Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Использование бутадиена и изопрена

    В произ-ве СК применяют след, основные мономеры бутадиен, изопрен, стирол (а-метилстирол), хлоропрен, изобутилен. Важнейший среди этих мономеров — бутадиен, с использованием к-рого в отечественной пром-сти вырабатывают более 60% СК (доля гомо- и сополимеров бутадиена в общем выпуске СК в США составляет 80%, в Канаде — 75%). Первоначально сырьем для получения бутадиена служил пищевой этиловый спирт, однако с ростом выпуска СК мощности мелких, работавших сезонно спиртовых заводов оказались не- [c.455]


    Сб—С о), сжиженные газы (пропан, бутан), газойль (С12—С20). При температуре около 650 °С образуются пентены и гексены при пиролизе с водяным паром около 700 °С — этилен, пропилен, бутадиен, изопрен, циклопентадиен. Наиболее высок выход этилена при температуре около 900°С. Более низкие температуры (около 350 °С) способствуют образованию низших алканов. Усовершенствование технологии пиролиза связано с использованием катализаторов. Наиболее важным является ванадиевый катализатор на пемзе. [c.135]

    Главными исходными веществами для производства многочисленных продуктов органического синтеза являются оксид углерода, водород и различные углеводороды парафины (от метана до пентанов), олефины, диолефины (бутадиен, изопрен), ацетиленовые и ароматические углеводороды (бензол, толуол, ксилол). Использование нефтяного сырья для получения разнообразных продуктов иллюстрирует схема, приведенная в разд. 12.3.2. [c.247]

    Структура углеводородного сырья, используемого для производства синтетических каучуков, для каждой страны определяется не только наличием природных ресурсов нефти н газа, но объемом и направлением нефтепереработки, а также масштабами и техническим уровнем переработки газа на газоперерабатывающих заводах. В США, где очень высокий уровень вторичных процессов нефтепереработки, производство основных мономеров для промышленности СК базируется преимущественно на использовании легких углеводородных газов с нефтеперерабатывающих заводов. В странах Западной Европы и Японии в связи с быстрым ростом производства этилена пиролизом низкооктановых бензинов большое значение приобрели для.этих целей пиролизные фракции. В нашей стране доля пиролизных фракций пока невелика, а основные мономеры — бутадиен и изопрен — преимущественно производятся дегидрированием бутана и изопентана. [c.20]

    Со способами получения некоторых других членов — важнейших представителей алкадиенов, как дивинил или бута-диен-1,3, хлоропрен или 2-хлор-бутадиен-1,3, изопрен или 2-метил-бутадиен-1,3, метилизопрен или 2,3-д и м е т и л-бу-тадиен-1,3, мы ознакомились при рассмотрении химических свойств ацетилена, а также при рассмотрении вопроса об использовании крекинг-газов и попутных газов нефтедобычи в промышленном органическом синтезе. [c.107]

    Вторая стадия дегидрирования парафинов (дегидрирование олефинов). На второй стадии дегидрирования бутана ли изопентана полученная олефиновая фракция превращается в бутадиен или изопрен. При использовании в качестве исходного сырья соответствующих олефинов эта стадия является единственной. [c.679]


    Главным параметром, определяющим свойства материалов, которые могут быть получены из латексов (так же как и в случае твердых эластомеров), является природа содержащегося в них полимера, а именно природа и соотношение исходных веществ, входящих в состав сополимера, его молекулярный вес (молекулярно-весовое распределение) и структура. В зависимости от природы мономеров, являющихся основным сырьем при их изготовлении, выпускаемые в настоящее время синтетические латексы обычно делятся на четыре типа бутадиен-стирольные, содержащие сополимер бутадиена со стиролом бутадиен-нитриль-ные, содержащие сополимер бутадиена с акрилонитрилом хлоропреновые и прочие, при синтезе которых в качестве основного сырья кроме или взамен перечисленных используются другие непредельные вещества (например, акрилаты, изопрен, пиперилен, винилиденхлорид и др.). Для упрощения классификации к этим основным типам относят также латексы, при синтезе которых к основным мономерам добавляются небольшие количества других, обычно содержащих функциональные группы (чаще всего карбоксильные), хотя эти добавки настолько сильно сказываются на свойствах и условиях использования латексов, что они могли бы рассматриваться как особый тип добавок. [c.483]

