °С оксид меди, который всегда присутствует в медном восстановительном реакторе, образует с оксидами серы сульфаты. Дуган [30], подробно изучивший образование нелетучих соединений серы в медном реакторе, показал, что этих трудностей можно избежать, если температуру медного реактора поддерживать около 840 °С [30]. Метод Дугана используется в ряде коммерческих элементных анализаторов. Так, в анализаторе фирмы Геркулес [30] сожжение образца происходит при 1080°С в атмосфере смеси гелия (40%), кислорода (60%), оставшаяся часть которого после окончания окисления вместе с образовавшимся продуктом под действием потока гелия поступает в восстановительную зону, заполненную медью, где при 840 °С оксиды азота восстанавливаются до азота, оксиды серы — до диоксида серы и где удаляется избыток кислорода. Продукты затем разделяются при 130°С на колонке (2 м), заполненной порапаком Q. [c.200]

    Разложение в токе влажного кислорода в платиновой трубке, в трубке с платиновой набивкой при 900—1250° С [5] или в трубке с кварцевым наполнителем [6—8] (методика № 4). Газообразные и летучие жидкие фторуглероды разлагают, пропуская их с азотом или воздухом в смеси с кислородом [6]. При сожжении серусодержащих соединений образуется сульфат, который может быть определен в виде Ва804. С целью восстановления оксифторида кремния и удаления абсорбированного фторида кремния трубку после сожжения рекомендуют продувать последовательно кислородом, азотом, водородом и снова азотом [7]. Практически фторорганические соединения сжигают в кварцевой аппаратуре с применением обычного элементарного анализа, т. е. с одновременным определением углерода, водорода, азота, хлора и фтора. Это возможно вследствие того, что 51р4 проходит через СиО без изменения, в то время как все остальные элементы окисляются [3]. См. также методы пиролиза. [c.21]

    Самое широкое использование в качестве меченых атомов изотопы нашли в биологии и в медицине. Человеческий организм содержит такие большие количества элементов — углерода, водорода, азота, кислорода, серы и т. д., что очень трудно проводить анализ на содержание в нем небольшого количества того или иного органического вещества. Одпако органршеское соединение, в состав которого введен радиоактивный изотоп, можпо проследить в организме измерением радиоактивности. Для этой цели особенно пригоден радиоактивный изотоп С . Этот изотоп имеет период полураспада около. 5568 лет. Оп подвергается медленпому распаду с испусканием Р-лучей, и количество данного изотопа в образце можно определить измерением Р-активпостп. Большие количества этого изотопа легко можно приготовить в урановом реакторе при действии па азот медленных нейтронов  [c.548]

    До сих нор нами рассматривалргсь ионы, состоящие только из атомов углерода, водорода, азота и кислорода. Дублетные линии могут давать ионы, содержащие атомы хлора, брома или серы совместно с ионами углеводородов или органических соединений, содержащих азот и кислород. Большое число разнообразных дублетов, образованных в результате комбинирования серы и галогенов, можно исследовать так же, как и рассмотренные выше дублеты из атомов углерода, водорода, азота [c.333]

    В книге детально описаны основные методы микроэлемен-тарного и функционального анализа органических соединений, приведены методы определения углерода, водорода, азота, серы, галогенов, кремния, фосфора, германия, активного водорода, карбонильной группы, аминного азота, азота нитропарафинов, алкоксильной группы и воды. Описан способ взвешивания даны рекомендации по организации лабораторий микроанализа органических соединений. [c.688]


Библиография для Соединения углерода с водородом и азотом: [c.338]    [c.333]   
Смотреть страницы где упоминается термин Соединения углерода с водородом и азотом: [c.72]    [c.73]    [c.62]    [c.208]    [c.229]   
Смотреть главы в:

Неорганическая химия -> Соединения углерода с водородом и азотом




ПОИСК





Смотрите так же термины и статьи:

Азот водород

Водород соединения

Соединения азота и азота



© 2025 chem21.info Реклама на сайте