Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ультрафиолетовое облучение полимеров

    Полимеризация акрилонитрила на одном тетраэтилсвинце шла гладко, хотя высокие степени превращения при этом не достигались. Ультрафиолетовое облучение повышало степень превращения, но уменьшало молекулярный вес образовывавшихся полимеров. Было найдено, что облучение необходимо для осуществления полимеризации акрилонитрила с помощью тетраэтилсвинца при комнатной температуре. Ультрафиолетовый свет был также необходим для иолимеризации в присутствии тетраэтилсвинца при комнатной температуре винилацетата, винилхлорида и метилметакрилата. [c.287]


    При хранении на рассеянном свету полиизобутилен практически не изменяет своих свойств. На прямом солнечном свету и под действием ультрафиолетового облучения происходит частичная деструкция макромолекул, сопровождаемая снижением молекулярной массы и ухудшением физико-механических свойств в массе полимера образуются включения низкомолекулярных фракций. Введение в полиизобутилен очень малых добавок стабилизаторов фенольного типа, а также наполнителей (сажа, тальк, мел, смолы) значительно увеличивает его светостойкость. При комнатной температуре он устойчив к действию разбавленных и концентрированных кислот, щелочей и солей. Под действием концентрированной серной кислоты при 80—100°С полиизобутилен обугливается, а под действием концентрированной азотной кислоты деструктирует до мономера и жидких продуктов. Под действием хлора, брома и хлористого сульфурила подвергается гало-генированию с частичным снижением молекулярной массы. [c.338]

    Инициирование полимеризации мономера А в макрорадикалы А А А...., а затем введение В, в которых радикалы А А А.... вызывают полимеризацию В с образованием блок-сополимеров. Таким путем, например, проводят сополимеризацию винилхлорида с метил-метакрилатом. Первой стадией процесса является получение активного полимера, содержащего свободные полимерные радикалы, под действием ультрафиолетового облучения. Эти радикалы, находя, щиеся на стенках реакционного сосуда, инициируют полимеризацию других мономеров с образованием блок-сополимеров  [c.642]

    При частичном проникновении жидкости или пара в матрицу возникают градиенты концентраций, которые действительно оказывают прямое механическое действие вследствие неоднородного набухания или косвенное действие вследствие неоднородной релаксации или распределения напряжений. Подобные действия даже усиливаются в присутствии температурных градиентов и могут вызвать быстрое образование обычных трещин и трещин серебра. В случае медленного проникновения окружающей среды в однородную матрицу с достаточно перепутанными цепями вынужденные напряжения обычно снимаются упругими или вязкоупругими силами. Например, в листах поликарбоната после проведения искусственных погодных испытаний не обнаруживаются трещины даже после воздействия суровых температурно-влажностных циклов [212]. Однако за относительно короткий период, 30—32 мес, естественных погодных испытаний на стороне, обращенной к солнечным лучам, возникала сетка поверхностных микротрещин. Путем сравнения с искусственным ультрафиолетовым облучением образцов авторы работы [212] смогли показать, что фотохимическая деградация поверхностных слоев вносит дефекты в материал и снижает прочность полимера в такой степени, что вызванные физически неоднородные напряжения стимулировали образование микротрещин, а не рассасывание неоднородностей. Влияние жидкой среды на образование обычной трещины и трещины серебра будет рассмотрено в разд. 9.2.4 (гл. 9). [c.319]


    Оба кетона полимеризуются при обычной температуре под влиянием ультрафиолетового облучения. Реакция заканчивается через 5 дней с образованием твердого стекловидного полимера, растворимого в ацетоне и сложных эфирах. Молекулярный вес полимера составляет около 40 ООО. [c.320]

    Полимерные соединения сравнительно легко реагируют с кислородом воздуха. Результатом этого процесса является окислительная деструкция макромолекул. Чем выше молекулярный вес полимера, тем в большей степени полимер подвергается окислительной деструкции. Интенсивность этой реакции возрастает под влиянием таких воздействий, которые способствуют активации кислорода и увеличению скорости его диффузии внутрь полимера (ультрафиолетовое облучение, повышение температуры, растворение полимера и др.). Деструкция вг зывает разрыв макромоле-кулярных цепей и изменение состава отдельных звеньев цепи. [c.15]