    Широкому развитию производства и использованию синтетических каучуков на основе бутадиена и изопрена способствовали разработка и промышленное освоение методов получения этих углеводородов на основе нефтяного и газового сырья. Бутадиен получают дегидрированием н-бутана и бутиленов, а также извлечением его из газов пиролиза нефти — побочных продуктов при производстве этилена. Изопрен извлекают из соответствующей фракции газов пиролиза нефти, получают конденсацией формальдегида с изобутиленом (содержащимся в нефтяных газах), дегидрированием изопентана. [c.148]

    Использование свободных металлов в качестве восстановительных агентов для получения соединений титана и циркония рекомендуют при приготовлении ряда каталитических систем, причем компоненты нагревают при повышенных температурах (например, 200—300°) с целью получения активных продуктов, т. е. продуктов, способных, по всей вероятности, образовывать комплексы с олефинами и инициировать полимеризацию при обычной температуре. Так, галогениды или алкоголяты титана и циркония нагревают с металлическими натрием, алюминием и даже титаном [215] п получают катализаторы для полимеризации этилена. При нагревании металлического титана с хлористым алюминием также образуется эффективный катализатор. Добавление кислорода или органических и неорганических перекисей дает возможность получить активный катализатор из титана и галогенида алю.миния в более мягких условиях [238]. Кроме этилена в присутствии каталитической системы, состоящей из галогенидов алюминия и титана, полимеризуются так ке пропилен, бутадиен и изопрен [239]. [c.114]

    В ближайшие годы начнется производство лишь одного нового типа каучука — транс-1,4-полипентенамера его создание обусловлено получением больших количеств циклопентадиена и пипе-риленов при пиролизе бензинов. Использование циклопентадиена для синтеза циклопентена — нового мономера для СК — позволяет комплексно перерабатывать пиролизную фракцию углеводородов С5 и тем самым значительно снизить стоимость извлекаемого из нее изопрена. Однако мощности этого мономера вряд ли превысят несколько сотен тысяч тонн в год из-за относительной ограниченности ресурсов пиролизной фракции углеводородов С5. Поэтому бутадиен, изопрен и стирол сохранят свое значение. Поскольку в себестоимости синтетических каучуков доля мономеров составляет около 70 %, изыскание путей получения высокочистых мономеров на основе дешевого и доступного сырья с минимальными энергетическими затратами по-прежнему будет иметь большое значение. Работающие в этой области специалисты должны решить целый ряд взаимосвязанных фундаментальных и прикладных проблем, главными из которых являются  [c.13]

    Другую группу сополимеров изобутилена представляют продукты, получаемые с использованием усовершенствованных приемов катионного инициирования. Таким путем улучшены свойства известных сополимеров, а в ряде случаев синтезированы новые полимерные продукты. Например, применение ГАОС в сочетании с различными добавками и смешанных (полярный-неполяр-ный) растворителей позволяет широко регулировать свойства (содержание гелевых фракций, молекулярную массу, степень ненасыщенности, способность к вулканизации, окислению и др.) сополимеров изобутилена с диеновыми мономерами - бутадиеном, изопреном, пипериленом, циклогексадиеном, циклопентадиеном и т.п. [45, 46]. [c.204]

    Дегидрохлорирование ПВХ в условиях межфазного катализа (МФК) приводит к продукту, имеющему полиеновый тип структуры /и амс-полиацетилена [4-7, 12]. Получение поливиниленов возможно из некоторых сополимеров ВХ блок-сополимеров ВХ с винилиденхлоридом, винилацетатом, акрилонитрилом, этиленом, пропиленом, стиролом, акриловой кислотой, метилметакрилатом, бутадиеном, изопреном, трифторэтиленом, тройных блок-сополимеров ВХ с винилацетатом и виниловым спиртом, винилиденхлоридом и метилметакрилатом, винилфторидом и тетрафторэтиле-ном, привитых сополимеров метилметакрилата или стирола на ПВХ [7]. Дегидрохлорирование гомо- и сополимеров ВХ в условиях МФК проводят с использованием порошков [4, б, 7, 9], пленок [4, 5, 7, 9] или растворов полимеров [4, б, 8-10]. Вместе с тем, получение поливиниленов с совершенной структурой, обеспечива- [c.129]


