Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические свойства карбонильных соединений

    Полярность карбонильной группы, а также легкая поляризуемость двойной связн С =0 определяют н химические свойства карбонильных соединений. Положительно заряженный карбонильный углерод влияет и на соседние С-атомы углеродного скелета, оттягивая от них часть электронной плотности и перенося таким образом часть положительного заряда на соседние углеродные атомы. Наконец, следует учесть, что карбонильная группа с ее двойной связью С=0 относится к числу ненасыщенных функциональных групп, способных к реакциям присоедииения. Таким образом, реакционные возможности карбонильных соединений можно выразить следующей схемой  [c.291]


    Схема 2. Химические свойства карбонильных соединений [c.444]

    УШ-З. ХИМИЧЕСКИЕ СВОЙСТВА КАРБОНИЛЬНЫХ СОЕДИНЕНИЙ [c.81]

    Химические свойства. Ненасыщенные альдегиды и кетоны проявляют свойства карбонильных соединений и ненасыщенных веществ. Однако взаимное влияние карбонильной группы и двойной связи сказываются на свойства таких соединений. [c.137]

    Поскольку реакционная способность оксокарбоновых кислот, как и дикарбонильных соединений, определяется взаимным пс ложением карбонильных групп, химические свойства этих соединений будут рассмотрены в разделе, посвященном отдельным представителям, после обзора общих методов получения. [c.448]

    Все моносахариды проявляют химические свойства многоатомных спиртов и некоторые свойства карбонильных соединений. В частности, альдозы могут окисляться до спиртокислот и восстанавливаться до спиртов, содержащих одну дополнительную гидроксильную группу. Для моносахаридов характерны также реакции брожения, которые протекают с расщеплением углеродного скелета. [c.396]

    ВИДНО, ЧТО оба соединения содержат С = 0 (карбонильную группу), только у альдегида с карбонильной группой связан атом водорода, а у ацетона с карбонилом связаны два алкильных радикала. Различным строением молекул кетона и альдегида объясняется различие в физических и химических свойствах этих соединений. Преподаватель указывает, что полученное окислением вторичного спирта соединение называется ацетоном. Ацетон— первый представитель большого класса кетонов. [c.98]

    Некоторые авторы предпочитают объяснять различие карбонильных частот непосредственно различиями в степени взаимосвязи колебаний из-за различной геометрии молекул [52]. Однако было показано, что основность карбонильной группы является монотонной функцией частоты колебаний, что предполагает наличие реальных изменений силовых постоянных карбонильной группы. Того же можно ожидать исходя из химических свойств этих соединений. Например, сильная тенденция галогенсодержащих альдегидов и кетонов присоединять молекулы воды к карбонильной группе доказывает реальное изменение ее свойств. Необходимо учитывать также индукционные эффекты, но маловероятно дать на этой основе удовлетворительное объяснение наблюдающимся фактам. Верным признаком того, что роль индукционных эффектов невелика, является то обстоятельство, что дальнейшее замещение атомами галогенов при атоме углерода в а-положении часто не дает дополнительного повышения частоты карбонильной полосы, имеющей уже высокое значение. Кроме того, наличие сильно электроотрицательной нитрогруппы в а-положении у нитроацетофенона не вызывает изменения карбонильной частоты по сравнению с исходным соединением, что, по-вндимому, обусловлено невыгодной ориентацией нитрогруппы для получения эффекта поля. [c.154]


    Исходя из учения А. М. Бутлерова и В. В. Марковникова о взаимном влиянии атомов и радикалов, карбонильная группа в альдегидах и кетонах, сохраняя общие сходные свойства, должна иметь и некоторые особенности, что сказывается на химических свойствах разбираемых соединений. [c.168]

    Различия в химических свойствах этих соединений указывают на ту же последовательность в месте разрыва связи С—N. Так, в отличие от анилина, бензамид легко гидролизуется с образованием аммиака и бензойной кислоты бензанилид дает при гидролизе анилин и кислоту, т. е. из двух связей С—N разрывается соседняя с карбонильной группой. При нагревании а-нафтиламина с метиловым спиртом наряду с метил-а-нафтиламином получается а-пафтол, в то время как при аналогичной реакции с анилином фенола не получается. [c.320]

    Химические свойства ацетона определяются наличием кетогруппы и двух активных метильных групп, находящихся в а-положении к карбонильной группе. Ацетон вступает в альдольную конденсацию (гл. 16, стр. 300), причем молекула ацетона может реагировать либо с другой молекулой ацетона, либо с молекулами других карбонильных соединений. Последние либо поставляют атом водорода для кетогруппы ацетона, либо приобретают атом водорода от одной из его метильных групп. Ряд других производных ацетона, имеющих важное промышленное значение, можно получить при его пиролизе. [c.317]

