Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь структуры и свойств химических веществ

    В области соприкосновения физики и химии возник и успешно развивается сравнительно молодой из основных разделов химии — физическая химия. Предвиденная еще М. В. Ломоносовым, она окончательно оформилась лишь в последней четверти XIX в. в результате успешных попыток количественного изучения физических свойств химических веществ и смесей, теоретического объяснения молекулярных структур. Экспериментальной и теоретической базой этого послужили работы Д. И. Менделеева (открытие периодического закона, разработка гидратной теории растворов), Вант-Гоффа (термодинамика химических процессов, исследование химического равновесия), С. Аррениуса (теория электролитической диссоциации), В. Оствальда (закон разбавления) и т. д. Предметом ее изучения стали общетеоретические вопросы, касающиеся строения и свойств молекул химических соединений, процессов превращения веществ в связи с взаимной обусловленностью их физическими свойствами, изучение условий протекания химических реакций и совершающихся при этом физических явлений. Ныне это разносторонне разветвленная наука, тесно связывающая физику и химию. [c.87]


    Высшие формы гомологии каким-то, еще неясным, образом связаны со свойствами живого вещества и с его эволюцией. Во всяком случае такая форма развития вещества,. при которой образование нового качества достигается повторением определенных структурных единиц, наблюдается не только в области собственно органической химии, но в невероятно усложненной и обогащенной форме обнаруживается в химических структурах живого вещества. [c.91]

    Зольность присадки (за исключением беззольных) также должна быть достаточно высокой, что обусловлено введением в структуру основного химического вещества присадки щелочных металлов (бария, кальция, цинка и др.), которые в виде солей обеспечивают моющие свойства присадок. Присутствие этих металлов в присадках прямо связано с такой константой, как щелочность. [c.58]

    Отмеченные работы представляют собой первую попытку связать механические свойства белкового вещества с его химическим и пространственным строением. Дальнейшим развитием этого направления можно считать изучение Мейером мышечных белков. Было показано, что макроскопическое сокращение мускулов связано с изменением молекулярной формы белковых цепей. Проведя совместное механическое и рентгеноструктурное исследование, Мейер пришел к заключению, что в ослабленных мускулах имеются параллельно ориентированные цепи главных валентностей, а в сокращенных их нет. Он наблюдал дифракционную диаграмму у высушенного в растянутом виде мускула, типичную для волокнистой структуры, отвечающую аморфному состоянию. Такой интерпретации удовлетворяли данные опытов с замороженным белком. Растянутый мускул легко расслаивался при температуре жидкого воздуха вдоль предполагаемых волокон, тогда как сокращенный препарат в этих же условиях распадался на комочки. По этому поводу Мейер в 1930 г, писал "Белковые цепи, скрепляющиеся друг с другом по всей длине мускула в определенных местах посредством молекулярных сил сцепления несольватируемых групп или какими-нибудь другими связями и сокращающиеся или растягивающиеся под влиянием меняющейся величины pH, должны вызывать сокращения или же ослабления на протяжении всей длины мускула. Этим макроскопическое сокращение сводится в конце концов к внутримолекулярному процессу" [3. С. 435]. И далее он делает не менее важное и новое для того времени замечание "Нет сомнения в том, что источником мускульной энергии и причиной движения является химический выделяющий энергию процесс" [3. С. 438 см. также 4. С. 64]. [c.10]


    Физические свойства. В соответствии с характером изменения структуры и типа химической связи закономерно изменяются и свойства простых веществ — их плотность, температура плавления и кипения, электрическая проводимость и др. Так, аргон, хлор р,г/см и сера в твердом состоянии являются диэлектриками, [c.235]

    Это объясняется тем, что свойства простых веществ не всегда однозначно определяются природой образующих их атомов, а в значительной мере зависят также от структуры, типа химической связи, межмолекулярного взаимодействия, условий образования и пр. [c.235]

    Изложенная схема расчета интеграла состояний системы не содержит ограничений на природу и величину потенциальной энергии межчастичного взаимодействия. Это позволяет определить аксиоматику построения математической модели состояния равновесной системы. Равновесный состав должен удовлетворять 1) уравнениям ЗДМ, описывающим образование молекулярных форм, приводящих к эффективному уменьшению экстремума свободной энергии Гиббса [5] 2) максимальному числу линейно-независимых стехиометрических уравнений закона сохранения вещества и заряда 3) уравнению связи измеряемого свойства системы с равновесными и исходными концентрациями составляющих частиц. Термодинамика не дает априорных оценок предельных концентраций компонентов системы, допускающих указанные приближения структуры жидкости. Состоятельным критерием возможности применения модели идеального раствора для комплексов, по-видимому, может служить постоянство констант химических равновесий при изменении концентраций компонентов системы, если число констант, необходимых для адекватного описания эксперимента, не превышает разумные пределы. [c.18]