    Физико-химический анализ полимеров связан с большими трудностями, что объясняется сложным составом макромолекул. К методам анализа, позволяющим установить принадлежность исследуемого вещества к определенной группе полимеров, относятся спектроскопическое исследование, ультрафиолетовое облучение, метод сухой перегонки, элементарный анализ, определение чисел омыления. [c.31]

    Ультрафиолетовое облучение не является однозначным методом анализа, так как характер свечения исследуемого полимера может несколько изменяться в зависимости от метода подготовки образца, его формы, степени очистки полимера и т, д. Поэтому наряду с определением характера свечения производят анализ продуктов сухой перегонки полимера. Если в процессе сухой перегонки образуются жидкие продукты с различной вязкостью и температурой кипения, следовательно, полимер может принадлежать к группе полистирола, полиакриловых эфиров, полимет-акриловых эфиров, полиэтилена или полиизобутилена. Масло- [c.31]

    Под влиянием кислорода воздуха (в темноте) в течение нескольких месяцев 1—2% аллилхлорида превращается в низкомолекулярный полимер сиропообразной консистенции. На свету за это же время образуется около 30—40% полимера. Под влиянием ультрафиолетового облучения полимеризация заканчивается в течение 1—2 недель. [c.277]

    Химические превращения хлорированных полимеров при ультрафиолетовом облучении [c.54]

    Наибольшая интенсивность свечения для полимеров приходится на видимую часть спектра (Я = 450 550 нм) в широком интервале температур (от 77 до 350 КЬ Интенсивное излучение имеется и в ультрафиолетовой области спектра. Совпадение максимумов на кривой высвечивания облученного полимера с областями размораживания его молекулярной подвижности и со структурными переходами указывает на то, что рекомбинация зарядов при разогреве полимерного образца определяется не термическим высвобождением их из ловушек, а самой молекулярной подвижностью. Оценка оптическими методами глубины электронных ловушек в облученных полимерах показывает, что термическое высвобождение электронов из таких ловушек, какими являются для них связанные радикалы, может начаться лишь при очень высоких температурах 7 >500 К. [c.238]

    При прохождении тяжелых ядер, разогнанных до больших значений энергии, в объеме любых непроводящих материалов образуются треки (в металлах и полупроводниках они не образуются). В частности, в полимерах по пути прохождения частиц разрываются полимерные цепи и появляются активные химические группы. Не обнаруживаемые даже электронной микроскопией деструктивные изменения можно усилить ультрафиолетовым облучением пленки. Различия в химической активности полимера на поверхности и по траектории частиц проявляются при травлении пленки. В зависимости от используемого полимера под воздействием щелочи или окислителя в пленке образуются каналы цилиндрической формы. Для облучения полимера используют тяжелые осколки, образующиеся при делении Наиболее совершенная технология получения ядерных фильтров разработана Г. Н. Флеровым с сотр., предложившими облучать пленки ускоренными на циклотроне ионами ксенона. Так как все ионы Хе в циклотронном пучке обладают одинаковой энергией, то все поры, образующиеся после травления щелочью или окислителем, должны обладать одинаковыми размерами. В промышленном масштабе выпускаются поликарбонатные или лавсановые ядерные фильтры с размерами пор от 0,05 до [c.25]

    Кроме изучения изменений в мономерах, полярография может применяться и для изучения процессов старения полимеров. В качестве примера приведем данные по изучению изменений, происходящих в полистироле в результате различных воздействий, в том числе ультрафиолетового излучения. Было обнаружено [296, с. 63], что при добавлении к раствору фона N(02 5)4 бензольного раствора полистирола, подверженного ультрафиолетовому облучению, на полярограмме наблюдается [c.197]


