Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ газов Анализ технологического газа

    На нефтеперерабатывающих заводах отбор проб газа из технологических аппаратов производится через специальные патрубки с запорными приспособлениями, позволяющими лаборанту присоединять пробоотборник и отбирать нужное количество газа для анализа. В качестве пробоотборников используют газовые пипетки, газометры и металлические пробоотборники. [c.236]


    Глава V. Синтез н анализ технологических схем ректификации углеводородных газов. .......... [c.5]

    Анализ работы адиабатных установок показал, что в одно-и двухконтурных установках не удается обеспечить работу без отложения сульфата кальция. В то же время каскадные адиабатные установки позволяют вести процесс в режиме предельного концентрирования раствора. Принципиальная технологическая схема такой установки приведена на рис. 16. Согласно схеме, газы направляются в теплообменник где нагревают раствор до соответствующей температуры. Вода поступает на испарение в первый каскад 2, образовавшийся пар конденсируется, нагревая исходную воду. Подогретая вода с первого каскада направляется во второй каскад 3, где процесс повторяется, и так до каскада N. Недостатком такой схемы являются дополнительные термодинамические потери, преимуществом можно считать то, что с газами контактирует меньшая часть воды (поступающая только в первый каскад), поэтому можно использовать загрязненные газы и продукты сгорания твердого и жидкого топлива. Во втором и третьем каскадах получается чистый дистиллят, а вода первого каскада может быть использована для технических нужд. В первом каскаде можно упаривать раствор до высоких концентраций. [c.38]

    Анализ технологических газов на содержание в них сероводорода и суммы сероуглерода и сероокиси углерода [c.212]

Рис. 87. Схема прибора для анализа технологических газов Рис. 87. <a href="/info/855414">Схема прибора</a> для <a href="/info/393197">анализа технологических</a> газов
    Для каждого компонента, при постоянных условиях разделения, время удерживания всегда постоянно. Газ-носитель выносит из колонки последовательно в определенном порядке отдельные компоненты смеси. В случае анализа технологических газов сероуглеродного производства сначала из хроматографической колонки будут удалены сероводород и сероокись углерода, а спустя значительное время и сероуглерод. [c.214]

    Эти методы используются в целях контроля атмосферного воздуха, а также для анализа технологических газов в труднодоступных по той или иной причине местах. Особую роль дистанционные методы играют в контроле загрязнений атмосферного воздуха, поскольку именно ими в основном обусловлено глобальное распространение загрязнений на планете. В дифференциальном варианте дистанционных методов определяется содержание с примеси в заданной точке пространства в нужный момент времени. В интегральном варианте определяют количество Q примеси на трассе длиной Л = / с(г)с1г. В этом случае получают статистически достоверные данные о среднем содержании [c.936]


    Анализ газов позволяет правильно судить о пригодности их в качестве сырья, контролировать производственный процесс и определять его режим. Зная состав отходящих газов синтеза, можно судить о ходе технологического процесса. Аналитическому контролю подвергаются также газы промышленных топок. [c.196]

    В книге рассмотрены наиболее актуальные вопросы и важнейшие достижения в области химии и переработки нефти. Содержание ее разбито на пять разделов 1) экономика и направления дальнейшего развития (новые статистические методы анализа технологических процессов) 2) процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности (парофазные адсорбционные процессы в переработке газов синтетические цеолиты — молекулярные сита) 3) процессы нефтепереработки (химические процессы очистки нефтепродуктов радиационные процессы в нефтепереработке катализаторы в нефтеперерабатывающей промышленности) 4) нефтехимическая промышленность (эластомеры нитрилы и амины низшие ароматические углеводороды из нефти производство непредельного нефтехимического сырья каталитическим дегидрированием алканов) 5) механическое оборудование (турбулентные диффузионные пламена). [c.4]

    Анализ калькуляции себестоимости технологических газов рассмотренных выше видов показывает, что наибольшие затраты в их производстве падают на исходное сырье (топливо) и его подготовку (30—40%),кислород (18—20%) и очистку и компрессию газа (30—46%). [c.296]

    При проектировании, строительстве и эксплуатации промышленных установок для электролиза воды следует принимать все меры для обеспечения безопасности персонала. Для безопасного ведения процесса электролиза необходимо предотвратить возможность образования взрывоопасных концентраций. С этой целью осуществляется непрерывный контроль состава газов, выходящих из электролизеров не менее одного раза в смену в различных точках технологической схемы производят контрольный анализ газов с помощью переносных газоанализаторов. [c.40]