    Дикетоны. В зависимости от того, находятся ли карбонильные группы дикетонов в 1,2-, 1,3- или 1,4-положениях, различают а-дике-тоны, -дикетоны, -j-дикетоны и т. д. Эти классы соединений отличаются по своим химическим свойствам и имеют ряд особенностей. [c.319]

    Химические свойства. Изатин реагирует как карбонильное соединение, образуя с гидроксиламином и гидразином соответственно оксим и гидразон, причем в реакции принимает участие -карбонильная группа, активность которой выше (активность а-карбонильной группы снижена +Л1-эффектом группы ЫН). По этой же причине при взаимодействии с индоксилом реакция идет по р-карбонильной группе. [c.538]

    Альдегиды и кетоны. Строение карбонильной группы. Изомерия и номенклатура. Способы получения. Химические свойства. Реакции нуклеофильного присоединения. Реакции замещения и окисления. Функциональные производные оксосоединений ацетали, оксимы, гидразоны, азины. Альдольная и кротоновая конденсации. Дикарбонильные соединения. Непредельные альдегиды и кетоны. Кетены. УФ и ИК спектры альдегидов и кетонов. [c.170]

    Вот почему эта группа углеводов и названа дисахаридами. В молекуле сах арозы содержится большое число гидроксильных групп, но отсутствуют карбонильные группы, за счет которых и происходит соединение глюкозы и фруктозы в одну молекулу сахарозы. Поэтому для сахарозы характерны химические свойства спиртов и не характерны реакции на альдегидную и кетонную группы. Так, сахароза не вступает в реакцию образования серебряного зеркала . [c.164]

    Уран, протактиний и торий отличаются от своих аналогов по химическим свойствам. Уран, в противоположность хрому, молибдену и вольфраму, не образует карбонильных соединений, а его карбид легко гидролизуется водой (карбиды хрома, молибдена и вольфрама представляют собой твердые сплавы, химически инертные). В отличие от титана, циркония и гафния торий образует легко гидролизующийся карбид, нитрид и гидрид. Уран не встречается в природе вместе с молибденом и вольфрамом, а сопровождается обычно торием и лантаноидами торий в свою очередь содержится [c.285]

    Карбонильные соединения относятся к числу наиболее реакционноспособных классов органических соединений. Их химические свойства связаны с особенностями электронного строения карбонильной группы. Связь между углеродом и кислородом поляризована кислород, как более электроотрицательный элемент, накапливает вокруг себя большую электронную плотность, углерод оказывается положительным концом диполя. С подобной поляризацией мы встречались у гидроксильных производных, но поляри- [c.172]

    В соответствии со структурой химические свойства фурфурола определяются совместно альдегидной группой и фурановым ядром. Присутствие карбонильной группы при фурановом ядре сказывается не только в появлении специфических альдегидных реакций, но и оказывает мощное влияние на сам фурановый цикл. Характерные для последнего реакции у фурфурола проявляются менее ярко альдегидная группа понижает реакционную способность двойных связей и кислородного атома фуранового ядра. Поэтому, в частности, фурфурол в большей степени напоминает ароматические соединения (бензальдегид), чем большинство других производных фурана. [c.48]

    Химические свойства моносахаридов, как и других бифункциональных соединений, могут быть разделены на три группы это свойства спиртов, карбонильных соединений, и специфические реакции, обязанные взаимному влиянию и взаимному участию спиртовых и карбонильных функций. [c.39]


    Как альдегиды, так и кетоны содержат карбонильную группу С=0 и их часто рассматривают вместе как карбонильные соединения. Наличие карбонильной группы определяет в основном химические свойства альдегидов и кетонов. [c.587]

    Все эти методы основаны на уже знакомых нам основных химических свойствах алкенов и карбонильных соединений. [c.916]

    Химические свойства карбонильных соединений опред мются, главньгм образом, наличием карбонильной группы. [c.73]

    Химические свойства карбонильных соединений охфеделяются, главным образом, наличием карбонильной группы, которая иредстав-д ляет собой плоскую трехцентровую группировку, в ко- [c.75]

    Эти реакции более подробно рассмотре ы в химических свойствах карбонильных соединений (гл. XXVII.А.З). [c.312]