    Методы, подобные описанным выше, применялись также для изучения летучих продуктов окисления и старения полимеров [1, 2]. Несколько десятых долей грамма полимера в виде пленки помещают в сосуд, снабженный краном, через который его можно эвакуировать, а также заполнять воздухом или кислородом с помощью такого устройства можно легко собрать летучие вещества для масс-спектрометрического анализа. Перед анализом продуктов окисления сосуд охлаждают жидким азотом и откачивают воздух или кислород. Сосуды делают из кварца и стекла пирекс, соединяя их с помощью переходов. Кварцевая часть позволяет изучать продукты фотолиза полимеров под действием ультрафиолетового облучения при температурах около 100°. Во многих из упомянутых выше исследований разложение или деструкцию полимеров доводят до очень малой степени превращения поэтому следы примесей, например растворителей, которые очень трудно удалить из полимера, осложняют общую картину. [c.224]

    Существуют две точки зрения, объясняющие механизм разрушения и деформирования полимеров. Результаты, полученные Регелем с сотр. [163] при изучении влияния ультрафиолетового облучения на долговечность и ползучесть ориентированных термопластов в вакууме и на воздухе, приводят к выводу, что в основе деформи- [c.246]

    Изучение поглощения кислорода полимером при ультрафиолетовом облучении. [c.384]

    Галоидирование высокополимер- ных соединений (до молекулярного веса 500 ООО), полученных из изо-олефинов при низкой температуре (от 10 до 100°) для галоидирования полимеры обрабатывают галоидом (хлор, фтор, бром, иод) в газовой или жидкой фазе температура от —50 до -1-100° высшие полимеры растворяют или галоидируют в инертном разбавителе в получаемом продукте содержится до 50% галоида желателен солнечный свет или ультрафиолетовое облучение продукты галоидирования могут быть стабилизованы добавлением, например, ароматических аминов галоидированные полимеры, добавленные к смазке, придают ей устойчивость к высокому давлению добавление серы или сернистых соединений действует аналогично [c.392]

    Наличие остаточного. полимера и мономеров не увеличивает существенно количество хлороформа (табл. 1.11), образующегося под влиянием нагревания или ультрафиолетового облучения в хлорированной воде [48]. .  [c.59]

    Наиболее часто флуоресценция состоит в поглощении энергии излучения с какой-либо длиной волны и испускания энергии излучения с другой, обычно большей длиной волны. Разница между поглощенной энергией и энергией излучения обычно рассеивается в виде тепла. Если испускание энергии длится дольше 10 сек после прекращения облучения, то такое явление называют фосфоресценцией, а не флуоресценцией [54, 81, 90, 92]. Излучение, испускаемое флуоресцирующими или фосфоресцирующими полимерами, обычно лежит в видимой области спектра и вызывается поглощением ультрафиолетовых лучей. Полимеры при действии ультрафиолетового излучения ведут себя неодинаково. Объяснение этих различий становится затруднительным для веществ, содержащих наполнители, ускорители, стабилизаторы, пластификаторы или примеси. [c.284]

    Помимо 7-облучения и ультрафиолетового облучения, существуют другие методы образования радикалов в полимерах — механическая деструкция (вальцевание) [32, 36], окислительная деструкция и нагревание или обугливание. При механической деструкции образуются радикалы, которые были обнаружены с помощью ЭПР. Как правило, эти радикалы подобны тем, которые образуются при облучении, либо их спектры не имеют сверхтонкой структуры, необходимой для идентификации. В некоторых работах [64, 200] сообщается, что примесь кислорода может облегчать образование радикалов при термической обработке полимеров. Были предприняты некоторые попытки изучить вулканизацию каучука с помощью ЭПР [50, 51]. Был получен сигнал ЭПР, но он оказался недостаточным для обнаружения сверхтонкой структуры, необходимой для идентификации радикалов. Различные сигналы ЭПР дают также угли [90] и асфальты [65]. Уголь, образующийся при деструкции полимера, дает сигналы на определенных стадиях карбонизации. [c.462]

    В настоящее время очевидно, что большинство особенностей процесса деструкции поливинилхлорида может быть объяснено, по крайней мере качественно, с точки зрения свободнорадикального механизма этой реакции. Современные представления об этом процессе могут быть кратко суммированы следующим образом. Термическое инициирование заключается в отщеплении атомов хлора от лабильных аномальных групп в молекуле ПВХ. В чистом полимере этот процесс наиболее легко осуществляется у ненасыщенных концевых групп, образующихся в результате передачи цепи при полимеризации. Кроме того, особенно при высоких температурах, могут отщепляться атомы хлора, расположенные рядом с точками разветвления ценей. Реакция может инициироваться также при ультрафиолетовом облучении, энергия которого поглощается ненасыщенными группировками, что приводит к отщеплению соседних атомов хлора. В присутствии кислорода ускоряются оба процесса деструкции — инициируемые как действием света, так и повышенных температур, что обусловлено влиянием на скорость реакции находящихся в цепях полимера систем сопряженных связей и особенно кетонных структур. [c.89]

