Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции превращения синтетических полимеров

    Реакции превращения синтетических полимеров 107 [c.107]

    РЕАКЦИИ ПРЕВРАЩЕНИЯ СИНТЕТИЧЕСКИХ ПОЛИМЕРОВ [c.107]

    Реакции превращения синтетических полимеров 109 [c.109]

    Макромолекулы, полученные синтетически или выделенные из природных веществ, в зависимости от строения могут быть подвергнуты дальнейшим превращениям. Эти реакции приобретают все возрастающее значение, открывая возможности для синтеза новых соединений, имеющих большое техническое значение. В дальнейшем изложении рассматриваются раздельно реакции превращения синтетических и природных полимеров. [c.107]


    Полимераналогичные превращения характерны не только для природных, но и синтетических полимеров. Так, первой, ранее других изученной реакцией таких превращений было каталитическое восстановление полистирола  [c.406]

    Синтетические полимеры получают при помощи реакций полимеризации и поликонденсации. Часто для получения новых видов полимеров пользуются методом полимераналогичных превращений. Этим методом полимеры, синтезированные путем полимеризации или поликонденсацин, химически превращают в полимеры другого строения и состава. [c.443]

    Реакции этого типа были использованы Штаудингером для доказательства макромолекулярного строения природных, а затем и синтетических полимеров. Поливинилацетат был превращен им в поливиниловый спирт, а последний — снова в поливинилацетат  [c.212]

    Синтетические полимеры получают из низкомолекулярных соединений по реакциям полимеризации и поликонденсации, а также путем химического превращения других природных и синтетических полимеров (см стр. 72) [c.38]

    Превращение образованного реагентом с катализатором промежуточного соединения далее может протекать в различных термодинамически возможных направлениях. Тем самым катализатор может открывать новые реакционные пути, т.е. проявлять селективное воздействие. Катализ является не только методом ускорения реакции, но и методом управления для направленного осуществления тех или иных превращений. С помощью катализа также можно получать несуществующие в природе вещества, такие как синтетические полимеры. Химическое окисление, например, нафталина (горение) приводит к полной деструкции молекулы с образованием СО2 и Н2О. В присутствии катализатора происходит не полное (парциальное) окисление нафталина с образованием фталевого ангидрида. [c.134]

    Классификация химических реакций целлюлозы и других полисахаридов как органических соединений рассмотрена выше (см. 11.3.3). В химических превращениях целлюлозы наибольшее значение имеют реакции замещения и окисления. При химической деструкции преобладают гетеролитические (ионные) реакции. Гомолитические (свободнорадикальные) реакции идут в основном при физической деструкции, а также при действии окислителей и в процессах прививки к целлюлозе синтетических полимеров. [c.545]


    Реакции природных или синтетических полимеров отличаются от химических превращений низкомолекулярных соединений (см. гл. 5) это также относится и к экспериментальным методам проведения реакций. Поэтому в следующих разделах поясняются некоторые детали, которые необходимо иметь в виду при проведении реакций с полимерами. [c.59]

    Этот раздел, посвященный вопросам деструкции полимерных цепей под действием излучения, так же как и раздел А главы IX, в котором обсуждаются вопросы радиационного сшивания полимеров, ограничены рассмотрением главным образом действия ионизирующего излучения на синтетические полимеры. В тех случаях, когда описывается действие излучения на природные полимеры, радиационно-химические превращения последних рассматриваются независимо от их биологических функций или среды. Вопросы действия на полимеры ультрафиолетового света упоминаются в этой главе только эпизодически с целью сопоставления фотохимических реакций с радиационно-химическими. Эти вынужденные ограничения обусловлены необходимостью сосредоточить основное внимание на результатах исследований, посвященных действию ионизирующих излучений на синтетические полимеры, поскольку эти исследования составляют наиболее многочисленную группу работ в области изучения химического действия лучистой энергии. Рассмотрение результатов экспериментальных исследований в этой области может оказаться полез- [c.95]

    Синтез полимеров на основе низкомолекулярных соединений осуществляется посредством реакций полимеризации и поликонденсации. Широко применяется также метод производства полимеров посредством полимераналогичных превращений синтетических или природных высокомолекулярных соединений. [c.25]