    Заместители у углеродного атома в положении 4 обусловливают своеобразие химических свойств и фармакологического действия производных пиразола У антипирина, например, в положении 4 имеется водород, который под влиянием близлежащей карбонильной группы обладает подвижностью и обеспечивает ряд реакций, свойственных только антипирину. У амидопирина, анальгина, бутадиона прй углероде в п01Лож нии 4 имеются различные заместители, которые также обусловливают особенности химических свойств этих соединений. [c.303]

    Несмотря на кажующееся сходство между ЯРдХ и КМ Х, химические свойства этих соединений совершенно различны. Палладийорганические соединения обычно устойчивы к действию воздуха и воды и не реагируют с обычными электрофильными агентами типа карбонильных соединений, в то время как магнийорганические соединения весьма реакционноспособны по отношению к кислороду, воде и карбонильным соединениям. [c.65]

    Основываясь на критерии ароматичности (гл. 2), можно заключить, что пиридин является наиболее бшзолоподобной молекулой. Энергии резонанса молекул бшзола и пиридина довольно близки, но наличие атома азота в ароматическом кольце приводит к существенному различию химических свойств этих соединений. Неподеленная пара электронов атома азота расположена в плоскости кольца и обеспечивает возможность протонирования и алкилирова-ния молекулы пиридина. Такие процессы невозможны для бшзола. Во многих отношениях пиридин напоминает третичные амины. Для него характерны реакции, протекающие без участия ароматического секстета электронов. Наличие атома азота приводит к перераспределению электронной плотности в системе и т-связей (см. гл. 2, рис. 2.4) и а-связей (индуктивный эффект). Еще большее перераспределение электронной плотности характерно для катионов пиридиния. В связи с этим циклическая система пиридина обладает свойствами сопряженных иминов или карбонильных соединений. [c.161]

    Существование моносахаридов в циклических формах устраняет некоторые, упомянутые ранее, противоречия в объяснении химических свойств моносахаридов. Эти формы наглядно показывают отличие одного из гидроксилов — полуацетального — от остальных — спиртовых. В то же время моносахаридам присущи и многие свойства карбонильных соединений. Следовательно, циклические и открытая формы моносахаридов находятся в растворе в динамическом (таутомф-ном) равновесии, и такой вид таутомерии называется кольчато-цепной, или цикло-оксо-таутомерией. Однако в равновесном состоянии таутомерные формы находятся не в равных количествах, а с преобладанием энергетически более устойчивых изомеров. Такими, как правило, являются таутомеры с шестичленньши (пиранозными) циклами. Так, О-глюкоза в водном растворе представлена главным образом пиранозными формами (64% р- и "36% а-аномеров, рис. 15.4). Открытая и фуранозные формы присутствуют в ничтожно малых количествах, но важно отметить, что взаимные переходы циклических форм друг в друга осуществляются через открытую форму моносахарида. [c.393]

    Химические свойства. Пенасьцце[н<ые альдегиды и кетоны проявляют свойства карбонильных соединений и ненасьиденных веществ. Однако взаимное влияние карбонильной гругшы и двойной связи сказывается на свойствах таких соединений. [c.130]

    Хотя можно представить себе и другие схемы для переходного состояния при прямом замещении у карбонильного атома углерода, но все эти гипотетические схемы совсем не учитывают наиболее важного химического свойства карбонильной группы, а именно способности к присоединению. Хорошо известны многочисленные реакции присоединения альдегидов и кетонов. Во многих случаях выделены стабильные аддукты, в других случаях их образование подтверждается косвенными данными. Аддукты были выделены при реакциях формальдегида [67] и ацетальдегида в водных растворах [68], хлоральгндрата, различных кетонов в растворе метанола [69] и многих карбонильных соединений с азотистыми основаниями, в частности такими, как гидрок-силамин и семикарбазид [70]. Известны также примеры образования устойчивых продуктов присоединения и в случае производных карбоновых кислот. Следующие схемы иллюстрируют эти реакции  [c.22]

    Одним из катализаторов, подробно описанных в литературе [I] и позднее детально изученных, является медный катализатор на окиси хрома. Установлено, что лри использовании этого катализатора карбонильные соединения гладко подвергаются гидрогено-лизу, особенно в этаноле, диоксане при 180 °С [43]. Исследование медных катализаторов на различных носителях ( uO/MgO- --ЬРегОз СиО/СаРг Си/СггОз и Ag u/ r20з Си/кизельгур и др.) проводилось в различных странах [34, 44], однако во всех выполненных работах указывалось лишь на способность перечисленных Катализаторов вести процесс гидрогеиолиза без изучения степени активности, селективности, стабильности и физико-химических свойств катализаторов. В последнее время особый интерес вызвал катализатор Си—СеОг/кизельгур [45]. [c.46]