    TOB (зерна, картофеля). Возможность использования для производства СК широкого ассортимента продуктов нефте- и газопере-работки позволила в значительной мере расширить ассортимент марок СК, снизить его себестоимость. Для производства СК пс-пользуются в основном такие мономеры, как пропилен, ацетилен, изобутилен, бутадиен, изопрен, стирол. Ведущее положение в про- [c.67]

    Современная промышленность синтетического каучука основывается на работах С. В. Лебедева. Она возникла впервые в Советском Союзе в 1930—1932 гг., а в следующее десятилетие, на основе использования нашего опыта,— и в других странах (Германии, США, Италии, Японии и др.). Одно это научное открытие и его техническое осуществление в крупнозаводских размерах позволяют отнести С. В. Лебедева к числу выдающихся творцов мировой химической науки и промышленности. Между тем этот цикл работ С. В. Лебедева является не единственным, а лишь одним из основных направлении его научных исследований и химико-технологических ре-/ шений. Лебедев — один из пионеров создания в дореволюционной России промышленного метода производства толуола путем пиролиза керосина. В последующих своих исследованиях, в конце 20-х годов, С. В. Лебедев показал, каким ценным химическим сырьем являются нефть и нефтепродукты для получения таких химических соединений, как бутадиен, изопрен, толуол и другие ароматические углеводороды. [c.6]

    Исходные продукты. Для сополимеризации с изобутиленом могут быть использовань различные диеновые мономеры бутадиен, изопрен, пиперилен, диметилбутадиен, дивинилбензол и другие, однако не все они дают сополимеры с удовлетворительными свойствами. Только изопрен позволяет устойчиво получать бутилкаучук в промышленном масштабе. [c.336]

    До возникновения повышенного спроса на стирол в связи с принятой с началом войны в США программой производства синтетического каучука его получали в небольшом количестве путем дегидрирования этилбензола. Для производства бутадиена в нефтяной промышленности применялись процессы высокотемпературного термического крекипга лигроинов и газойлей. При этом получались также другие ценные диолефины, такие как изопрен и циклопентадиен. Выходы бутадиена составляли всего лишь от 2 до 5% на сырье. К концу второй мировой войны процесс термического крекинга был также использован для получения так называемого qui kie бутадиена. Однако большая часть бутадиена получалась в результате дегидрирования бутенов. Применение бутана п тсачестве сырья для получения бутадиена составляло лишь небольшую долю намеченной программы. Широкое применение нашел сравнительно дорогой процесс превращения этилового спирта в бутадиен. Разработанный в Германии процесс получения бутадиена из ацетилена не был принят. После рассмотрения всех процессов правительство США утвердило план производства бутадиена, приведенный в табл. 1. [c.189]

    Существует ряд способов синтеза термоэластопластов. Из них наиболее удобным является способ последовательной полимеризации мономеров, который может быть использован при синтезе бутадиен-стирольных (ДСТ), изопрен-стирольных (ИСТ), бутадиен-а-метилстирольных (ДМСТ) и бутадиен-стирол-а-метилстирольных (ДСМСТ) термоэластопластов. В СССР разработаны промышленные способы получения всех перечисленных выше марок термоэластопластов. [c.285]

    Бутадиен используют главным образом для получения различных синтетических каучуков путем прямой полимеризации, например с использованием катализаторов Циглера, или сополимеризацией со стиролом с образованием бутадиен-стирольного каучука или с акрилонптрилом с образованием бутадиен-нитрильного каучука. Другим важным сопряженным диеном является изопрен (2-метнл-бутадиен-1,3), производство которого, однако, относительно дорого. Натуральный каучук (21) представляет собой полимер изопрена. Некоторые синтетические каучуки получают полимеризацией изопрена с использованием катализаторов Циглера. [c.172]