    АНАЛИЗ ТЕХНОЛОГИЧЕСКОГО ГАЗА [c.7]

    Для определения возможности введения гальваношламов в технологический процесс плавки чугуна в лаборатории был проведен анализ отходящих газов при сжигании их на модельной установке, воспроизводящей процесс разложения гальванического осадка в вагранке. [c.67]

    В результате многократных анализов состава технологического газа на установках получения серы Оренбургского и Астраханского ГПЗ было определено, что независимо от завода, установки, конструкции горелочных устройств печей, типов промежуточных подогревателей и точки отбора пробы объемная доля кислорода в технологическом газе в период работы установки составляет 20-80 ppm, а изменение этой величины внутри данного интервала является случайным и не свидетельствует о его конверсии. Более опасными периодами, когда роль кислорода в сульфатации алюмооксидного катализатора, по мнению разработчиков защитных катализаторов [1, 3], возрастает, являются остановки и повторные пуски установок. Поэтому для сравнения активности катализаторов, работающих с защитным слоем и без него, выбраны реакторы с большим сроком эксплуатации катализатора (табл. 1, [c.77]

    СИНТЕЗ И АНАЛИЗ ТЕХНОЛОГИЧЕСКИХ СХЕМ РЕКТИФИКАЦИИ УГЛЕВОДОРОДН+ЫХ ГАЗОВ [c.266]

    Системы защиты создаются на основе анализа технологического процесса, аварийных ситуаций, надежности схем технологических блокировок и расчета временных зависимостей роста концентрации взрывоопасных газов и паров в производственных помещениях.-При составлении перечня возможных аварий отыскивают наиболее опасный случай, который может привести -к загазованности с образованием взрывоопасных кс нцентраций.  [c.259]

    Нри каталитической очистке, как и при каталитическом крекинге, количество и состав отводимого с установки жирного газа зависят от качества и природы циркулирующего в системе катализатора и поддерживаемого на установке технологического режима. В табл. 17 приведены результаты анализов жирного газа, получаемого на одной пз установок. [c.157]

    В зависимости от результатов анализов проб катализатора из реактора и регенератора на содержание кокса и анализов дымовых газов из секций регенератора принимается решение об изменении технологических режимов в реакторе и регенераторе. [c.166]

    К первой группе приборов относятся автоматические анализаторы для контроля качества на потоке сырья, продуктов, реагентов и других технологических потоков. К таким приборам относятся хроматографы, определяющие компонентный состав газа или жидкости. В основу хроматографа положено разделение смеси на компоненты под воздействием одновременно протекающих массообменных процессов - сорбции и десорбции. При десорбции газом-носителем происходит последовательное выделение абсорбированных компонентов. В первую очередь из адсорбента выходят низкокипящие газы или жидкости. Например, при анализе смеси газа, состоящего из этана, пропана и бутана, после начала десорбции с газом-носителем выйдет этан, затем пропан и после этого бутан. Выходящие компоненты анализируются детектором. Принципиальная схема хроматографа приведена на рис. 1-16, а. Анализируемый газ поступает через фильтры 1 и редукционный клапан 2 в дозатор 3, в котором отбирается проба определенного объема. Затем проба газа захватывается газом-носителем и направляется в колонку 4, заполненную адсорбентом, поглощающим (адсорбирующим) пробу газа. Затем за счет повышения температуры начинается десорбция газа. В первую очередь выходит этан, количество которого определяется в детекторе (камеры 5 и б). [c.310]


    Газ-носитель и адсорбенты. Газ-носитель. Природа газа-носителя существенно влияет на качество разделения веществ и их определение. Основными требованиями, предъявляемыми к газу-носителю как подвижной фазе, являются следующие газ-носитель должен быть инертен по отношению к разделяемым веществам и сорбенту, поэтому не рекомендуется использовать, например, водород для элюирования ненасыщенных соединений, так как может происходить их гидрирование вязкость газа-носителя должна быть как можно меньшей, чтобы поддерживался небольшой перепад давлений в колонке коэффициент диффузии компонента в газе-носителе должен иметь оптимальное значение, определяемое механизмом размывания полосы (в ряде случаев последние два условия противоречат друг другу, тогда газ-носитель необходимо подбирать в соответствии с конкретной задачей анализа) газ-носитель должен обеспечивать высокую чувствительность детектора поскольку при проведении хроматографического процесса расходуется значительное количество газа-носителя, необходимо, чтобы он был вполне доступен газ-носитель должен быть взрывобезопасным выполнение этого требования особенно важно при использовании хроматографов непосредственно на технологических установках газ-носитель должен быть очищенным. [c.84]

