Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводородные функции

    Ксилолы. До недавнего времени в лабораторной практике и технике применялась смесь трех изомерных ксилолов, получавшихся при разгонке углеводородных функций каменноугольной смолы. Такая смесь с т. кип. 138—142° С используется главным образом как растворитель и как компонент моторного топлива (октановое число более 120). Б последние десятилетия получили широкое применение отдельные изомерные ксилолы, в особенности -ксилол (для производ- [c.375]


    Для нефтяных фракций сложного углеводородного состава наиболее удобным путем корреляции опытных псевдокритических данных является их представление в виде функции от среднемольной температуры кипения од, относительной плотности [c.20]

    Уравнение (1.31) можно проинтегрировать на основе теоремы соответственных состояний с помощью графика коэффициента сжимаемости (ем. рис. 1.2). Результаты такого интегрирования представлены на обобщенной диаграмме коэффициента фугитивности V = f p углеводородных газов, как функции от л и т (рис. 1.5). [c.23]

    Идея представления состава сложных углеводородных систем типа нефтяных фракций с помощью непрерывных кривых плотности распределения по какому-нибудь одному удобно выбранному аргументу оказалась удачной, ибо позволила несколько упростить расчетную процедуру. Представление нефтяных фракций в виде континуума требует замены ряда чисел, отвечающих отдельным компонентам, функцией одной характерной переменной. Для этого естественно исходить из кривых разгонок по истинным температурам кипения (ИТК), связав с ними какое-нибудь удобное для расчета процессов разделения свойство, которое непрерывно изменялось бы с составом смеси-континуума и тем самым определяло компоненты системы, характеризующиеся соответствующими точками кипения на кривой разгонки. [c.112]

    Все это дало возможность впервые в нефтепромысловой практике как отечественной, так и зарубежной построить атлас термодинамических функций пластовой жидкости (нефти, газа и различных бинарных смесей, составленных из этих углеводородных компонентов) при широком диапазоне изменения изученных констант ( , s, Р [c.10]

    На рис. 7 приведены значения градиентов концентрации растворителя и некоторых основных компонентов в колонне для экстракционной перегонки, описанной выше. Из этих данных следует, что концентрация растворителя почтя постоянна в пространстве между вводом растворителя и вводом исходного продукта. Она также относительно постоянна между вводом растворителя и подогревателем, однако оба уровня концентрации различаются вследствие добавления углеводородного исходного продукта. Несколько нижних тарелок, расположенных в зоне экстракционной перегонки, выполняют, функцию отгонной колонны, где от обогащенного растворителя [c.106]

    В применении к углеводородным системам в этих уравнениях без большой ошибки можно полагать поровый объем постоянным [9, 33]. Можно, однако, получить более точные результаты, если считать, что поровый объем представляет собой линейную функцию состава адсорбированной фазы, изменяющуюся в пределах значений Ур для компонентов данной бинарной истомы. Значение у, рассчитанное только по. величине Ур для лучше адсорбируемого компонента, применяется в этом расчете в качестве первого приближения. [c.139]


    Некоторые ароматические соединения, в основном многоядерные, такие как метилнафталин, могут служить ингибиторами окисления — в углеводородных системах, содержащих эти соединения, окисление углеводородов замедляется. Функции ингибиторов такие соединения выполняют благодаря превращению своей фенольной основы. Промежуточными продуктами этога превращения, вероятно, являются гидроперекиси. [c.85]

    Изложенные представления о механизме действия антиокислителей свидетельствуют о том, что добавление антиокислительных присадок не устраняет окисления углеводородных топлив, а замедляет его, удлиняя период индукции. С этой точки зрения антиокислители для бензинов можно подразделить [66] на продукты, преимущественно тормозящие собственно окислительные реакции (идущие со значительным расходом кислорода) — антиокислители , и продукты, преимущественно тормозящие вторичные процессы (полимеризации, конденсации), которые приводят к образованию смол — ингибиторы смолообразования . К первым из топливных замедлителей окисления относятся главным образом амины и некоторые аминофенолы, ко вторым — фенолы. Аминофенолы и экранированные алкилфенолы проявляют, как правило, и те, и другие функции. [c.234]

    ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ ГРУППОВЫХ КОМПОНЕНТОВ, ХАРАКТЕРИЗУЮЩИХ СЛОЖНЫЕ УГЛЕВОДОРОДНЫЕ СМЕСИ [c.392]

    В связи с этим в функции подсистемы вменяется выполнение следующих проектных работ (рис. 10.3) выбор аналогов для проектирования (на примере двух-трех производств) с оценкой проектных решений расчет технологических схем и отдельных фрагментов с различной степенью детализации расчет товарного баланса, приближенного материального баланса, материального и теплового балансов, балансов с выбором оборудования, режимных и конструкционных параметров оценка (технико-экономическая) проектных решений самостоятельные расчеты (проверочный и проектный) процессов и аппаратов синтез схем однородной структуры (теплообмена с изменением и без изменения фазового состояния, ректификации углеводородных смесей, сложных нефтяных смесей, азеотропных смесей) выпуск проектной документации (таблиц, экспликаций, заданий другим частям проекта, технологической схемы установки) технико-экономическая оценка и сравнение с аналогом. Выполнение указанных проектных и проверочных работ осуществляется с помощью ряда ППП. [c.564]

    Эдмистер предложил метод расчета абсорбции жирных углеводородных газов на основе использования эффективного фактора абсорбции, как функции коэффициента конечного поглощения, и с учетом изменения материальных потоков и температуры по высоте аппарата. [c.84]

    Изучалась работа трех промышленных установок каталитического, риформинга на сырье близкого углеводородного состава (табл. 4.4). Процесс на первых двух установках осуществляют со стационарным катализатором, на третьем — с движущимся. Тепловой эффект реакции, рассчитанный по методу [258], значительно возрастает при снижении давления вследствие увеличения селективности реакций, приводящих к образованию ароматических углеводородов (см. гл. 1). Одновременно резко увеличивается суммарный перепад температур в реакторах. Частично возрастание перепада температур связано с уменьшением кратности циркуляции водородсодержащего газа, который, наряду с другими функциями, служит также теплоносителем. При суммарном перепаде температур 60—70 и ПО—120°С реакционные блоки состоят из трех реакторов (установки 1 и 2). Если же перепад температур достигает 160—200 °С, то число реакторов доводят до четырех (установка 3).- В данном случае применение системы из трех реакторов потребовало бы значительного повышения температуры парогазовой смеси на входе в реакционные аппараты. [c.123]

    Рассмотрим основные положения модели непрерывного состава [315, 316]. В основу модели кладется достаточно подробная кинетическая схема процесса, учитывающая как взаимные превращения углеводородов, так и образование полимерных высококипящих продуктов и твердых высокоуглеродистых отложений. При этом два последних рассматриваются как кокс. Принимается, что состав углеводородного сырья в каждом классе описывается некоторой дифференциальной функцией распределения по молекулярным массам или коррелирующей с ней величиной, например ИТК- Исследования [310], показали,, что зависимость содержания углеводородов [c.193]

    Присадки, называемые диспергентами, выполняют в окисляющейся системе (топливо — продукты его окисления) в основном функции защитных коллоидов или пеп-тизаторов. Защитными коллоидами для растворов в углеводородной среде могут служить все поверхностно-активные вещества дифильной структуры [13] спирты, жирные кислоты и их соли, фенолы и их соли, амины и др. Действие защитных коллоидов усиливается с удлинением углеводородной цепи при полярной группе. Защитное действие лиофильных коллоидов по отношению к лиофобным объясняется адсорбционным взаимодействием их частиц. Концентрация добавляемого защитного коллоида имеет важное значение. При недостаточной концентрации или малой степени его дисперсности взаимодействие лиофильного и лиофобного коллоидов может привести к обратному результату — образованию крупных лиофобных агрегатов. Это придает неустойчивость коллоидной системе и повышенную чувствительность к внешним воздействиям (сенсибилизация), которая может, в свою очередь, привести к коагуляции и осаждению коллоидных частиц. [c.139]