    Недавно было установлено, что многие высокомолекулярные соединения, например натуральный каучук, бутадиен-стироль-ный каучук, неопрен, полиэтилен и полиуретаны , способны к образованию поперечных связей между цепями при использовании дималеимидов вместе с каталитическими количествами дикумил- или дибензоилперекисей 5 . В отсутствие перекисей образование поперечных связен невелико даже при сравнительно высоких температурах. В этом направлении испытан ряд различных дималеимидов. Отмечено, что на процесс образования поперечных связей в этих полимерах сажа, двуокись титана или окись цинка не оказывают вредного влияния. Предполагаемый механизм (применительно к изопрену) включает следующие стадии  [c.453]

    Производство синтетического каучука в СССР [1] основано на использовании бутадиена, получаемого из этилового спирта. Развитие производства синтетического каучука зависит от производства дешевых бутадиена и изопрена л<аталитическая дегидрогенизация бутиленов или амиленов представляет удачное решение этой проблемы. Сырьем для производства каучука могут быть углеводородные масла, углеводородные газы и уголь. Гроссе, Моррелл и Мевити [40] дают подробное описание результатов каталитической дегидрогенизации моноолефинов в диолефины. Из бутена-1 и бутена-2 они получили бутадиен-1,3 из нормальных пентенов—пиперилен (пентадиен-1,2) и из пентена с разветвленной цепью — изопрен (2-метилбутадиен-1,3). Первоначальное положение двойной связи в цепи углеродных атомов олефинов, повидимому, не имеет значения, так как в присутствии катализатора с основанием из окиси алюминия происходит миграция связей [47, 70]. Таким образом, из З-метилбутена-1 или из смеси 2-метилбутена-1 и 2-метилбутена-2 получаются приблизительно одинаковые выходы изопрена. Однократной операцией дегидрогенизации из циклопентана получен диолефин циклопентадиен. Образование диолефинов из насыщенных углеводородов не ограничено циклической системой циклопентана. При дегидрогенизации н-бутана в бутилены получается небольшой процент бутадиена-1,3. Количество бутадиена зависит от условий процесса. [c.720]

    С над окисью алюминия (1915, способ, получивший промышленное использование в 1942— 1943 в США) и альдольной конденсацией ацетальдегида (1905, способ, реализованный в промышленном масштабе в Германии в 1936). Совместно с Ф. Ф. Кошелевым осуществил (1915) полимеризацию изопрена под действием света. Получил изопрен пиролизом скипидара ( изопреновая лампа Остромысленского ). Независимо от А. Вернера установил (1910), что олефины образуют окрашенные комплексы п тетранитрометаном. Пришел к выводу (1915) о том, что диолефины вообще образуются при дезагрегации более сложных молекул и что углеводороды, содержащие свыше четырех атомов углерода, в том числе циклопарафины, при пиролизе отщепляют молекулу предельного углеводорода и превращаются в бутадиен. В 1922—1926 продолжал изучение синтетического каучука и процесса его вулканизации без серы. Исследовал по заданию фирмы Истмен Кодак возможные области применения поливинилхлорида. [c.378]

    Этот же общий способ может быть использован и для. -выделения диолефинов. Образующиеся тетрабромиды диолефинов могут быть отделены фракционировкой от дибромидов, получающихся из моноолефинов. Бутадиен и пиперилен дают твердые, а изопрен, циклопентадиен и диметилбутадиены — жидкие тетра-броммды (см. гл. 27). [c.1231]

    Смесь бутана, бутилена и изобутилена использована для получения высокополимерных веществ (м. вес. 5000—6000), пригодных для добавки к смазочным маслам. Диолефины (гексадиены, изопрен, бутадиен, диметилбутадиен) применимы для получения смол, с использованием в качестве добавок определенных олефинов, замещенных бензолов или продуктов крекирования. Известны il другие предложения, в которых упомянуты смеси моно- и диолефинов с ароматическими углеводородами. При этом в качестве новых катализаторов ре-ко.мендованы ко.чплексные соединения кислых галогенидов. металлов с кетонами, сульфонами или нитросоединения.ми. Используют также крекированные смеси нз парафиновых фракций керосина с 10% ароматических соединений, смеси бутадиена и толуола, бутаднены в комбинации с гидрированными, нитро-занны ,ш или хлорнрованны.ми ароматическими углеводородами .  [c.127]