    Рис. 5 (слева). Влияние ультрафиолетового облучения на долговечность полимера (схема) i — без облучения 2 — при облучении. [c.382]

    В другой методике прививки мономера к поверхности полимера используется предварительное облучение полимера с последующим взаимодействием с мономером. Эта методика была применена для модифицирования поверхности целлюлозы и синтетических волокон [60, 80]. Прививку к поверхности можно инициировать ультрафиолетовым излучением [46а, 88] с введением в полимер сенсибилизирующего агента. [c.271]

    Разрыв цепей в атмосфере озона является ярким примером взаимоусиливающего эффекта одновременного влияния механических и внешних условий. Существует много других параметров окружающей среды (например, влажность или содержание кислорода), которые в данной ситуации ускоряют деградацию полимеров [196—203]. Из экспериментальных исследований такого рода здесь будут рассмотрены лишь немногие, а именно те, которые характеризуют химическое старение каучуков, находящихся под напряжением [209с, 210], влияние влажности на усталость ПА-66 и ПК [211—212] и ускоряющее влияние ультрафиолетового облучения на образование субмикротрещин и разрыв высокоориентированных полимеров [74,213—214]. [c.316]

    Основные механизмы взаимоусиливающего действия нагрузки и ультрафиолетового облучения можно рассмотреть с учетом немногочисленных имеющихся данных. Одновременное, воздействие растягивающей нагрузки и ультрафиолетового облучения на ориентированные полимеры явно ускоряет процесс образования свободных радикалов и (или) микро- и макро- [c.320]

    Как и парафины, полиэтилен при на1рева нии на воздухе подвергается медленному окислению (старению). Поглощение первых доз кислорода вызывает еиижеиие молекулярного веса полимера и температуры его размягчения. В макромолекулах появляются альдегидные и кетонные группы. При нагревании частично окисленного полиэтилена молекулярный вес ого увеличивается в результате соединения макромолекул кислородными мостиками. Таким образом, процесс старения полиэтилена сопровождается изменением не только химического состава макромолекул, ио и их структуры. В процессе старения полиэтилен приобретает сетчатую структуру и потому становится нерастворимым. При этом происходит также потеря эластических и пластических свойств полиэтилена. Пленка становится жесткой и хрупкой. Солнечный свет илп ультрафиолетовое облучение епо-еобствуют ускорению процесса окисления полиэтилена. [c.211]

    Хлорангидрид акриловой кислоты полимери уется в присутствии перекисны ( инициаторов, под влиянием ультрафиолетового облучения, термического воздействия. Полимер растворим в ди-оксаие. Каждоез ено его содержит химически активную хлорангид-ридную группу  [c.339]

    Галоидирование полистирола. Полимеры стиро. ш можно подвергать галоидированию, пропуская газообразный галоид в раствор полимера. Реакция ускоряется иод влиянием ультрафиолетового облучения. Наибольшее внимание было уделено бромиро-ванию полистирола. Полибромстирол обладает малой стабильностью, при облучении светом бром отщепляется от полимера и макромолекулы его вновь превращаются в макрорадикалы. Макрорадикалы могут либо реагировать между собой, образуя сетчатый полимер, либо служить инициаторами полимеризации какого-либо мономера. В последнем случае образуется привитой сополимер  [c.366]

    Приведены сравнительные данные по стабилизации этих полимеров в аналогичных условиях синтетическими промышленными стабилизаторами Показано, что небольшие добавки ингибиторов из нефтяных остатков ( 0,1 - 2,0 мас. ) эффективно тормозят деструкцию полимеров при действии высоких температур и ультрафиолетового облучения. Огабилизаторы из нефтяных остатков не требуют сложного получения, имеют большую сырьевую базу, доступны и дешевы, обладают универсальным характером действия и могут успешно заменить дорогостоящие синтетические добавки при стабилизации технических марок различных полимерных материалов. [c.121]

