Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы в реакциях с карбонильными соединениями

    Этот механизм чрезвычайно похож на механизм реакции бензамидина с /г-нитрофенилацетатом в хлорбензольном растворе [схема (11.7)]. Можно думать, что любая система с двумя электроотрицательными атомами в 1,3-положении по отношению друг к другу с внутренним углом между ними менее 180° (а не более 180°, как в имидазоле), обладающая одной двойной связью, будет соответствовать требованиям, предъявляемым к бифункциональному катализатору реакций карбонильных соединений. Действительно, бензойная кислота, пикриновая кислота и 2-аминопиридин обладают необычайно высокой каталитической активностью. [c.288]


    Реакции карбонильных соединений могут катализироваться основными, кислотными и нейтральными катализаторами. [c.329]

    В настоящее время основная часть производимого в мире бис-фенола А используется для получения эпоксидных смол ((35%) и поликарбоната. Причем, вследствие летучести хлорной кислоты, в современных процессах в качестве катализатора предпочитают использовать серную кислоту. Заметим, что скорость реакции карбонильных соединений с фенолами может быть дополнительно увеличена с помощью серосодержащих соединений (см. разд. 3.4.1), таких как тиогликолевая кислота, тиоспирты или меркаптаны [31, 57]. [c.30]

    Кетен служит эффективным ацетилирующим агентом для спиртов, аминов, кислот и др., причем в оптимальных условиях выходы ацетилированных продуктов высокие. Во многих случаях, несмотря на неудобства, связанные с применением кетена, его целесообразно использовать для ацетилирования, в особенности для избирательного ацетилирования аминов. Однако наиболее интересны другие примеры использования кетена в синтезах. В данном обзоре рассматриваются ацетилирование кетеном карбонильных соединений, способных к енолизации, и химия изопропенилацетата — наиболее изученного продукта такой реакции реакция карбонильных соединений с кетеном в присутствии подходящих катализаторов с образованием р-лактонов, в частности р-пропиолактона — простейшего представителя этого ряда, и Химия дикетена. [c.205]

    Однако при выборе катализатора для проведения конденсации альдегидов или кетонов — потенциальных метиленовых компонентов — с ароматическими альдегидами следует иметь в виду, что последние при действии крепких водных растворов щелочей или спиртовых их растворов превращаются в соответствующие бензиловые спирты и соли арилкарбоновых кислот — претерпевают реакцию Канниццаро (см. Несмеянов А. Н., Несмеянов Н. А. Начала органической химии, т. II. М., Химия , 1974, с. 132). При подходящем выборе катализатора конденсации карбонильных соединений, особенно кетонов, с ароматическими альдегидами идут без осложнений. Реакции этого типа находят весьма широкое применение в синтетической практике. [c.172]

    Реакции карбонильных соединений с сильными нуклеофилами протекают самопроизвольно, часто при комнатной температуре. Реакции со слабыми нуклеофилами требуют применения катализаторов - кислот или оснований. [c.126]

    Активным катализатором гидрирования карбонильных соединений до соответствующих спиртов является Ni—Сг-катализатор. Необходимо отметить, что Ni—Сг-катализатор, полученный разложением формиатов этих металлов, в реакции гидрирования при 100 и 200 атм оказался более активным для альдегидов, чем для кетонов. [c.323]


    Изложенные выше представления о превращении псевдокислоты в анион упрощают истинную картину. Особенно часто обнаруживается, что скорость реакции карбонильного соединения зависит не только от силы катализатора-основания, но, кроме того, и от катиона металла, присутствующего в основании 1). Поэтому напрашивается мысль представить диссоциацию псевдокислоты следующим образом  [c.291]

    Альдольная конденсация V является одной из важнейших реакций карбонильных соединений. К превращениям этого типа склонны все карбонильные соединения, и границы их протекания практически не могут быть очерчены, поскольку рассматриваемая реакция совершается очень легко под влиянием различных катализаторов, кислот, щелочей, действия света, тепла, т. е. в таких условиях, которые вполне возможны в случае превращений сланцевой смолы как в процессе ее получения, так и в последующих процессах ее переработки. [c.38]