    Несмотря на применение защищенных производных нуклеотидов и нуклеозидов, некоторые побочные реакции (например, образование пирофосфатов при синтезе исходя из моноэфиров фосфорной кислоты) все же имеют место вследствие этого требуется тщательная хроматографическая очистка продуктов реакции. Одним из приемов, позволяющих существенно упростить очистку продуктов реакции, является фиксация одного из компонентов реакционной смеси на полимерном носителе Такой полимер может быть легко отделен от других компонентов реакционной смеси. Продукт реакции, фиксированный на полимере, можно подвергать дальнейшим превращениям, что значительно упрощает многостадийные синтезы. Наконец, после выполнения всех стадий продукт может быть отщеплен от полимера и выделен в чистом состоянии. Такой подход к синтезу олигонуклеотидов привлекает сейчас большое внимание . Неспецифичность химических методов создания межнуклеотидной связи, являющаяся недостатком химического подхода к синтезу олигонуклеотидов (получение защищенных производных нуклеозидов и нуклеотидов требует многостадийных синтезов), в данном случае дает ряд преимуществ, поскольку в синтез олигонуклеотидов могут быть введены самые разнообразные производные нуклеозидов, в том числе и синтетические аналоги компонентов нуклеиновых кислот. Это открывает широкие возможности исследования связи структуры и функции природных полинуклеотидов. [c.86]

    Синтетические высокомолекулярные вещества получаются из низкомолекулярных соединений путем реакций полимеризации и поликонденсации, а также путем химического превращения других природных и синтетических полимеров (ом. раздел Реакции функциональных групп в главе III). [c.39]

    Синтетические полимеры получают из низкомолекулярных веществ (мономеров) по реакциям полимеризации или поликонденсации, а также путем химических превращений других природных и синтетических полимеров. Закономерности этих процессов и механизм реакций изложены в ряде книг и в данном пособии они не излагаются. Мы остановимся коротко на основных понятиях. [c.40]

    Синтетические полипептиды. Впервые синтез пептидов был осуществлен Фишером, которому удалось получить 18—19-членные пептиды. В настоящее время с помощью реакции превращения циклов в линейные полимеры удалось получить полипептиды с молекулярным весом 1 000 000—1 500 "ООО. [c.460]

    Создаваемая в настоящее время в лабораториях различных стран современная химия целлюлозы полностью использует все методы, разработанные классической химией целлюлозы в то же время необходимо широко и последовательно применять основные типы реакций и методы превращений современной органической химии, Б частности химии углеводов, а также синтетических полимеров. [c.10]

    В современной химии целлюлозы наряду с использованием всех указанных выше методов химических превращений все более широко применяются основные типы реакций и методы превращений современной органической химии, в частности химии углеводов, а также химии синтетических полимеров. [c.11]


    Исследование процессов радиационного старения полимерных материалов привело к разработке эффективных стабилизаторов-антирадов, повышающих радиационную стойкость резин [217], синтетических волокон и пленок [218—220]. Принципиальный интерес представляет радиационная защита полимеров, макромолекулы которых содержат полярные группы, добавками, обладающими электроноакцепторными свойствами эффективность такой защиты свидетельствует о роли в радиационнохимических превращениях полимеров реакций, протекающих по ионному механизму [221]. В то же время спектроскопическое исследование влияния излучения на молекулярную структуру полимеров показало, что некоторые первичные процессы протекают по молекулярному механизму с непосредственным образованием молекулярных продуктов [222]. Была показана решающая роль в радиационнохимических процессах, протекающих в полимерах, миграции свободной валентности или заряда по макромолекулярной цепи установлено, что характер структурных превращений в полимерах зависит от их фазового состояния, конформации и регулярности цепей [54, 223]. При глубоких превращениях в полимерах возникает единая система сопряженных связей, появляются сопряженные циклические, в том числе и ароматические системы [224, 225]. Это позволило, сочетая метод глубокой радиационной обработки с термическими воздействиями, получить на основе полиэтилена органические полупроводниковые материалы с регулируемым электрофизическими свойствами [226]. [c.369]

    Химия синтетических полимеров посвящена изучению процессов синтеза полимеров, имеющих различный состав звеньев и различную структуру их макромолекул, анализу их свойств и способности макромолекул вступать в реакции с различными низкомолекулярными и высокомолекулярными соединениями, а также изучению условий химических превращений полимеров. [c.11]

    Б течение многих лет механохимические процессы играли важную роль в переработке полимеров всех основных классов синтетических, биополимеров и других природных высокомолекулярных соединений. Процессами, основанными на механохимических превращениях промышленных полимеров, являются растирание, смешение и экструзия. Следует отметить, что механохимия не ограничивается превращениями только полимеров. Так, водородное охрупчивание некоторых материалов может служить примером химической реакции, происходящей под действием механических сил. В этом случае молекулы водорода диффундируют в вершины трещин, возникших при деформации металла, что приводит к образованию гидридов и разрушению материала вследствие увеличения его хрупкости. Известно также, что эмульсии, применяемые для смазывания и охлаждения режущих инструментов, могут [c.12]