    В о-окспкетопах н других соединениях (см. ниже) Н-атом гидроксильной группы взаимодействует с неподеленной парой электронов карбонильной группы, так что он образует в известном смысле мостик между атомами кислорода гидроксильной и карбонильной групп. Соединения с такими внутримолекулярными водородными мостиками называются X е л а т а м и, или в н у т р и к о м п л е к с и ы м и соединениями. Прочность внутрикомплексиой водородной связи зависит от строениясоедиис-ния. Образование ее оказывает большое влияние на физические свойства соединения (растворимость, спектр поглощения и т. д.) и может даже влиять на его химические свойства (например, процессы замещения). [c.642]

    Первое и. соединений, содержащих два атома азота, — азокси-бензол — образуется вследствие конденсации промежуточных продуктов нитрозобензола и фенилгидроксиламина. Нитрозогруппа полярна и по химическим свойствам близка к карбонильной группе ( )енилгидроксиламин — типичный нуклеофил, способный атаковать группу —N==0  [c.261]

    Функциональная группа в первую очередь определяет химические свойства соединения, однако более пристальное рассмотрение показывает, что на них оказывает заметное влияние и природа радикала. Так, в ряду карбонильных соединений альдегиды в общем более реакционноспособны, чем кетоны. Это проявляется в том, что в рассмотренные выше реакции альдегиды вступают в более мягких условиях — при более низких температурах, при действии менее активных реагентов, а сами реакции идут с большими скоростями. Например, в реакцию с дисульфитом натрия вступают лишь альдегиды и простейшие кетоны строения СНз—СО—R или R—СНг—СО— HjR. Особенной реакционноспособностью отличается формальдегид. Так, например, альдольная конденсация уксусного альдегида (в качестве метиленовой компоненты) протекает [c.185]

    Альтернативный путь уменьшения скорости инициирования связан с предотвращением поглощения света. Часто используются сильно поглощающие материалы типа сажи, которые ограничивают фотодеструкцию поверхностью полимера. Аналогично используются отражающие свет вещества типа белых оксидов цинка и титана. Во всех случаях включение гранулированных материалов может неблагоприятно влиять на механические свойства полимера. Они же могут инициировать нежелательные фотохимические процессы, а также ограничивают выбор окраски конечного продукта. Другой подход заключается во введении растворимого экрана, который сильно поглощает в фотохимически активных областях УФ-излучения, но не придает нежелательной видимой окраски. Для предотвращения участия относительно долгоживущих триплетных состояний карбонильных соединений на вторичных стадиях фотоиниции-рования могут применяться тушители. Один очень полезный класс стабилизаторов образуют орго-гидроксибензофеноны, которые действуют как экранирующие и как тушащие соединения. Кроме того, гидроксибензофеноны, по-видимому, способны реагировать химически с гидропероксидами, предотвращая ускорение самоокисления. Хорошо известные акцепторы фенольного, гидрохинонового и тиолового типов могут замедлять фотодеструкцию, влияя на стадиях роста цепи. [c.264]

    Аналогично из смеси различных карбонильных соединений (или из смеси карбонильного соединения н сложного эфира) могут получаться a l Aiж-пинaкoлы [35] Недостаток реакции этого типа заключается в том, что почти всегда образуется смесь различных продуктов, которые трудно разделить из-за их близких химических свойств. [c.34]

    Указанные особенности строения лигандов и комплексов во многом определяют как химические свойства, так и методы получения этих веществ Обычно применяемая для синтеза многих азотсодержащих макроциклов конденсация карбонильных соединений с первичными аминами или их солями (с последующим восстановлением азометиновых связей) в данном случае применяется не часто, поскольку макроциклические основания Шиффа, образованные алифатическими альдегидами и алифатическими аминами, малоустойчивы Лишь по методу Барефилда предполагается промежуточное образование макроциклического основания Шиффа, которое затем восстанавливают без выделения полупродукта Низкая устойчивость алифатических азометинов — это в первую очередь следствие большой склонности таких соединений к реакциям полимеризации, проходящим по механизму альдольной конденсации Сказывается также устранение общего стабилизирующего влияния алкильных заместителей (см. с 67) [c.37]


Смотреть страницы где упоминается термин Химические свойства карбонильных соединений: [c.79]    [c.73]    [c.158]    [c.209]    [c.295]    [c.467]    [c.708]    [c.38]    [c.1239]   
Смотреть главы в:

Начальные сведения по органической химии -> Химические свойства карбонильных соединений




ПОИСК





Смотрите так же термины и статьи:

Карбонильные соединения

Карбонильные соединения химические

Химическое соединение



© 2025 chem21.info Реклама на сайте