    Исследование механических свойств твердых топлив приобретает все большее значение из-за механизации их добычи и в связи с их технологическим использованием, где часто требуется предварительное дробление и измельчение. Для оценки механических свойств служат такие показатели, как прочность, твердость, пластичность, дробимость и др. Эти свойства твердых топлив обусловливаются химическим составом и структурными особенностями угольного вещества. Поэтому, зная физико-механические свойства твердых топлив, можно делать определенные выводы об их структуре и химическом составе. [c.191]

    Способность находиться неопределенно длительное время в метастабильном состоянии — характернейшее свойство твердого вещества. Как мы знаем, это свойство вытекает из коллективного характера межатомного взаимодействия в твердом веществе, благодаря которому большие порции поглощаемой им энергии сразу же распределяются между его п-Ю атомами, каждый из которых, таким образом, получает чаще всего лишь небольшую добавочную энергию. В то же время, чтобы превратить одно твердое вещество в другое, имеющее иную структуру, необходимо разорвать сразу огромное количество прочных связей. Вот почему твердое тело обладает термической, радиационной, химической устойчивостью. [c.157]

    В данной главе нам предстоит подробнее ознакомиться с кислотами и основаниями. Мы увидим, какая связь существует между свойствами этих веществ и их структурой и особенностями химической связи. Кроме того, в последующих рассуждениях мы будем часто опираться на представление о равновесии, которое было введено в предыдущей главе. Мы убедимся, что свойства кислот и оснований, с которыми нам часто приходится встречаться, очень сильно зависят от того, что растворителем для них служит вода. Чтобы получить лучшее представление о том, насколько интересными свойствами обладает водный раствор кислоты, начнем с рассмотрения довольно распространенного химического реактива-соляной кислоты. [c.68]

    В последнее время хроматографический метод начали применять для определения ряда физических и физико-химических свойств индивидуальных веществ, например относительной скорости движения хроматографических полос, положения вещества в сорбционном ряду, теплоты сорбции, изотермы сорбции. Многие из этих свойств связаны с другими важными физическими характеристиками вещества и структурой молекул, поэтому могут быть использованы для определения этих характеристик. [c.60]

    Следует учитывать, что периодическая зависимость свойств простых веществ, а тем более бинарных и других соединений от порядкового номера элемента проявляется менее четко, чем у свободных атомов элементов (рис. 4,2). Здесь важное значение приобретает изменение структуры веществ, природы химической связи и условий образования. [c.84]

    Свойства простых веществ р-элементов очень разнообразны. Классифицировать это многообразие свойств возможно, если в основу положить вид химической связи и тип кристаллической структуры. [c.97]


    Свойства простых веществ периодически изменяются в зависимости от порядкового номера элемента 2. Однако зависимость свойств у простых веществ от порядкового номера элемента имеет более сложный вид, чем аналогичная зависимость у свободных атомов. Это вызвано тем, что свойства простых веществ определяются не только природой атомов элементов, их образующих, но и видом химической связи между атомами в веществе, структурой вещества и некоторыми другими факторами. [c.245]

    Эти константы показывают, что в ряду рассматриваемых элементов, как и в других главных подгруппах, с увеличением порядкового, номера I энергия ионизации атомов уменьшается, радиусы атомов и ионов увеличиваются, металлические признаки химических элементов усиливаются. Наряду с этим зависимость свойств простых веществ (/ л, кип, плотность и др.) от 1 имеет более сложный характер. Это связано с тем, что при переходе от магния к кальцию и от стронция к барию происходит изменение структуры кристаллических решеток металлов Ве и Mg кристаллизуются по типу гексагональной решетки (плотнейшая упаковка), Са и 5г кубической гранецентрированной, а Ва— кубической объем но-центрированной. [c.262]

    Закон постоянства свойств. Кристаллохимическое строение и свойства. Логическим следствием закона постоянства состава является закон постоянства свойств (Пруст, 1806) — свойства веществ не зависят от способа его получения и предыдущей обработки. Совершенно очевидно, что этот закон относится только к молекулярным соединениям. Свойства химических соединений, не имеющих молекулярной структуры, прямо зависят от способа получения и предыдущей обработки. Это прежде всего связано с тем, что количест- [c.25]