    Б литературе описаны различные способы модифицирования акриловых полимеров. К числу их относится сонолимеризация с виниль-ными производными — стиролом, поливиниловым спиртом, винил-пиридином, винилпиролидоном и др. Устойчивые к хлористому кальцию реагенты получают при сополимеризации акрилонитрила с винилацетатом или при цианэтилировании целлюлозы. М. А. Пе-ненжик, А. Д. Вирник и 3. А. Роговин описали синтез привитых сополимеров целлюлозы и полиакриловой кислоты путем предварительного ультрафиолетового облучения целлюлозы. Рядом патентов предусмотрено сочетание акриловых полимеров с малеиновой кислотой и ее гомологами, получение теломеров, сульфирование сополимеров, полимеризация с сульфированными ненасыщенными высшими спиртами и др. От работ, ведущихся в этом направлении, можно ожидать важных практических результатов. [c.198]

    Силиконы, или кремнийорганические полимеры, которые можно рассматривать как органические производные силикатов, получают путем проведения последовательно гидролиза мономеров и поликонденсации из алкил- и арилхлорсиланов и т. д. Они отличаются высокой термостойкостью, химической стойкостью и эластичностью. В зависимости от характера связи между молекулами и природы входящих в их состав радикалов силиконы можно получать в виде смол, каучукоподобных веществ, масел или жидкостей. На основе этих соединений производят жаростойкие, жаропрочные лаки, жидкие смазки, силиконовые каучуки и слоистые пластики. Наибольшее значение приобретают силиконовые полимеры, используемые в качестве покрытий, устойчивых во многих агрессивных средах, кислороде, озоне, влажной атмосфере, к действию ультрафиолетового облучения, а в комбинации с различными наполнителями и к нагреву до 500—550 °С. В качестве наполнителей используют чаще всего порошкообразные алюминий, титан или бор. Силиконовые покрытия наносят на различные металлические конструкции для защиты их от коррозии. [c.141]

    Практически все полимеры и материалы в процессе эксплуатации подвержены действию света - фотодеструкции. Ино] да кванты света, поглощенные полимером, вызывают разрыв химических связей в макромолекулах с образованием свободных радикалов. Фотол.еструкции подвержены полимеры, содержащие группировки, способные поглощать свет с короткой (менее 400 нм) длиной волны так, политрифторхлорэтилен имеет в 40...45 раз меньшую стойкость, чем политетрафторэтилен. При действии на полимеры световой радиации может происходить не только деструкция, но и структурирование с возрастанием молекулярной массы облученного полимера. Если подействовать на полиизопрен ультрафиолетовым светом, то возможно протекание химических реакций с отрывом атома водорода и образованием свободных радикалов [c.112]

    Спирты стабилизируют полиокс также от воздействия HjOa, на-дкислот, света. Ультрафиолетовое облучение ускоряет деструкцию полпоксиэтилена. Особенно резкий эффект наблюдается в присутствии некоторых ионов. Напрпмер, характеристическая вязкость полимера в воде падает за 24 ч от 1,60 до 0,3 дл/г в присутствии [c.277]

    Для образования привитых сополимеров необходимо создать такие условия, при которых в некоторых звеньях макромолекул основного полимера боковые атомы или группы отщепляются или окисляются до гидроперекисей. Отщепление боковых атомов (водорода, хлора, брома, фтора) может происходить под влиянием радиоактивного или ультрафиолетового облучения или ультразвукового воздействия. В результате такой обработки в макромолекуле полимера возникает несколько свободных валентностей, т. е. образуется полимакрорадикал. При окислении отдельных звеньев макромолекул до гидроперекисей также могут образоваться полимакрорадикалы. Особенно эффективным окислителем является озон. Под влиянием повышенной температуры или восстановителей гидроперекисные группы разрушаются, тоже образуя свободные валентности. [c.436]