    Это обусловливает эффективность кислотного катализа при реакциях карбонильных соединений с реагентами — основаниями (спиртами, азотистыми основаниями и др.). Вообще говоря, азотистые основания — достаточно сильные нуклеофилы и присоединяются по карбонильной группе и без катализаторов, но при кислотном катализе молекула карбонильного соединения поляризована и реагирует с ними значительно быстрее  [c.61]

    Рассмотренные здесь закономерности, очевидно, аналогичны ранее полученным для гомогенного катализа при большом избытке катализатора по сравнению с реагентами (стр. 144). Им подчиняются процессы сульфирования и нитрования ароматических соединений, реакции карбонильных соединений при катализе протонными кислотами (например, конденсация ацетона с фенолом, реакция Принса) и др. [c.151]

    Оба эти вещества в сухом виде взрывоопасны. Алкины, содержащие один подвижный атом водорода, легко могут быть обнаружены с помощью одной из этих реакций, причем особенно чувствительным является тест с помощью иона серебра. Медные соли применяются в основном для двух целей. Во-пер-вых, ацетиленид меди может служить катализатором этинилирования карбонильных соединений, как альдегидов, так и кетонов. [c.290]

    Первой стадией восстановления карбонильного соединения является получение соответствующего гидразона, для чего карбонильное соединение нагревают с 2—4 эквивалентами 100%-ного гидразингидрата в растворе триэтиленгликоля, содержащего небольшое количество уксусной кислоты, играющей роль катализатора. Воду, образующуюся в результате реакции, отгоняют по мере ее выделения. Повторная обработка гидразингидратом способствует получению высоких выходов гидразона. Продукт реакции не выделяют в чистом виде, а разлагают путем добавления его по каплям к горячему (200°) раствору метилата натрия или едкого кали в триэтиленгликоле. При этих у словиях гидразон разлагается на [c.508]

    Механизм действия катализаторов этого типа изучали по конверсии о-водорода в п-водород, по поведению радиоактивной окиси углерода и спиртов (с изотопом С ), карбидов и карбонильных соединений металлов и т. д. Анализ их структуры был проведен при помощи новейших методов (электронномикроскопического, адсорбционного и т. д.). Состав продуктов реакции определяют обычно при помощи масс-спектрографа. [c.254]

    Гетерогенные катализаторы основного типа применимы для реакций конденсации карбонильных соединений ацетиленовых конденсаций, а также реакций Перкина, Фаворского и др. [c.153]

    Реакции альдегидов и кетонов с ароматическими соединениями имею г много сходства с процессами алкилирования и тоже принадлежа к реакциям электрофильного замещения. Обычными катализаторами являются протонные кислоты (серная, сульфокислоты, хлористый водород, катионообменные смолы), которые переводят карбонильные соединения в положительно заряженный ион, атакующий далее ароматическое ядро через промежуточное образование л- и а-комплексов  [c.549]

    Окисление парафина воздухом при повышенных температурах значительно ускоряется в присутствии катализаторов [58, 59]. В качестве катализаторов применяют соли тяжелых металлов высших жирных кислот, а также высокомолекулярные спирты и кетоны, выделенные из продуктов окисления парафина. В этом случае окисление идет более глубоко, и в качестве основных продуктов реакции образуются карбоновые кислоты и нейтральные карбонильные соединения. [c.60]

    Как было найдено А. Е. Фаворским, ацетилен в присутствии щелочных катализаторов взаимодействует с карбонильными соединениями (альдегидами, кетонами) с образованием ненасыщенных спиртов. Большое значение имеет, например, реакция взаимодействия ацетилена с формальдегидом, которая может приводить к пропаргиловому спирту а или к бутин-2-диолу-1,4 б (катализаторы — ацетилениды тяжелых металлов, в особенности ацетиленид меди Реппе)  [c.81]


    Если использовать современные представления о роли кислотных катализаторов в реакции конденсации карбонильных соединений, то эту реакцию можно интерпретировать следующим образом. Если предположить, что окись мезитила реагирует с третьей молекулой ацетона в качестве метиленового [c.214]

    Выше мы показали, что первичные и вторичные амины являются нуклеофильными катализаторами реакций карбонильных соединений. Очевидно, что карбонильные соединения должны быть электрофильными катализаторами превращений аминов. Это положение можно проиллюстрировать на примере катализируемого бензальдегидом гидролиза этилглицината  [c.182]