    На качественном этапе системного анализа при решении научных и инженерно-технических задач, направленных на совершенствование, проектирование и управление процессов химической технологии, требуется учитывать различного вида неопределенности. Довольно часто неопределенности обусловлены уровнем знаний (в рамках решаемой задачи) об изучаемой технологической системе. Выделяют общий уровень знаний и знания одного или группы специалистов. Неопределенности могут возникать и но другим причинам. К ним относятся большие погрешности измерений, что рассмотрено при решении задачи но оценке запасов газа в месторождении. Использование качественной информации при экстраполяции функции тепловых потоков в стекловаренной печи обусловлено отсутствием количественных экспериментальных данных в недоступной для измерений области. В процессах получения полиэтилена методом высокого давления и ректификации из-за сложности описания взаимосвязей между параметрами применен подход нечетких множеств. Привлечение качественной информации при синтезе нечетких регуляторов определяется желанием использовать неформализованные знания и опыт оператора. Неопределенности могут являться причиной нечеткости задания целей иссле- [c.352]

    Анализ состава технологических газов на различных стадиях производства серы позволяет корректировать распределение сероводородсодержащего газа по топкам, соотношение кислорода и сырья на входе в топки. Так, увеличение доли диоксида серы в дымовых газах после печи дожига выше 1,45 % (об.) свидетельствует о повышенном содержании непрореагировавшего сероводорода в процессе получения серы. В этом случае корректируют расход воздуха в основную топку, либо перераспределяют сероводородсодержащий газ по топкам. [c.112]

    На основании экспериментальных данных разных систем по формулам (11.2) и (11.3) определены значения коэффициента сопротивления / и числа Рейнольдса Ве, а также их видоизмененные функции. Зависимость / = ф (Ве) представлена нижней, а зависимость /т = ф(Ве, ) верхней кривой на рис. 11,2. Анализ кривых показывает, что область ламинарного газа через слой адсорбента ограничивается числами Рейнольдса Ве = 10—20 это приблизительно соответствует скоростям технологических газов, применяемых в промышленных адсорберах [0,5 — 1,0 л/(см /мин)]. [c.245]

    Для предупреждения образования в аппаратуре и помещении взрыво- и пожароопасных газовых смесей состав выходящих из электролизера газов непрерывно и автоматически фиксируется приборами и, когда чистота водорода становится ниже 98,5%, а кислорода ниже 98%, подаются световой-и звуковой аварийные сигналы не менее одного раза в смену производится контрольный анализ газов переносными газоанализаторами в различных местах технологической схемы контролируется уровень жидкости в газо-сборниках, не допуская работу электролизера при отсутствии в мерном стекле видимого уровня столба жидкости систематически производится тщательная очистка опорных изоляторов электролизера для предотвращения токов утечки в землю электролизеры после остановки и перед пуском продуваются азотом. Для контроля за содержанием водорода в помещении имеются автоматически действующие газоанализаторы, включающие аварийный сигнал, когда содержание водорода в воздухе более 0,4%. При содержании водорода выше % технологическое оборудование цеха автоматически останавливается. При загорании водород тушат СОг, азотом или хладонами. [c.22]

    Тем не менее конверсия сероводорода в процессе Клауса практически находилась на уровне равновесной, при этом предложенный титаноксидный катализатор превосходил по механической прочности французский аналог RS -31.В табл. 8 представлены результаты анализов технологического газа при испытаниях титаноксидного катализатора в автономном отсеке УЗ50 В04 ОГПЗ. [c.18]

    Анализ технологического газа при испытаниях титаноксидного [c.18]

    Наиболее важным аналитическим применением ПДЛ на сегодняшний день является детектирование атмосферных примесей (СО, NO, NO2, N2O, HNO3, NH3, Оз, SO2, НС1, Н2СО3), стабильных составляющих атмосферы (СО2, СН4, O S), а также анализ технологических газов, используемых в полупроводниковой и ядерной промышленности. Концентрацию определяют как путем пробоотбора (исследуемый газ прокачивают через многоходовую кювету при пониженном давлении), так и путем трассовых измерений непосредственно в атмосфере. [c.242]