    Вообще бутадиен образует г ыс-1,4-полимеры значительно труднее, 1Гем изопрен. Например, при применении двухкомпонентной каталитической системы диэтилкадмий— четыреххлористый титан из изопрена получается почти чистый 1,4-полиизопрен, а из бутадиена в т х же условиях—чистый транс-1,4-полибутадиен . Почти аналогичное явление наблюдается и при использовании двух- [c.152]

    Металлорганические смешанные катализаторы на основе соединений переходных металлов 4—6 подгрупп и металлоргаиических соединений металлов главных подгрупп 1—3 групп периодической системы способны превращать бутадиен и изопрен в полимер с определенной пространственной конфигурацией [18]. При этом удается в зависимости от состава катализатора или за счет введения определенных добавок провести присоединение в 1,2- и, соответственно, в 3,4- или 1,4-положения, причем в последнем случае можно оказать влияние на цис-транс-изомерию. Модификация катализатора достигается главным образом варьированием переходного металла или металлоргаиического соединения, а также использованием металлов или других восстановителей вместо металлоргаиического соединения. Точно так же можно влиять на действие катализатора путем изменения количественного соотношения компонентов и способа приготовления смешанного катализатора. Были также предложены соединения редкоземельных металлов и металлов группы железа. В качестве особо эффективных следует упомянуть здесь соединения кобальта [19]. В зависимости от каталитической системы, ее типа и количественного соотношения компонентов в ней можно получить 1,4-цис-, 1,4-транс-, 1,2- или, соответственно, 3.4-полидиены. [c.490]

    Суммируя изложенное, сделаем следующие заключения. При реакции роста на ионных парах с локализованной связью С—Mt основным фактором, определяющим конечную структуру полимера, является акцепторная способность противоиона. От нее зависит наличие и.чи отсутствие предориентационных эффектов. Тем не менее даже в оптимальном случае (литиевый противоион в неполярной среде в отсутствие независимых электронодоноров) высокая стереоспецифичность активных центров не является обязательным следствием предориентации. Это показывает сопоставление данных, относящихся к изопрену и бутадиену. Следовательно, конечный результат зависит от стереохимии перехода молекулы мономера из состава я-комплекса в растущую цепь, для которого природа мономера весьма существенна. Отсутствие предориентации (которое может быть обусловлено либо координационной насыщенностью противоиона, либо его низкой акцепторной способностью), так же как и я-аллильное состояние концевой связи С—Mt, приводят к избирательности другого рода, а именно к преимущественному образованию 1,2- или 3,4-звеньев. Эта избирательность не сопровождается, однако, способностью соответствующих активных центров к селективному образованию возможного для таких цепей изо- или синдио-тактического построения макромолекул. Синтез стереорегулярных полимеров подобного рода, осуществленный при использовании катализаторов Циглера — Натта (см. гл. V), ни в одном из случаев полимеризации неполярных мономеров в анионных системах зафиксирован не был 1. Последнее относится и к мономерам стирольного [c.74]

    Преимуществом растворной полимеризации является возможность использовать для синтеза эффективные каталитические системы, позволяющие получать стереорегулярные каучуки СКИ-3 и СКД, совместное применение которых в шинной промышленности позволило нашей стране впервые в мировой практике заменить натуральный каучук, улучшив при этом качество шин. Каталитические системы Циглера—Натта нашли широкое применение для синтеза различных эластомеров с широким спектром свойств. Методом растворной полимеризации с использованием литийорганиче-ских соединений, протекающей по механизму живых цепей, получают в промышленности бутадиен-стирольные термоэластопласты, или статистические сополимеры. Этот метод успешно используется и при синтезе технически ценных каучуков катионной полимеризацией изобутилена и его сополимеризацией с изопреном. [c.125]


Смотреть страницы где упоминается термин Использование бутадиена и изопрена: [c.406]    [c.453]    [c.455]    [c.455]   
Смотреть главы в:

Теоретические основы получения бутадиена и изопрена методами дегидрирования -> Использование бутадиена и изопрена




ПОИСК





Смотрите так же термины и статьи:

Изопрен



© 2024 chem21.info Реклама на сайте