    Определение октанового числа по данным жидкостной хроматографии [112] предусматривает расчет его по индивидуальному углеводородному составу бензина. Все выделенные из хроматограмм углеводороды делят на 31 группу. Октановое число, соответствующее каждой группе, установлено предварительными исследованиями. По исследовательскому методу октановое число определяется как функция взвешенной суммы октановых чисел отдельных групп весами служит объемные доли соответствующих фракций. [c.118]

    Необходимо отметить, что закон Рауля применим только для идеальных смесей, однако с известной долей приближения он может быть использован и для смесей углеводородных гомологов Сг—Сб в СНГ при умеренных давлениях. С целью повышения точности расчетов констант равновесной системы жидкость— пары для углеводородов при высоких давлениях некоторые предпочитают вводить фугитивную функцию в давление паров. [c.68]

    Для агломерирования железной руды и производства окатышей также требуется топливо со стороны. В основном используют коксовую мелочь, которая достаточно хорошо перемешивается с железной рудой, смесь обжигается. Полученную продукцию (окатыши или кусковой агломерат) загружают в доменную печь. При этом рекомендуется снижать потребление кокса путем подачи дополнительного углеводородного топлива, основная функция которого — дополнительное тепловое обеспечение процесса. Вопрос о повышении качества за счет снижения содержания серы в окатышах или агломератах в данном случае является второстепенным. [c.304]

    Для уже рассмотренного примера углеводородной цепи с длиной развернутой цепи 125,5 нм напряжение достигает величины, необходимой для ее разрыва при условии г> 124,7 нм. Другими словами, лишь 2 из 333 случайных звеньев длиной 0,377 нм направлены перпендикулярно вектору, соединяющему концы цепи, в то время как все остальные полностью выстроены в одном направлении. Даже для такого предельного растяжения функция Ланжевена дает хорошее приближение зависимости напряжение—деформация случайно свернутой цепи. Это становится очевидным при сравнении с так называемым точным решением Трелоара [2с], которое опирается исключительно на геометрическое (и комбинаторное) рассмотрение явления и для которого в случае предельных растяжений имеем [c.121]

    Гели с жидкой углеводородной средой, или органогели, с использованием в качестве дисперсионной среды дизельного топлива или керосина характеризуются высокой степенью обеспечения герметичности при использовании их в качестве разделителей. Органогели весьма эффективны и с точки зрения удаления накопившейся воды или мусора из нефтепроводов, а также конденсата из газопроводов. В гелях такого рода массовая доля ингибиторов коррозии может быть доведена до 20 %, поэтому они могут выполнять две функции одновременно, что доказано на газопроводных систе- [c.187]

    Сущность работы. Олеат натрия хорошо растворим в воде, поэтому его можно применять как эмульгатор при получении устойчивых эмульсий типа масло в воде. Введение в раствор ионов кальция, образующих водонерастворимый олеат, меняет картину на обратную. Своей углеводородной частью олеат кальция адсорбируется на поверхности бензола и тем самым способствует образованию устойчивой эмульсии типа вода в масле. Происходит обращение эмульсии. Введя в эмульсию краситель, например Судан III, который хорошо растворим только в одной из жидкостей, в данном случае в бензоле, можно легко определить, какая из жидкостей выполняет функцию дисперсной фазы, а какая — дисперсионной среды. [c.87]

    Так как для определения углеводородных функций существует лишь очень небольшое число химических методов, широкое использование получили физические методы. В ряде статей были опубликованы инфракрасные спектры поглощения углеводородов. Определение метиленовых групп в соединениях с открытой цепью было описано Глебовской с сотр. . Егоров и Петров пользовались инфракрасными спектрами поглощения для определения степени разветвления парафиновых углеводородов. Хоукс и Нил описали инфракрасные спектры поглощения 42 моноалкилбен-золов. [c.408]

    И качество продуктов являются функцией только углеводородного со-става-загружеыного газойля и непосредственно не зависят от присутствия азотистых И сернистых соединений. [c.157]

    Процессы каталитического крекинга нефтяного углеводородного сырья над мелкодисперсным алюмосиликатным катализатором и регенерации такого катализатора можно осуществить в промынглеыном л асштабе с помощью реакторов различной конструк и1и. Принципиальные Ш1 ложения, развитые во введении к настоящему разделу, предопределили необходимость разработки непрерывного процесса каталитического крекинга, ч о привело к разделению функций аппаратов но крайней мере на три ступеци (крекинг, регенерацию, десорбцию углеводородов) и к разработке аппаратов-реакторов высокой производительности для контактирования тве])догс мелкодисперсного движущегося катализатора с газопаровыми потоками. [c.160]