    Химическая связь между молекулами у вещества с молекулярной структурой менее прочная, чем между атомами, поэтому их температуры плавления и кипения сравнительно низкие. У веществ с немолекулярной структурой химическая связь между частицами весьма прочная, поэтому их температуры плавления и кипения высокие. Современная химия изучает свойства микрочастиц (атомов, молекул, ионов и др.) и макротел. [c.9]

    Закон постоянства свойств. Кристаллохимическое строение и свойства. Логическим следствием закона постоянства состава является закон постоянства свойств (Пруст, 1806) — свойства вещества не зависят от способа его получения и предыдущей обработки. Этот закон относится только к молекулярным соединениям. Свойства химических соединений, не имеющих молекулярной структуры, прямо зависят от способа получения и предыдущей обработки. Это прежде всего связано с тем, что количественный состав соединения зависит от условий его получения. А свойства вещества яв.пяются в первую очередь функцией состава. Однако, по Бутлерову, свойства вещества зависят не только от качественного и количественного состава, но и от химического строения. Но классическая теория химического строения Бутлерова относится к молекулярной химии, поскольку она рассматривает химическое строение именно молекул. Это и понятно, так как [c.19]

    Все изложенное выше свидетельствует о том, что электронная система фуранового цикла является более лабильной, чем у бензола. Наличие в фурановом цикле системы конъюгированных двойных связей обнаруживается как химическими, так и физическими методами несравненно отчетливее, Чем в бензольном цикле в этом и других свойствах фурановых веществ проявляется их близость ко многим родственным по структуре простейшим непредельным соединениям. [c.29]

    Полученные результаты свидетельствуют о незначительном влиянии поверхностно-активных веществ на химический состав битумов, в первую очередь на содержание основных структурообразующих элементов. Поэтому изменение структуры и механических свойств под влиянием добавок, очевидно, не связано с изменением химического состава битумов. [c.216]

    Периодическая зависимость свойств от атомного номера элемента у простых веществ проявляется сложнее, чем у свободных атомов. Это объясняется тем, что свойства простых веществ не всегда однозначно определяются природой образующих их атомов, а в значительной мере зависят также от структуры, типа химической связи, межмолекулярного взаимодействия, условий образования и пр. [c.257]

    Широкое использование и высокие темпы роста производства полимеров обусловлены, в первую очередь, разнообразием их физических, химических и механических свойств. Для направленного изменения свойств, т. е для установления связи состав — структура — свойства необходимо владеть знаниями о структуре полимеров и способах се регулирования в процессе синтеза. Решение этой задачи требует серьезного анализа и обобщения обширной информации в области химии и физики поли.меров, накопленной за последние годы Отбирая эту информацию для учебного пособия, авторы руководствовались те.м, что в какой бы области полимерной науки и технологии ни работал специалист, он должен владеть знаниями не только в этой области. Действительно, современный химик-синтетик должен знать не только методы синтеза мономеров и полимеров, но и хорошо разбираться в том, как свойства получаемого им полимера зависят от химической природы исходных веществ— мономеров. Исследователь, занимающийся физикой и механикой поли.меров, должен иметь четкое представление об их химическом строении. Наконец технолог, работающий в области переработки полимеров, должен знать и химию полимеров, и их физические и эксплуатационные свойства, а также свойства их растворов. [c.5]

    Действие лекарственного вещества определяется не только его химической структурой, но зависит также и от его физикохимических свойств. Поэтому фармацевтическая химия тесно связана с физической и коллоидной химией. Изучение структуры молекулы лекарственного вещества, разработка методов синтеза и анализа его невозможны без знания органической и аналитической химии. Вопросы совместимости лекарственных веществ в рецептурной прописи, способы изготовления, сроки годности, условия хранения и отпуска лекарств связывают фармацевтическую химию с технологией лекарств, экономикой и организацией фармации. Но решать вопросы совместимости, условия хранения лекарств может лишь специалист, владеющий знаниями фармацевтической химии. [c.5]

    В прошлые годы усилия специалистов были в основном сосредоточены на синтезе новых органических веществ и материалов, необходимых для практики. Причем преобладал метод проб и ошибок. Органическая химия в наши дни стала более точной наукой, базирующейся на закономерностях, связывающих свойства веществ с их химическим составом, пространственной структурой, природой химической связи. Развитие стереохимии сделало реальной постановку задачи синтеза веществ с заранее заданным строением, а значит и с заданными свойствами. Совершенствование структурных представлений является, пожалуй, важнейшей тенденцией теоретической химии. [c.26]