    Физико-химические свойства сернокислотных отходов зависят как от состава нефтепродуктов, так и от особенностей технологии и могут колебаться в значительных пределах на одном и том же цроизводстве. Многие из них хорошо растворимы в воде. При длительном хранении под воздействием ультрафиолетового облучения и атало-сферных факторов они могут выделять сернистый ангидрид, полимери-зоваться или коксоваться. В них увеличивается содержание воды за счет поглощения серной кислотой влаги воздуха. За счет уплотнения органической массы меняются реологические свойства и затрудняется возможность их транспорт1фовки по трубоцроводагл. При хранении в закрытых сосудах возможно повышение давления вследствие вьделенкя диоксида серы. [c.8]

    Скорость термической деполимеризации полиметилметакрилата, полученного с перекисью бензоила, при 220" имеет величину порядка 20/о/час. Скорости б6льш1 е 100/о/час легко достигаются при ШО—200 при облучении полимера ультрафиолетовым светом [7]. Наиболее активен свет с длинами волн ниже 2900 Л, приче.м особенно эффективно излучение с длиной волны 2537 А. [c.39]

    Остер [48] применил эти принципы для различных смесей полимер —-мономер. Он использовал ультрафиолетовые источники облучения (область 200—300 мц), такие, как угольные дуговые или ртутные лампы низкого давления (необходимо избегать нежелательного нагревания образца). Такие лампы могут давать облучение при длинах волн С 200м х. при длительном облучении применяют фильтры для устранения возможности нежелательной деструкции материала. Активаторы, такие, как ацето-феноп, бензилдисульфид, нингидрин и цистин, или набухают (механически диспергированные), или вкрапливаются в поверхность полимера. Вещества, поглощающие в области 200—300 лif , при облучении реагируют с подвижным атомом водорода полимерной цепи, образуя в присутствии мономера поперечные связи. При добавлении 0,1 — 1% такого вещества скорость прививки значительно увеличивается и для завершения реакции требуется очень малая продолжительность облучения (табл. ХП-13). При использовании достаточно толстых пленок необходима большая энергия для прививки на обеих поверхностях и, следовательно, при слабом облучении полимер прививается только иа облученную поверхность. [c.430]

    Полиэтилентерефталат покрывают слоем полиоксиэтилена из раствора, сушат, дегазируют и облучают в течение 2 час электронами 10 кэв при 0,01 вт-сек1см . После экстракции этиловым спиртом в течение 20 час (удаление непрореагировавшего полиэтиленоксида) пленка увеличивается в весе на 1,5%. Удельное поверхностное электрическое сопротивление уменьшается с 10 > до 10 , что можно объяснить тем, что полиоксиэтилен покрывает образец пленкой, химически не связанной с поверхностью. Однако увеличение веса в тех же условиях обработки регенерированной целлюлозы при прививке поливинилиденхлоридом доказывает образование химической связи между молекулами полимера. Аналогично осуществляется поверхностная обработка полиэтилена полиоксиэтиле-ном и поливинилхлоридом и полиэтилентерефталата — поливинилхлоридом. Полиэтилентерефталат, покрытый натуральным каучуком и подвергнутый ультрафиолетовому облучению, не растворяется в обычных растворителях для резины, причем покрытие проявляет хорошие адгезионные свойства к поверхности субстрата [47]. [c.435]

    При ультрафиолетовом облучении нолитетрафторэтилена в течение 60 сек нри низком давлении и обработке на воздухе адгезия полимеров увеличивается в 7 раз [133]. [c.442]

    В ряде работ описано образование полифенилтрифтор-этилена [1339—1342], пригодного для получения покрытий, клеев, пресскомпозиций. Полимер плавится при температуре > 276°, размягчается при - 185—195°, устойчив к действию минеральных кислот. Полимеризация фенилтрифторэтилена проводится в присутствии перекиси или под действием ультрафиолетового облучения.3,3,3-Фторпропен в растворителе в присутствии перекисных катализаторов при40—120° образует жидкий полимер [1343]. [c.313]


Библиография для Ультрафиолетовое облучение полимеров: [c.330]   
Смотреть страницы где упоминается термин Ультрафиолетовое облучение полимеров: [c.320]    [c.234]    [c.545]    [c.548]    [c.137]    [c.393]   
Химия сантехнических полимеров Издание 2 (1964) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

облучение



© 2025 chem21.info Реклама на сайте