    Общую- скорость реакции карбонильного соединения может определять как стадия присоединения (Г.7.7), так и стадия конденсации (Г.7,9). При реакциях, с сильнонуклеофильными веществами (аммиак, алифатйческие амины, гидроксиламин) в нейтральной или щелочной среде присоединение, как правило, идет быстро, так что скорость реакции определяется деглдратацией (Г.7.9). Поскольку эта стадия катализируется кислотами, добавление последних ускоряет реакцию. Однако кислота, играющая роль катализатора, взаимодействует и с нуклеофильным агентом, превращая его в соль и тем самым блокируя его свободные электронные пары. Чем сильнее основание, вступающее в реакцию, тем ниже концентрация кислоты, при которой происходит блокирование. Солеобра-зование может настолько понизить скорость присоединения (Г.7.7), что онО превращается в стадию, определяющую скорость всего процесса. Поэтому нередко бывает так, что карбонильная реакция при некотором определенном рГГ [c.55]

    Необходимо отметить, что применение хиральных четвертичных аммониевых солей при реакции карбонильных соединений с -толилхлорметилсульфоном приводит к оптически активным оксиранам (максимальный оптический выход 2,5%). Для достижения оптической индукции важно присутствие гидроксигруппы в Р-положении ониевой соли. Индукция повышается также при связывании катализатора на полимерной матрице. При использовании полимерносвязанного катализатора удается достичь оптических выходов порядка 23%. Такой выход был получен при реакции метилэтилкетона с га-толилхлорметилсуль-фоном в присутствии [c.130]

    Реакцию можно проводить в таких инертных растворителях, как эфир, или в растворителях, оказываюпщх каталитическое действие, например в воде или спиртах. Выбор растворителя зависит от реакционной способности вводимого в реакцию карбонильного соединения и, в некоторых случаях, от характера продуктов реакции, которые желают получить. При применении кетонов, активированных электроноакцепторными группами, и большинства альдегидов катализатор обычно не требуется, тогда как [c.496]

    По аналогичной схеме протекают некоторые реакции альдольной конденсации карбонильных соединений, когда первая стадия образования карбаниона при реакции карбонильного соединения с катализатором протекает медленно  [c.439]

    Механизм реакции карбонильных соединений с гидроксиламином, по-видимому, очень напоминает соответствующий механизм взаимодействия этих соединений с фенилгидразином, динитрофе-нилгидразином и семикарбазидом. Наиболее подробно изучена реакция образования семикарбазонов. Ниже приведен механизм этой реакции в водном растворе в присутствии катализатора — кислоты НА. [c.188]

    Гетерогенный никелевый катализатор, получаемый реакцией ацетата никеля с алкоксидом натрия (например, EtO или трет-СьНцО ) и гидридом натрия в этаноле [т.е. NaH—NaOR— Ni (ОАс) 2], также является катализатором гидрирования карбонильных соединений [92]. Этот катализатор приготовляется легко и дает воспроизводимые результаты (см. также разд. 7.2.2). Так, восстановление нонанона-5 (25 °С, 1 атм Нг, 9 ч) дает нонанол-5 с практически количественным выходом. [c.284]

    Гидрирование альдегидов и кетонов. Алифатические и ароматические альдегиды и кетоны в присутствии водорода и подходящего катализатора быстро восстанавливаются до соответствующих спиртов. Карбонильная группа легко восстанавливается до гидроксильной группы над хромитом меди в сравнительно мягких условиях при температурах от 125 до 150 и давлении 100 ат. В больптинстве случаев достигаются почти количественные выходы карбинолов. Адкинс считал, что хромит меди является непревзойденным катализатором для реакции восстановления карбонильной группы, поскольку нежелательные побочные реакции при этом протекают в значительно меньшей степени, чем при использовании никелевого катализатора. Однако совсем недавно показано, что скелетный никель в его наиболее активных формах является превосходным катализатором восстановления карбонильных соединений. [c.94]