    Следовательно, изменяя химическое строение молекулы вещества через введение определенных заместителей, а также порядок замещения в бензольном ядре через увеличение цепочки сопрялсенных двойных связей, циклизацию и т. д., химик целенаправленно воздействует на свойства (ароматичность, цветность ц т. д.) получаемых веществ. Нетрудно заметить, что изменение свойств химических веществ, происходящее в результате перестройки их структур, связано с изменением ряда количественных характеристик (числа циклов, заместителей, длин цепочек сопряженных двойных связей и т. д.). [c.282]

    Анализ экспериментальных данных показывает, что свойства химических веществ сложной молекулярной структуры определяются не только типом и количеством составляющих молекулу атомов или функциональных групп, но и местом расположения и взаимным их влиянием (как, например, у цис- и транс- алкенов, изоалканов, алкилцикланов, алкилбензолов и т.д.). С этой точки зрения большее внимание заслуживает аддитивный метод моделирования свойств изоалканов В.М. Татевского, также основанный на принципе аддитивности информации, где учтено влияние места расположения функциональных групп [40]. Метод Татевского основан на суммировании количества углерод - углеродных связей (n j), различающихся по принадлежности к первичному, вторичному, третичному и четвертичному углеродным атомам  [c.18]

    В рамках развития принципов феноменологического подхода к сложному веществу разработано новое научное направление - неатомарный недискретный подход к спектрам вещества разработаны принципы феноменологической электронной спектроскопии. Последняя дает возможность прогноировать свойства всех веществ на основе установленного нами закона квазилинейной связи свойств и оптических характеристик поглощения. По сравнению с классической, феноменологическая спектроскопия имеет ряд преимуществ, т.к. позволяет получать любую информацию о структуре и физико-химических свойствах веществ, рассматривая их спектр как единое целое, без выделения характеристических частот в спектрах отдельных компонентов. [c.101]

    Галидами называют соединения галогенов с металлами и неметаллами, в которых степень окисления галогенов равна —1. Тип химической связи, структура и свойства галидов зависят от химической природы как галогена, так и элемента, непосредственно с ним соединенного. Галиды щелочных металлов (за исключением — Г), щелочноземельных металлов (за исключением Ве — Г), большинства лантаноидов и некоторых актиноидов относятся к ионным соединениям. В галидах неметаллов и переходные металлов смешанные ионноковалентные связи. Галиды щелочных и щелочноземельных металлов — кристаллические вещества, не подвергающие-" ся гидролизу, так как представляют собой соли сильных кислот и сильных оснований. Галиды получают непосредственным д взаимодействием галогенов с металлом. [c.242]

    Свойства полимеров определяются не только гибкостью макромолекул, но и их взаимным расположением, т. е. структурой. Для полимерных веществ с линейными и разветвленными макромолекулами характерны два типа связей. Между атомами в цепных молекулах действуют прочные ковалентные химические связи длиной 0,1 0,15 нм. Взаимодействие между цепными молекулами осуществляется за счет сил Ван-дер-Ваальса, проявляющихся на расстоянии 0,3 0,4 нм. Иногда между макромолекулами возникают и водородные связи. Энергия межмолекулярного взаимодействия на 1—2 порядка меньше энергии химической связи. Например, энергия химической связи С—Н (в углеводородах) составляет 415, С—С-связи — 332 кДж/моль, а энергия взаимодействия между молекулами углеводородов — приблизительно 4,18кДжна группу СНз.При увеличении молекулярной массы вещества (например, у полимеров) суммарный эффект межмолекулярных сил резко возрастает. [c.327]

    Здесь следует еп1е раз подчеркнуть, что в отличие от Бойля Лавуазье, по существу, вовсе отвергал связи между свойствами и строением вещества, как гипотетические. Лавуазье нельзя назвать антиатомистом. Но, будучи строгим приверженцем эмпирии, он не придавал значения гипотезам вообще, а тем более таким, которые нельзя непосредственно проверить. Все, что можно сказать о числе и природе элементов, — заявляет он ио поводу атомистической структуры тел, — по моему мнению, сводится к чисто метафизическим спорам это неопределенные задачи, допускающие бесчисленное множество решений, из которых, по всей вероятности, ии одно не согласуется с природой [1 , с, 362]. Недели,мых молекул, составляющих тела, говорит он, мы не знаем но знаем, что такое-то вещество является пределом, достигаемым посредством химического анализа, и что ири современном состоянии наших знаний оно не может быть разделено далее (там же), ГТо.это- [c.44]