    Впервые качественные реакции для определения функциональных групп в газовой хроматографии использовали Дюбо и Монкман [2], показав на примере анализа смеси паров растворителей, что химические реакции являются эффективным методом прямого, быстрого и недорогого качественного анализа хроматографически разделенных соединений. Однако, при идентификации загрязнений этот прием имеет ряд ограничений, главным из которых является величина предела обнаружения Сц химической реакции. Особенно важным последнее обстоятельство становится при анализе многокомпонентных смесей загрязнений на капиллярных колонках, когда количества индивидуальных соединений могут оказаться ниже С и составить около 0,01-0,001 мкг. Тем не менее в целом ряде случаев, например, при определении загрязнений в выбросах промышленных предприятий и ТЭС, определении промышленных ядов в воздухе рабочей зоны, при анализе технологических газов и сточных вод, особенно с использованием предварительного концентрирования целевых компонентов, применение качественных реакций вполне оправдано. [c.157]

    Большинство из них применяется преимущественно для анализа технологических газов и определения довзрывных концентраций горючих газов и паров в воздухе производственных помещений. [c.92]

    При небольших тепловых нагрузках, существенной разбросанности объектов охлаждения, а также при непосредственном включении элементов холодильного цикла в схему основного производства, например, при газоразделении, целесообразно использование локальной системы получения холода с непосредственным охлаждением объектов рабочим телом холодильной машины. При этом несколько снижаются энергетические затраты. В холодильных установках, применяемых в химической промышленности, используют почти все типы холодильных машин, но [/аибольшее распространение получили паровые компрессионные и абсорбционные. Как показывает техникоэкономический анализ [1, 8, 11], применение абсорбционных холодильных машин обосновано при использовании вторичных энергетических ресурсов в виде дымовых и отработанных газов, факельных сбросов газа, продуктов технологического производства, отработанного пара низких параметров. В ряде производств экономически выгодно комплексное использование машин обоих типов при создании энерготехнологических схем. [c.173]

    Существуют различные представления о масштабах генерации УВГ на различных стадиях метаморфизма ископаемых углей (табл. 7,8 рис. 9,10). Это объясняется различными подходами к решению поставленного вопроса, которые основываются на данных об изменении состава углей (см. табл. 7) или о потерях Н (табл. 9), либо на анализе выхода летучих (см. табл. 7, рис. 9). Конечно, особый интерес должны представлять результаты экспериментов, которые на протяжении нескольких лет проводились В.Л. Соколовым и В.Ф. Симоненко (рис. 11). Однако полученные ими при нагревании угля газы нельзя рассматривать в качестве природных газов. Во-первых, они представляют собой продукт возгонки углей в замкнутом пространстве, а именно, в стальном сосуде во-вторых, уголь для опытов предварительно измельчался и смачивался. Следовательно, это технологические газы, что автором отмечалось уже давно (1974 г.). Об этом свидетельствует прежде всего большое количество в их составе непредельных УВ (рис. 12). [c.27]

    Для проверки работы отдельных узлов технологической схемы при необходи.мости проводят лабораторные анализы и других продуктов (нестабильный катализат, газопродуктовая смесь, газы стабилизации, углеводородные газы до очистки и др.). [c.207]

    Проблема создания высокопроизводительных водородных установок ставит одной из своих ак-туалъных задач разработку эффектшзных методов очистки технологических газов от двуокиси углерода. С точки зрения практического применения наибольший интерес в этом отношении представляет задача усовершенствования существующих,став-шлх классическими способов очистки, таких как очистка водой под давлением, водными растворами этаноламинов и промывка горячем раствором карбоната калия. Целесообразность и основные принципиальные решения данного направления выявлены при исследовании технологии поташного метода очистки, разработанной фирмой Лурги и осуществленной на Уфимском нефтеперерабатывающем заводе им. ХХП съезда КПСС. Анализ работы установки показал, что задача уссвершенствова- [c.155]

    Анализ схем конверсии производства аммиака позволяет выявить основные технологическиз и энергетические связи отдельных стадий и аппаратов. Отличительной особенностью схемы является строгая энергетическая сбалансированность выработки и потребления пара, получаемого при утилизации тепла дымовых газов и технологических потоков. Важнейшими связями являются в) зависимость содержания инертов в свежем газе на входе в компрессор синтез-газа в зависимости от условий конверсии б) зависимость соотношения / в циркуляционном газе от условий процесса паровоздушной конверсии. Дополнительные связи объясняются рециклом части азотоводородной смеси (АВС) в аппараты сероочистки, сжиганием в печи продувочных и танковых газов, подогревом АБС, идущей на метанирование, конвертированным газом. [c.289]