    Сильная кислота, играющая роль катализатора, оказывает влияние не только на основной атом кислорода карбонильной группы, но и на нуклеофильный агент, блокируя его электронную пару солесбразованием. Чем сильнее реагирующее основание, тем ниже концентрация кислоты, под действием которой происходит это блокирование. Поэтому для катализируемых кислотами реакций карбонильных соединений оптимальным является такое значение pH, при котором обеспечивается достаточная протонизация карбонильной группы, однако концентрация свободного, непрото-низованного нуклеофильного компонента остается еще достаточно высокой. Эта концентрация, как можно показать и путем кинетических расчетов, находится при pH, соответствующем р/С используемого основания, т. е. когда нейтрализована половина основания [c.371]

    Ацилирование по Фриделю—Крафтсу более реакционноспособных, чем бензол, аренов и гетероаренов удается и с каталитическими количествами катализаторов, в качестве которых используют хлорид железа (П1), иод, хлорид цинка или железо. Считается, что при необходимых для этих реакций высоких температурах комплекс катализатора с карбонильным соединением диссоциирует после этого катализатор вновь вступает в реакцию. [c.454]

    В 1938 г. Роелен открыл реакцию, позволяющую превращать олефины в кислородсодержащие соединения. В качестве катализаторов использовались карбонильные соединения переходных металлов. В первую очередь была изучена реакция с этиленом и установлено, что она протекает по двум направлениям  [c.422]

    Активность приготовленных катализаторов определялась в реакции жидкофазной гидрогенизации ацетона, метилэтилкетон а, диэтилкетона,, циклогексаяона и ацетофенона. Кетоны тщательно очищались, их физико-химические константы соответствовали справочным данньим. Количество вводимого в реакцию карбонильного соединения обычно соответ-ствавало поглощению 50 мл Нг (и. т. д.), в отдельных случаях для ацетона 150 мл На при гидрировании ацетофенона 200 мл На. Растворителями являлись вода, 0,1 и. водный раствор КОН и 96%-ный этанол. Опыты проводились в установке для жидкофазной гидрогенизации с одновременным измерением скорости реакции и потенциала катализатора при 20° [8]. [c.44]

    Получение первичных аминов Процеи включает реакцию карбонильного соединения с при 15-80 С, выделение j6pa30BaBffleU fl водн и гидрирование продукта под давлением в присутствии и катализатора. Молярное соотношение к бонилъного соединения к Wig равно 1/1,3-1,6. [c.122]

    При взаимодействии н-бутенов с катализатором (507о активной массы на силиказоле) в условиях отсутствия газообразного кислорода в реакционной смеси реакция окислительного дегидрирования протекает с высокими выходом бутадиена и избирательностью. Выходы бутадиена превышают 75% при избирательности около 90%. Выходы карбонильных соединений, фурана и кислот при этом в 3—4 раза меньше, чем в присутствии кислорода в газовой фазе. [c.685]

    При Д. И. Менделееве вопрос получения углеводородов путем каталитического синтеза не был разработан в-достаточной степёди. С особой показательностью он выступает в вышеупомянутых опытах Сабатье, где роль катализаторов играет никель. В носдед-нее время исследования Бергиуса показали, что гидрогенизация непредельных соединений может происходить и без наличия катализаторов, но при высоком давлении и температуре в 200— 300° С. Опыты В.. Н. Ипатьева также показали, что в случае высокого давления и- присутствия окислов металлов возможны реакции полимеризации ацетилена и его ближайших гомологов и образование ароматических углеводородов, которые при последу-юш,ей. гидрогенизации дают нафтены. Другимп исследователями произведен ряд опытов по полимеризации и гидрогенизации разного рода ненасыщенных углеводородов, в результате которых получались углеводороды аро. штического и нафтенового рядов. Одним словом, при действии воды на карбиды и в результате последующих реакций полимеризации и гидрогенизации, при наличии катализатора, пли высокого давления и температуры могла возникнуть сложная смесь углеводородов, являющихся главнейшей составной частью современных нефтей. Допуская же существование в земных недрах не только карбидных, но и карбонильных соединений железа, никеля и других тяжелых металлов, а также нитридов металлов, п принимая во внимание наличие в земной коре сульфидов, можно вполне объяснить присутствие в нефти азотистых, сернистых соединений, водорода и окиси углерода, т. е. всех второстепенных компонентов современных нефтей и все разнообразие пх. [c.304]