    В реакциях полимеризации для фосфорных катализаторов особенно характерно ускорение процессов превращения низших моноолефинов в жидкие низкомолекулярные продукты (в основном димеры, тримеры и другие соединения, молекулярный вес которых не превышает 250). Соединения фосфора хотя и не являются единственными катализаторами подобных превращений (используются также серная кислота, катализаторы Фриделя—Крафтса, активированные глины и синтетические алюмосиликаты), все же употребляются наиболее широко. В качестве катализаторов применяются пятиокись фосфора [90, 91, 107], фосфорная [92, 93, 95—97, 101, 103—105, 108—124) и пирофосфорная [98, 100, 122] кислоты, нанесенные на различные носители, фосфаты [94, 102] и молекулярные соединения фосфорных кислот с трехфтористым бором [123, 124, 234—237]. В присутствии нанесенных катализаторов процессы проводятся главным образом в паровой фазе, чаще всего в интервале температур 150—200° С, под давлением. Фосфорная кислота, пропитывающая кизельгур или активированный уголь, а также нанесенная на твердый носитель в виде жидкой пленки, и пирофосфат меди применяются в промышленных установках по получению жидких полимеров. См. [100, 402, 403]. [c.464]

    Реакции, приводящие к полимераналогичным превращениям полимеров, широко используются в химии полимеров, главным образом, для химической модификации природных и синтетических высокомолекулярных соединений. [c.35]

    Реакция сополимеризации также может быть использована для проведения вторичных реакций превращения синтетических полимеров, если в полимере содержится хотя бы одно звено с двойной связью, способное к полимеризации. В качестве соединений, пригодных для этой цели, в последнее время получили применение непредельные полиэфиры, в частности полиэфиры малеиновой и фумаровой кислот, которые легко вступают в реакцию сополимеризации со стиролом в присутствии перекисных инициаторов. Обычно применяют такую комбинацию веществ, при которой полиэфир растворим в мономере. Жидкая смесь при полимеризации превращается в пространственный полимер, который в зависимости от строения полиэфира, состава и количества мономера, введенного в сополимеризацию, может быть твердым и жестким или вязким и эластичным. Эти реакции открывают новые пути переработки полимеров, давая возможность получать (в большинстве случаев применяя стекловолокно в качестве усилителя) изделия большого размера и сложной формы при нормальном давлении. К мономеру могут быть добавлены еще более интенсивно действующие сшивающие вещества, способные к реакциям полимеризации. Это — низкомолекулярные соединения, содержащие две и более группы, способные к полимеризации, например диаллилфталат или триаллил-цианурат  [c.112]

    Развитие теории радикальных цепных реакций позволяет с большей увереиностью подойти к объяснению многих превращений синтетических полимеров. При этом условия синтеза, определяющие ряд структурных особенностей изучаемых материалов, могут иметь существенное значение. [c.38]

    Второй период в развитии химии и технологии полимеров начинается с 1902 г. В этот период, наряду с использованием природных полимеров, интенсивно развивается химия синтетических полимеров, осуществляется переход от реакций химического превращения природных полимеров к реакциям их синтеза из мономеров. Делается решающий шаг к получению полимеров с заданными свойствами, то есть к проектированию новых видов ПМ. Второй период в истории полимеров опирается на крупнейшие достижения теоретической и прикладной органической химии по синтезу мономеров и изучению процессов их полимеризации и поликонденсации. К ним, в первую очередь, относятся работы A.B. Лебедева по полимеризации бутадиена (1908— 1912 гг.), И.И. Остромысленского по синтезу каучука (1911—1917 гг.), Б.В. Бызова по химии и технологии каучука и резины (1913—1915 гг.), Л. Бэкеленда и Г.С. Петрова по синтезу фенолоформальдегидных полимеров (1906 г.) и другие. [c.381]

    Цепная полимеризация. Механизмы радикальной и ионной поли меризации. Инициаторы и регуляторы. Причины образования развет вленных и пространственных полимеров. Стереорегулярные полимеры Применение катализаторов Циглера—Натта. Сополимеризация. Блок сополимеры и привитые сополимеры. Поликонденсация. Фенолальде-гидные и мочевиноальдегидные полимеры. Сложные полиэфиры. Поли меры на основе фурфурола. Мономер ФА. Эпоксидные и кремнийорга нические полимеры. Тиоколы. Полиуретаны. Полиамиды. Альтины Синтетические и натуральные каучуки. Полистирол и полиакрилаты Особые свойства высокомолекулярных соединений. Химические реак ции высокомолекулярных соединений полимераналогичные превращения и макромолекулярные реакции. Вулканизация. Деструкция полимеров. Ингибиторы деструкции. [c.108]

    Сшивание полимеров по реакции с низкомолекулярными полифупкциональными всшесгвами нашло наибольшее распространение на практике для превращения линейных полимеров в ipex-мерные продукты. Наглядным примером реакции сшивания является вулканизация натурального и синтетического каучуков, в частности серой, и превращение их в резину. Макромолекулы каучука при взаимодейств.тл с серой образуют поперечные связи, и каучук теряет растворимость и тер- [c.103]