    Для большого числа углеводородов с девятью или большим числом углеродных атомов термодинамические функции не определяют, а рассчитывают, используя приближенные методы. Естественными поэтому являются экспериментальные исследования по проверке рассчитанных равновесных составов. Кроме того, для углеводородов Сэ и выше из-за большого возможного числа изомеров представляют интерес частные равновесия только тех изомеров, которые образуются в реакционной системе в ощутимых количествах. Поэтому экспериментальное определение равновесного состава изомёрных углеводородов остается важным методом изучения изомеризационных превращений. Обзор ряда работ по экспериментальному определению равновесных углеводородных составов приводится в разделах, посвященных изомеризации парафиновых, нафтеновых, ароматических и олефиновых углеводородов. Можно отметить экспериментальные исследования равновесия парафиновых и нафтеновых углеводородов, выполненные Ал. А. Петровым с сотр. [34, 35]. [c.177]

    Квазипланарпая пли гроздевидная, а точнее пространственно не упорядоченная структура характерна для молекул асфальтенов пз нефтей, не подвергшихся существенным катагенным изме-непням из-за сравнительно небольшого возраста и/или залегания на малых глубинах. В основе таких молекул лежат от одного до нескольких ароматических ядер, содержащих в среднем не более трех-четырех сконденсированных бензольных колец каждое значительно выше роль в молекуле нафтеновых циклов и алифатических цепей. Такие асфальтены почти не отличаются от смол той же нефти по фрагмептно.му составу, построены из таких же углеводородных скелетов и гетероатомных функций в близких средних пропорциях, но обладают большими молекулярными массами и габаритами молекул. В зависимости от состава углеводородной части нефти (чаще всего нафтенового) эти асфальтены могут давать в ней как истинные, так и коллоидные растворы. [c.200]

    Потери тепла с уходящими дымовыми газами — функция объемного количества и температуры уходящих газов. Необходимо отметить, что при стехиометрическом сжигании объем образующихся продуктов, особенно при сжигании углеводородных газов, является функцией высшей теплоты сгорания. При сжигании большинства СНГ, если они не являются ненасыщенными углеводородами, в среднем образуется около 0,2818 м на 1000 кДж генерируемого тепла. Избыточное количество воздуха (по отношению к стехиометрически необходимому) нагревается до температуры уходящих газов, увеличивая объем последних и снижая таким образом общую эффективность сжигания. [c.107]

    В книге Ч. Хол.танда рассматривается ряд методик расчета паро-жндкостного равновесия, однако во всех случаях принимается допущение, что константы фазового равновесия являются функцией температуры и общего давления. Такое допущение справедливо только для идеальных жидких и газовых смесей. Между тем углеводородные системы (даже легкие углеводороды каждого 1 оы().1огического ряда) не являются идеальными смесями. Особенно существенны отклонения от указанного допущения для систем, содержащих значительные ко.чичества более тяжелого углеводорода (ианример, С4 или С ). Экспериментальные данные показывают, что погрешность в опредо.г[енпи константы К = [c.44]

    Так, в работах /123, 124/ на основе данных электронной и /125/ рентгеновской дифракции бып сделан вывод, что для структуры углеводородных цепей в жидкой фазе характерна высокая упорядоченность. Упорядочшные области, образованные параллельными участками цепей в транс-конформациях, могут в случае н-алканов и полиэтилена простираться на расстояния 10 нм и занимать до 60% объема расплава. Однако последующие исследования функций радиального распределения, полученных методами электронографии и рентгенографии /125/, поставили под сомнение выводы авторов /123, 124/ и выявили лишь локальную упорядоченность в располож ии участков молекул, по сути дела ничем не отличающуюся от ближнего порядка в структуре простых низкомолекулярных жидкостей. Аналогичные выводы получены методами ИК-спектроскопии /106/ и методом малоуглового рассеяния нейтронов /107/. [c.159]