    Первым этапом материального и информационного потока в анализе является подготовка, отбор и дозирование пробы анализируемого вещества [А. 1.6]. В лабораторных условиях проводить отбор и дозирование пробы в общем несложно, но при отборе пробы непосредственно в процессе производства возникает ряд трудностей. Как указывалось, состав отбираемой для анализа пробы должен соответствовать истинному составу анализируемого вещества на данном этапе производственного процесса (разд. 8.2). При отборе пробы в процессе производства это требование не всегда выполняется. В процессе подготовки пробы к анализу, дозирования или в ходе самого анализа в составе и свойствах анализируемой пробы могут происходить неизбежные и не поддающиеся контролю изменения. Подобные изменения могут происходить, например, в процессе образования новой фазы при работе с жидкостями, насыщенными газами, или сжиженными газами вследствие процессов окисления или полимеризации (для олефинов) в результате адсорбционных явлений, происходящих на внутренних стенках труб при взаимодействии нестабильных органических веществ с кислородом или смазочными веществами или в результате диффузии газов в шлангах, трубах или местах соединения труб. Анализируемое вещество может изменять свои свойства и в процессе анализа. При использовании результатов анализа для корректировки технологического процесса отбор, подготовку, дози-)ование и анализ вещества необходимо проводить с минимальными затратами времени. 1ри этом особое внимание следует уделить выбору места отбора пробы. В случае процессов, протекающих с большой скоростью, или при работе с негомогенными продуктами довольно сложно осуществить эти требования. Способ подготовки и дозирования пробы зависит 0Т конкретной аналитической задачи. При выборе способа следует также учесть соответствующие затраты технических средств. Средняя квадратичная ошибка дозирования пробы для проведения технического или ориентировочного анализа составляет 5— 0%, для анализов контроля или управления производством 0,2—2%. [c.431]

    Не менее важной задачей технического анализа является производственно-технологическая оценка исходного сырья сырой нефти, дистиллятных и остаточных нефтяных продуктов, природного, попутного и промышленных углеводородных газов. Производственнотехнологическая оценка проводится главным образом по физикохимическим показателям, характеризующим состав и свойства сырья. [c.9]

    Для оптимизации технологии и техники переработки газа на всех указанных выше уровнях наряду с проведением экспериментов и промышленных обследований необходимо широкое привлечение современных методов математического моделирования и системного анализа технологических процессов, средств информационной и вычислительной техники с целью создания и промышленной реализации системы автоматизированного проектирования и оптимизации ГПЗ (САПРО—ГПЗ). [c.328]

    Разработана методика теоретического анализа влияния различных технологических факторов на продолжительность пиролиза парогазовых продуктов в печной камере. Наибольшее время газы находятся в слое полукокса-кокса (10,5-19,2 с), наименьшее в зазоре у стены камеры (0,8-1,5 с). Повышение плотности загрузки и скорост коксования ведет к сокращению времени пребывания газов во всех зонах печной камеры. Для обеспечения их нормального пиролиза потребуегся поднять уровень перевала продуктов горения газа в отопительных простенках и увеличить высоту подсводового пространства. Результаты указанных исследований позволяют рассчитывать плотность угольной шихты в промышленных коксовых камерах, продолжительность пиролиза парогазовых продуктов коксования, вертикальную и горизонтальную усадку коксуемой загрузки [c.374]

    Анализ дымовых газов из камеры конвекции указывает на значительный подсос воздуха через неплотности. Это характерно для большей части печей технологических установок нефтеперерабатывающих заводов в связи с тем, что герметизация ретурбентных коробок и особенно конвекционной шахты не придают должного значения. [c.249]


Смотреть страницы где упоминается термин Анализ газов Анализ технологического газа: [c.77]    [c.193]    [c.34]    [c.203]    [c.63]    [c.352]    [c.344]    [c.209]   
Смотреть главы в:

Аналитический контроль производства в азотной промышленности Вып 5 -> Анализ газов Анализ технологического газа




ПОИСК





Смотрите так же термины и статьи:

Анализ газо



© 2024 chem21.info Реклама на сайте