    Реакции полимераналогичных превращений щироко используются для химической модификации природных и синтетических полимеров, а также для изучения строения полимеров и их химической стабильности [1, 2]. Полимераналогичные превращения ПАА являются сравнительно простым и доступным методом получения анионных и катионных производных ПАА, которые в ряде случаев обладают более ценными прикладными свойствами, чем ПАА. Среди различных полимераналогичных превращений ПАА и его производных наиболее важными и изученными являются реакции кислотного и щелочного гидролиза для получения анионных производных ПАА [3] и реакции аминометилирования и гипогалоидирования для получения катионных производных ПАА. [c.118]

    Модификация синтетических волокон сводится к применению реакций в цепях полимеров (полимераналогичные превращения), радиационно-химической модификации, применению смесей полимеров, термостабилизирующих добавок и других методов структурно-химической модификации. [c.11]

    Реакционная газо-жидкостная хроматография. Идентификация спиртов после реакции е Н5РО4 и превращения их в олефины (или в углеводороды реакцией на скелетном Ni-катализаторе при 170—200°), а также серусодержащих соединений после их обессери-вания. Синтетические полимеры подвергают пиролизу так же, как и фосфаты. [c.99]

    Остановимся несколько подробнее па новых типах синтетических волокон, разработанных в последние годы. Наибольший интерес из этих волокон, производимых до настоящего времени все еще в опытных, а не в производственных условиях, представляет волокна энант волокна из фторсодержащих пойимеров (ф т о р л о н в Советском Союзе, тефлон в США) волокна, получаемые пе-реработкои новых классов синтетических полимеров, так называемых стереорегулярных полимеров (в частности, из полиэтилена и полипропилена). Полиамид типа энанта и производимое из него волокно получается из аминоэнантовой кислоты. Исходным сырьем для синтеза этого мономера, получаемого по методу, разработанному советскими учеными, является этилен и четыреххлористый углерод, при взаимодействии которых по реакции так называемой оборванной полимеризации (теломеризации) путем ряда химических превращений образуется амино-энантовая кислота. Как видно из приводимой ниже фор- [c.175]

    Получение водорастворимых полимеров из синтетических связано в основном с химическим изменением функциональных групп макромолекул при сохранении степени полимеризации исходного полимера. Такие реакции были названы Штау-дингером полимераналогичными превращениями [35]. Он показал, что такие реакции можно проводить с природными соединениями, например с целлюлозой, крахмалом, каучуком и с синтетическими — полистиролом, полиметилметакрнлатом, поливинилацетатом, а также с другими высокомолекулярными соединениями. [c.16]

    В круговороте веществ на земле углеводы занимают промежуточное место между неорганическими и органическими соединениями. Они являются первичными продуктами фотохимического восстановления двуокиси углерода — главного и, вероятно, единственного пути биосинтеза органических веществ в современных геологических условиях. Моносахариды в результате последующих превращений образуют полисахариды — необходимые компоненты любой живой клетки. С другой стороны, при распаде моносахаридов выделяется энергия, требуемая для синтетических процессов в организме, и образуются продукты, являющиеся исходными веществами для биосинтеза других полимеров живой клетки белков, нуклеиновых кислот и липидов. Все сказанное определяет большое разнообразие биохимических реакций моносахаридов и их центральное лоложение в метаболизме живой клеткк [c.363]

    Описываемый способ имеет ряд существенных недостатков неудовлетворительный материальный баланс, большое число побочных процессов и т. д. Хэкеторн и Брок [106—108] предложили другую методику, основанную на количественном превращении в кетоны первичных продуктов озонолиза при действии трифенил-фосфина. Смесь кетонов анализируют с помощью газовой хроматографии. Метод позволяет работать с весьма малыми количествами полимера (л 50 мг) и дает результаты высокой точности благодаря использованию хроматографической методики анализа и строго-селективных реакций. Этим методом были исследованы чередующиеся сополимеры бутадиена с пропиленом, сополимеры бута-диенов 1,2- и 1,4-, сополимеры изопренов 1,4- и 3,4-, а также содержание цис- и транс-структур в полибутадиене-1,4 [94] и содержание структур с аномальным присоединением звеньев ( голова к голове , хвост к хвосту ) в большом числе природных и синтетических полиизопренов [107]. [c.147]


Библиография для Реакции превращения синтетических полимеров: [c.82]   
Смотреть страницы где упоминается термин Реакции превращения синтетических полимеров: [c.12]    [c.75]    [c.8]    [c.160]    [c.279]   
Смотреть главы в:

Введение в химию высокомолекулярных соединений -> Реакции превращения синтетических полимеров




ПОИСК





Смотрите так же термины и статьи:

Полимеры синтетические

Реакции полимеров



© 2025 chem21.info Реклама на сайте