    Алкины не могут быть проалкилированы в системе водный раствор основания/межфазный катализатор, несмотря на то что депротонирование в этом случае происходит. Однако присоединение 1-алкинов к карбонильным соединениям сильно ускоряется при проведении реакции в системе толуол/13%-ный водный NaOH в присутствии аликвата 336 [1838]. [c.229]

    Кроме свободнорадикального пути расш,епления алкилароматические гидропероксиды способны к распаду под влиянием кислотных и щелочных катализаторов. В присутствии уже небольшого количества сильной кислоты (например, 0,1% Н2804) гидропероксиды распадаются с образованием фенолов и карбонильных соединений. Реакция протекает по сложному механизму ионного типа с промежуточным возникновением положительных ионов  [c.372]

    На одном и том же катализаторе селективность процесса за-виспт от ряда факторов, в том числе от относительной реакционной способности органических веществ или отдельных функциональных групп и от их способности адсорбироваться поверхностью катализатора. Часто оба фактора влияют параллельно или первый из них превалирует над вторым. Вследствие этого, например, двойные связи арилолефинов всегда гидрируются в первую очередь по сравнению с ароматическим ядром, а альдегидные группы — быстрее кетонных. Имеются, однако, примеры, когда реакционная способность к хемосорбции изменяется в противоположных направлениях. Тогда вещество, лучще сорбируемое, вытесняет с поверхности катализатора другой реагент или промежуточный продукт и гидрируется в первую очередь. Этим объясняется, что ацетилен и его гомологи можно селективно гидрировать в соответствующие олефииы, несмотря на более высокую реакционную способность образующихся олефинов. Меньщая сорбируемость целевых продуктов последовательных превращений (например, спиртов при гидрировании кислот и карбонильных соединений, аминов при гидрировании нитрилов н т. д.) позволяет провести реакцию с лучшей селективностью и более высоким выходом. [c.470]

    Для взаимодействия аммиака с карбонильными соединениями не требуются специальные катализаторы, поэтому реакцию гидро-аммололиза следует проводить только с катализаторами гидрирующего типа. Для этой цели предложены никель (80—150°С и [c.511]

    Известны способы получения ЭПХГ каталитическим окислением ХА [146-149]. Описаны способы получения ЭПХГ эпоксидированием ХА с помощью органических гидроперекисей в присутствии катализатора, в качестве которого используют хлориды и оксихлориды ванадия, вольфрама, молибдена, а также их смеси, соли указанных металлов с органической кислотой или комплексные соединения зтих металлов с карбонильным соединением [150-152]. В одном из этих способов [150] для повышения выхода ЭПХГ подвергают ультрафиолетовому облучению катализатор или его раствор в ХА. В некоторых случаях реакцию окисления предлагается [c.36]

    Таки.м образом, бла1-одаря наличию у карбонильных соединений рассмотренных выше характерных особенностей эти соединения в присутствии основных катализаторов способны вступать в реакции конденсации. При этом происходит ирисоединс-ние мезомерного аниона, образовавшегося после отщепления протона, по кратной связи карбонильной группы другой молекулы, не прореагировавшей подобным образом, [c.186]

    При действии на карбонильные соединения аммиака и водорода при высокой температуре и а присутствии катализатора образуются амины. Сначала аммиак реагирует с карбонильным соединением, а затем продукт этой реакции восстананливается  [c.691]

    Присоединение ацетиленид-иона. Интересна реакция присоединения ацетиленид-иона к карбонильным соединениям. Превращение проводят обычно в жидком аммиаке в присутствии амида натрия для перевода ацетилена в соответствующий карб-лнион (см. стр. 253). Гидрирование образующегося ацетиленового карбинола ХХУП на катализаторе Линдлара (частично отравленный палладий) приводит к олефину ХХУП1, который претерпевает катализируемую кислотой аллильную перегруппировку (см. стр. 50) и образует первичный спирт XXIX  [c.214]


Смотреть страницы где упоминается термин Катализаторы в реакциях с карбонильными соединениями: [c.522]    [c.181]    [c.26]    [c.151]    [c.193]    [c.43]    [c.560]    [c.147]   
Органическая химия (1964) -- [ c.318 ]

Органическая химия (1964) -- [ c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Карбонильные соединения



© 2024 chem21.info Реклама на сайте