    Сложные гетероциклические соединения, многообразные формы веществ со смешанными функциями являются первичной формой превращения погребенного органического вещества. Часть смолистых веществ нефти является примером подобного рода соединений. Они, с одной стороны, превращаются в более простые углеводородные, сперва также очень сложные соединения, с другой — переходят в результате диспропорционирования водорода в еще более сложные нолициклические соединения, являющиеся, так сказать, отходами нефтеобразовательного процесса. С химической точки зрения одинаково невозможно представить себе ни прямое превращение погребенного органического вещества в углеводороды, ни образование при этом метановых углеводородов. Последние знаменуют собой не начальные, а конечные стадии превращения, предшествующие окончательной гибели нефти и преврахцению ее в метан и графит. Иной порядок превращения исходного материала в нефть, т. е. переход от простейших метановых углеводородов в сложные нолициклические системы химически невозможен в условиях нефтеобразовательного процесса. < [c.203]

    В этом случае в процессах пиролиза углеводородного сырья эволюция параметров функции нормального распределения состава продуктов при изменении жесткости пиролиза должна иметь квазилинейный характер. На примере пиролиза показана адекватность модели (табл.3 3 и 3.4), что при пиролизе органических веществ имеет место общая закономерность, связывающая среднее значение свободной энергии компонентов и фактор жесткости процесса пиролиза, принятого в качестве меры интенсивности внешнего воздействия на систему. 1 аким образом, учитывая особенности процессов пиролиза в газовой фазе, получено решение уравнения КФП. Результаты свидетельствуют о квазилинейном температурно-временном изменении параметров функции нормального распределения фракционного состава продуктов пиролиза (рис 3.4 и 3 5). Аналогичную картину наблюдаем для фактора жесткости Ван - Кампа (рис 3.6). Несмотря на то, что сама функция распределения нелинейна при изменении темперагуры, ее параметры изменяются линейно. Как сг(е-дует из рис.3.4 и рис.3.5 при малых временах контакта до 0.5 с. для легких углеводородных фракций модель удовлетворительно описывает изменение параметров функции распределения п]ри всех температурах. В отличие от приведенных ниже данных средняя [c.52]

    Рис 5.5 Коксуемость по Конрадсону (% мае.) для углеводородных и еф гянь х сисгем как функция эффективного  [c.105]

    Несомненно, что органическая перекись, в случае ее образования даже и в незначительных количествах, должна проявлять разветвляющее действие в реакции окисления углеводородов. Это следует из целого ряда хорошо известных фактов инициирующего действия органических перекисей в реакциях полимеризации [34], термического распада [35], да и самого углеводородного окисления [36]. Такая функция органических перекисей получает свое естественное объяснение в относительно легкой способности этих веществ распадаться по связи 0—0 с образованием свободных радикалов. В таком случае тот твердо установленный факт, что нри газофазном окислении углеводородов (при температурах от 250— 300° и до температур, отвечающих нулевому значению температурного коэффициента скорости) разветвляющим агентом является высший альдегид, а не органическая перекись (см. стр. 253), может привести к заключению, что в ходе этой реакции практически полностью отсутствует возможность образования таких перекисей. Подобное заключение получает подтверждение в данных Нокса и Норриша [37] (см. стр. 262— 263), настаивающих на том, что единственная найденная ими при окисле НИИ пропана органическая перекись представляет собой диоксиметил-перекись, которая образуется ые в зоне реакции, а уже после отбора смеси в растворе при взаимодействии формальдегида с перекисью водорода. Такое утверждение о полном отсутствии органических нерекисей в реакционной зоне вступает, однако, в противоречие со сложившимся за последние 20 лет представлением о наличии в ходе газофазного окисления углеводородов конкуренции двух возможных реакций перекисного радикала КОа  [c.332]


Смотреть страницы где упоминается термин Углеводородные функции: [c.369]    [c.402]    [c.223]    [c.581]    [c.19]    [c.122]    [c.77]    [c.41]    [c.370]    [c.129]    [c.222]    [c.148]    [c.9]   
Смотреть главы в:

Микро- и полумикрометоды органического функционального анализа -> Углеводородные функции




ПОИСК







© 2025 chem21.info Реклама на сайте