    Изучение химических реакций полимеров имеет в виду две важные, но различные цели модификацию свойств известных и доступных природных или промышленных полимеров и стабилизацию свойств полимера, которые могут изменяться в нежелательную сторону в результате воздействия теплоты, света, воздуха и разных химических веществ, в контакте с которыми находится изделие из полимера. Так, например, защита от тепловых и окислительных воздействий позволяет резко удлинить сроки эксплуатации изделий из полимеров. Совершенно очевидно, что задачи модификации и стабилизации полимеров могут тесрю переплетаться, так как в результате модификации могут быть получены более стабильные полимеры. Таким образом, модификацией можно назвать изменение свойств полимеров для получения нового качества или устранения нежелательного качества полимера. Модификация может быть физической и химической. Для улучшения свойств полимеров при физической модификации используется направленное изменение их физической структуры (см. ч. 2), а при химической модификации — химические реакции по функциональным группам или активным центрам, в макромолекулах. Однако во всех случаях модификация приводит к изменению не только химических, но и физических и механических свойств полимеров. Именно тесная связь этих свойств, как мы уже знаем, определяет ценные качества полимеров в природе, технике и быту. [c.215]

    В настоящее время внимание исследователей обращено на систематическое изучение термодинамических свойств растворов электролитов в свете успехов, достигнутьгх в структурном анализе подобных систем. Изучению природы водных растворов электролитов и характеристике состояний отдельных ионов в растворе уделено особое внимание в работах А. Ф. Капустинского и его сотрудников. Введение кристаллохимических характеристик ионов позволило обобщить обширный фактический материал по энтропиям, теплоемкостям и парциальным o бъeмaм ионов, а также представить картину гидратации в виде своеобразного замещения ионами молекул воды в ее подвижной квазикристалличе-ской структуре. Еще Д. И. Менделеев обратил внимание на то, что вода имеет различную степень химического родства с растворенным веществом, т. е. часть вo ды имеет большую связь с раст-воренньгм веществом по сравнению с остальной массой растворителя. Действительно, как показали многолетние работы [c.128]

    Изучение химии начинается с рассмотрения структуры атомов, объясняющей периодичность в изменении свойств элементов, т. е. суть периодического закона химических элементов, открытого Д. И. Менделеевым (1869). Без знания строения атомов невозможно понять причины возникновения между ними химических связей, приводящих к образованию многоатомных частиц молекул и кристаллов, составляющих вещества. Изучение же химических связей, в свою очередь, позволяет объяснить многие свойства веществ, их поведение по отношению друг к другу, т. е. позволяет понять причины и возможности преврэщений одних веществ в другие — закономерности протекания химических процессов. Все это является необходимой основой для правильного понимания и предвидения свойств химических элементов и их соединений, многие из которых применяются в текстильной, легкой и пищевой промышленности. [c.6]

    Из таблицы видно, что не обработанный вяжущим веществом, грунт обладает значительной коррозионной активностью и в условиях -эксперимента составляет 0,03 мм/год. Однако незначительная добавка вяжущего ВМТ-Л (например, 2 мае.) уменьшает скорость коррозии уже В 2 раза. С увеличением дозировки вяжущего коррозионная активность грунта резко падает и при содержании вещества 3-16 мае, в грунте скорость коррозии составляет 0,004-0,002мм/год. Уменьшение коррозионной активности грунта с ростом содержания в нем вяжущего связано с изменением химического состава грунта, образованием на металле адсорбционной пленки, обладающей высокими защитными и гидрофобными свойствами. Кроме того, низкая газопро-водность мелкопористой гидрофобизированной вяжущим веществом структуры грунтов уменьшает аэрируемость и влагонасыщаемость закрепленного грунта, влияющих на коррозионную агрессивность грунтов.  [c.29]


Смотреть страницы где упоминается термин Связь структуры и свойств химических веществ: [c.180]    [c.184]    [c.73]    [c.258]    [c.108]    [c.556]    [c.294]    [c.33]    [c.318]    [c.4]    [c.323]   
Смотреть главы в:

Философские вопросы химии -> Связь структуры и свойств химических веществ




ПОИСК





Смотрите так же термины и статьи:

Вещество химические свойства

Свойства веществ

Химическая связь

Химическая связь связь

Химический ое не ная химическая вещества

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте